--- library_name: transformers license: mit base_model: vinai/phobert-base tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: phobert-human-finetune-seg-seed-1337 results: [] --- # phobert-human-finetune-seg-seed-1337 This model is a fine-tuned version of [vinai/phobert-base](https://huggingface.co/vinai/phobert-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4395 - Accuracy: 0.8570 - Precision: 0.6569 - Recall: 0.6924 - F1: 0.6729 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 1.0 | 346 | 0.3643 | 0.8671 | 0.7013 | 0.5922 | 0.6310 | | 0.4458 | 2.0 | 692 | 0.3549 | 0.8698 | 0.7011 | 0.6338 | 0.6625 | | 0.2752 | 3.0 | 1038 | 0.4395 | 0.8570 | 0.6569 | 0.6924 | 0.6729 | | 0.2752 | 4.0 | 1384 | 0.5660 | 0.8645 | 0.6781 | 0.6046 | 0.6348 | | 0.1612 | 5.0 | 1730 | 0.6182 | 0.8230 | 0.6101 | 0.6878 | 0.6360 | | 0.1187 | 6.0 | 2076 | 0.5680 | 0.8679 | 0.6855 | 0.6337 | 0.6545 | | 0.1187 | 7.0 | 2422 | 0.7394 | 0.8664 | 0.6868 | 0.6266 | 0.6520 | | 0.0864 | 8.0 | 2768 | 0.6227 | 0.8604 | 0.6723 | 0.6441 | 0.6559 | ### Framework versions - Transformers 4.51.1 - Pytorch 2.5.1+cu124 - Datasets 3.5.0 - Tokenizers 0.21.0