tongliuphysics commited on
Commit
d8de318
·
verified ·
1 Parent(s): df9de15

Model save

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2.5-3B
3
+ library_name: transformers
4
+ model_name: Qwen2.5-3B-MATH-lighteval-gen-SFT-15epoch
5
+ tags:
6
+ - generated_from_trainer
7
+ - trl
8
+ - sft
9
+ licence: license
10
+ ---
11
+
12
+ # Model Card for Qwen2.5-3B-MATH-lighteval-gen-SFT-15epoch
13
+
14
+ This model is a fine-tuned version of [Qwen/Qwen2.5-3B](https://huggingface.co/Qwen/Qwen2.5-3B).
15
+ It has been trained using [TRL](https://github.com/huggingface/trl).
16
+
17
+ ## Quick start
18
+
19
+ ```python
20
+ from transformers import pipeline
21
+
22
+ question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
23
+ generator = pipeline("text-generation", model="tongliuphysics/Qwen2.5-3B-MATH-lighteval-gen-SFT-15epoch", device="cuda")
24
+ output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
25
+ print(output["generated_text"])
26
+ ```
27
+
28
+ ## Training procedure
29
+
30
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/pl03818948-ludwig-maximilianuniversity-of-munich/qwen-math-sft/runs/bb2izx4l)
31
+
32
+
33
+ This model was trained with SFT.
34
+
35
+ ### Framework versions
36
+
37
+ - TRL: 0.16.0.dev0
38
+ - Transformers: 4.49.0
39
+ - Pytorch: 2.5.1
40
+ - Datasets: 3.4.1
41
+ - Tokenizers: 0.21.1
42
+
43
+ ## Citations
44
+
45
+
46
+
47
+ Cite TRL as:
48
+
49
+ ```bibtex
50
+ @misc{vonwerra2022trl,
51
+ title = {{TRL: Transformer Reinforcement Learning}},
52
+ author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
53
+ year = 2020,
54
+ journal = {GitHub repository},
55
+ publisher = {GitHub},
56
+ howpublished = {\url{https://github.com/huggingface/trl}}
57
+ }
58
+ ```
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
all_results.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "eval_loss": 1.0088802576065063,
3
+ "eval_runtime": 69.2558,
4
+ "eval_samples": 3537,
5
+ "eval_samples_per_second": 12.317,
6
+ "eval_steps_per_second": 1.545,
7
+ "total_flos": 73182014865408.0,
8
+ "train_loss": 0.0,
9
+ "train_runtime": 4.0071,
10
+ "train_samples": 6726,
11
+ "train_samples_per_second": 6210.29,
12
+ "train_steps_per_second": 190.913
13
+ }
config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen2.5-3B",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151643,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 2048,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 11008,
13
+ "max_position_embeddings": 32768,
14
+ "max_window_layers": 36,
15
+ "model_type": "qwen2",
16
+ "num_attention_heads": 16,
17
+ "num_hidden_layers": 36,
18
+ "num_key_value_heads": 2,
19
+ "rms_norm_eps": 1e-06,
20
+ "rope_scaling": null,
21
+ "rope_theta": 1000000.0,
22
+ "sliding_window": 32768,
23
+ "tie_word_embeddings": true,
24
+ "torch_dtype": "bfloat16",
25
+ "transformers_version": "4.49.0",
26
+ "use_cache": false,
27
+ "use_mrope": false,
28
+ "use_sliding_window": false,
29
+ "vocab_size": 151936
30
+ }
eval_results.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "eval_loss": 1.0088802576065063,
3
+ "eval_runtime": 69.2558,
4
+ "eval_samples": 3537,
5
+ "eval_samples_per_second": 12.317,
6
+ "eval_steps_per_second": 1.545
7
+ }
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "eos_token_id": 151643,
4
+ "max_new_tokens": 2048,
5
+ "transformers_version": "4.49.0"
6
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3a75cbbcc6444628839d5778ae5bf8c294b5d306b33b35b7cfde2c57f3dc1dc4
3
+ size 4957560304
model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af8fb7c8e91bd68706798fb1b1782b82f8dcf5994a105abe48963dd60dd5491a
3
+ size 1214366696
model.safetensors.index.json ADDED
@@ -0,0 +1,441 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 6171877376
4
+ },
5
+ "weight_map": {
6
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
7
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
16
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
17
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
18
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
19
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
25
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
26
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
28
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
29
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
30
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
31
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
37
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
38
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
40
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
41
+ "model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
42
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
43
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
44
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
46
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
49
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
50
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
52
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
53
+ "model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
54
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
55
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
57
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
58
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
60
+ "model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
61
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
62
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
64
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
65
+ "model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
66
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
67
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
69
+ "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
73
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
74
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
76
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
77
+ "model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
78
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
79
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
83
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
84
+ "model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
85
+ "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
86
+ "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
87
+ "model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
88
+ "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
89
+ "model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
90
+ "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
91
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
92
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
93
+ "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
94
+ "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
95
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
96
+ "model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
97
+ "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
98
+ "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
99
+ "model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
100
+ "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
101
+ "model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
102
+ "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
103
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
104
+ "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
105
+ "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
106
+ "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
107
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
108
+ "model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
109
+ "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
110
+ "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
111
+ "model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
112
+ "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
113
+ "model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
114
+ "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
115
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
116
+ "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
117
+ "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
118
+ "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
119
+ "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
120
+ "model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
121
+ "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
122
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
124
+ "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
125
+ "model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
126
+ "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
127
+ "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
128
+ "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
129
+ "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
130
+ "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
131
+ "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
132
+ "model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
133
+ "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
134
+ "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
135
+ "model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
136
+ "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
137
+ "model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
138
+ "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
139
+ "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
140
+ "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
141
+ "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
142
+ "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
143
+ "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
144
+ "model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
145
+ "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
146
+ "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
147
+ "model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
148
+ "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
149
+ "model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
150
+ "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
151
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
152
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
153
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
154
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
155
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
156
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
157
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
158
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
159
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
160
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
161
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
162
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
163
+ "model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
164
+ "model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
165
+ "model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
166
+ "model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
167
+ "model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
168
+ "model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
169
+ "model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
170
+ "model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
171
+ "model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
172
+ "model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
173
+ "model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
174
+ "model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
175
+ "model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
176
+ "model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
177
+ "model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
178
+ "model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
179
+ "model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
180
+ "model.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
181
+ "model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
182
+ "model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
183
+ "model.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
184
+ "model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
185
+ "model.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
186
+ "model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
187
+ "model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
188
+ "model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
189
+ "model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
190
+ "model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
191
+ "model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
192
+ "model.layers.22.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
193
+ "model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
194
+ "model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
195
+ "model.layers.22.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
196
+ "model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
197
+ "model.layers.22.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
198
+ "model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
199
+ "model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
200
+ "model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
201
+ "model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
202
+ "model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
203
+ "model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
204
+ "model.layers.23.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
205
+ "model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
206
+ "model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
207
+ "model.layers.23.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
208
+ "model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
209
+ "model.layers.23.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
210
+ "model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
211
+ "model.layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
212
+ "model.layers.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
213
+ "model.layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
214
+ "model.layers.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
215
+ "model.layers.24.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
216
+ "model.layers.24.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
217
+ "model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
218
+ "model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
219
+ "model.layers.24.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
220
+ "model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
221
+ "model.layers.24.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
222
+ "model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
223
+ "model.layers.25.input_layernorm.weight": "model-00001-of-00002.safetensors",
224
+ "model.layers.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
225
+ "model.layers.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
226
+ "model.layers.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
227
+ "model.layers.25.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
228
+ "model.layers.25.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
229
+ "model.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
230
+ "model.layers.25.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
231
+ "model.layers.25.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
232
+ "model.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
233
+ "model.layers.25.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
234
+ "model.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
235
+ "model.layers.26.input_layernorm.weight": "model-00001-of-00002.safetensors",
236
+ "model.layers.26.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
237
+ "model.layers.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
238
+ "model.layers.26.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
239
+ "model.layers.26.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
240
+ "model.layers.26.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
241
+ "model.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
242
+ "model.layers.26.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
243
+ "model.layers.26.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
244
+ "model.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
245
+ "model.layers.26.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
246
+ "model.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
247
+ "model.layers.27.input_layernorm.weight": "model-00001-of-00002.safetensors",
248
+ "model.layers.27.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
249
+ "model.layers.27.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
250
+ "model.layers.27.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
251
+ "model.layers.27.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
252
+ "model.layers.27.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
253
+ "model.layers.27.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
254
+ "model.layers.27.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
255
+ "model.layers.27.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
256
+ "model.layers.27.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
257
+ "model.layers.27.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
258
+ "model.layers.27.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
259
+ "model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
260
+ "model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
261
+ "model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
262
+ "model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
263
+ "model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
264
+ "model.layers.28.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
265
+ "model.layers.28.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
266
+ "model.layers.28.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
267
+ "model.layers.28.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
268
+ "model.layers.28.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
269
+ "model.layers.28.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
270
+ "model.layers.28.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
271
+ "model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
272
+ "model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
273
+ "model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
274
+ "model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
275
+ "model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
276
+ "model.layers.29.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
277
+ "model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
278
+ "model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
279
+ "model.layers.29.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
280
+ "model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
281
+ "model.layers.29.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
282
+ "model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
283
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
284
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
285
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
286
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
287
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
288
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
289
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
290
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
291
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
292
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
293
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
294
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
295
+ "model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
296
+ "model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
297
+ "model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
298
+ "model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
299
+ "model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
300
+ "model.layers.30.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
301
+ "model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
302
+ "model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
303
+ "model.layers.30.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
304
+ "model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
305
+ "model.layers.30.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
306
+ "model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
307
+ "model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
308
+ "model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
309
+ "model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
310
+ "model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
311
+ "model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
312
+ "model.layers.31.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
313
+ "model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
314
+ "model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
315
+ "model.layers.31.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
316
+ "model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
317
+ "model.layers.31.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
318
+ "model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
319
+ "model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
320
+ "model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
321
+ "model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
322
+ "model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
323
+ "model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
324
+ "model.layers.32.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
325
+ "model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
326
+ "model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
327
+ "model.layers.32.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
328
+ "model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
329
+ "model.layers.32.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
330
+ "model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
331
+ "model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
332
+ "model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
333
+ "model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
334
+ "model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
335
+ "model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
336
+ "model.layers.33.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
337
+ "model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
338
+ "model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
339
+ "model.layers.33.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
340
+ "model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
341
+ "model.layers.33.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
342
+ "model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
343
+ "model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
344
+ "model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
345
+ "model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
346
+ "model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
347
+ "model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
348
+ "model.layers.34.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
349
+ "model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
350
+ "model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
351
+ "model.layers.34.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
352
+ "model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
353
+ "model.layers.34.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
354
+ "model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
355
+ "model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
356
+ "model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
357
+ "model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
358
+ "model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
359
+ "model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
360
+ "model.layers.35.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
361
+ "model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
362
+ "model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
363
+ "model.layers.35.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
364
+ "model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
365
+ "model.layers.35.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
366
+ "model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
367
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
368
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
369
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
370
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
371
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
372
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
373
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
374
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
375
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
376
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
377
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
378
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
379
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
380
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
381
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
382
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
383
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
384
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
385
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
386
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
387
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
388
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
389
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
390
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
391
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
392
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
393
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
394
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
395
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
396
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
397
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
398
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
399
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
400
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
401
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
402
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
403
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
404
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
405
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
406
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
407
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
408
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
409
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
410
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
411
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
412
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
413
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
414
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
415
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
416
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
417
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
418
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
419
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
420
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
421
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
422
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
423
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
424
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
425
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
426
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
427
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
428
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
429
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
430
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
431
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
432
+ "model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
433
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
434
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
435
+ "model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
436
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
437
+ "model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
438
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
439
+ "model.norm.weight": "model-00002-of-00002.safetensors"
440
+ }
441
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|endoftext|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
tokenizer_config.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|endoftext|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 131072,
204
+ "pad_token": "<|endoftext|>",
205
+ "split_special_tokens": false,
206
+ "tokenizer_class": "Qwen2Tokenizer",
207
+ "unk_token": null
208
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "total_flos": 73182014865408.0,
3
+ "train_loss": 0.0,
4
+ "train_runtime": 4.0071,
5
+ "train_samples": 6726,
6
+ "train_samples_per_second": 6210.29,
7
+ "train_steps_per_second": 190.913
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,3440 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 14.983132530120482,
5
+ "eval_steps": 20,
6
+ "global_step": 765,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.03855421686746988,
13
+ "grad_norm": 1.705785639538995,
14
+ "learning_rate": 3.076923076923077e-06,
15
+ "loss": 0.2318,
16
+ "mean_token_accuracy": 0.9303401485085487,
17
+ "step": 2
18
+ },
19
+ {
20
+ "epoch": 0.07710843373493977,
21
+ "grad_norm": 1.3382310454836868,
22
+ "learning_rate": 6.153846153846154e-06,
23
+ "loss": 0.2394,
24
+ "mean_token_accuracy": 0.9281194359064102,
25
+ "step": 4
26
+ },
27
+ {
28
+ "epoch": 0.11566265060240964,
29
+ "grad_norm": 0.9286601308090225,
30
+ "learning_rate": 9.230769230769232e-06,
31
+ "loss": 0.2036,
32
+ "mean_token_accuracy": 0.9367443360388279,
33
+ "step": 6
34
+ },
35
+ {
36
+ "epoch": 0.15421686746987953,
37
+ "grad_norm": 0.7792017510600757,
38
+ "learning_rate": 1.2307692307692308e-05,
39
+ "loss": 0.2032,
40
+ "mean_token_accuracy": 0.9357062317430973,
41
+ "step": 8
42
+ },
43
+ {
44
+ "epoch": 0.1927710843373494,
45
+ "grad_norm": 0.9370950173956825,
46
+ "learning_rate": 1.5384615384615384e-05,
47
+ "loss": 0.1834,
48
+ "mean_token_accuracy": 0.9399731457233429,
49
+ "step": 10
50
+ },
51
+ {
52
+ "epoch": 0.23132530120481928,
53
+ "grad_norm": 0.8480517804963458,
54
+ "learning_rate": 1.8461538461538465e-05,
55
+ "loss": 0.1822,
56
+ "mean_token_accuracy": 0.939278531819582,
57
+ "step": 12
58
+ },
59
+ {
60
+ "epoch": 0.26987951807228916,
61
+ "grad_norm": 0.6953427088211457,
62
+ "learning_rate": 2.153846153846154e-05,
63
+ "loss": 0.1899,
64
+ "mean_token_accuracy": 0.9386755153536797,
65
+ "step": 14
66
+ },
67
+ {
68
+ "epoch": 0.30843373493975906,
69
+ "grad_norm": 0.6445338354317891,
70
+ "learning_rate": 2.4615384615384616e-05,
71
+ "loss": 0.1902,
72
+ "mean_token_accuracy": 0.9381640963256359,
73
+ "step": 16
74
+ },
75
+ {
76
+ "epoch": 0.3469879518072289,
77
+ "grad_norm": 16.86197827884376,
78
+ "learning_rate": 2.7692307692307694e-05,
79
+ "loss": 0.2164,
80
+ "mean_token_accuracy": 0.929523404687643,
81
+ "step": 18
82
+ },
83
+ {
84
+ "epoch": 0.3855421686746988,
85
+ "grad_norm": 0.8093990311871346,
86
+ "learning_rate": 3.076923076923077e-05,
87
+ "loss": 0.2054,
88
+ "mean_token_accuracy": 0.9316003210842609,
89
+ "step": 20
90
+ },
91
+ {
92
+ "epoch": 0.3855421686746988,
93
+ "eval_loss": 0.3369506299495697,
94
+ "eval_mean_token_accuracy": 0.8973738456440863,
95
+ "eval_runtime": 69.8577,
96
+ "eval_samples_per_second": 12.211,
97
+ "eval_steps_per_second": 1.532,
98
+ "step": 20
99
+ },
100
+ {
101
+ "epoch": 0.42409638554216866,
102
+ "grad_norm": 0.6956406793607236,
103
+ "learning_rate": 3.384615384615385e-05,
104
+ "loss": 0.2031,
105
+ "mean_token_accuracy": 0.932736948132515,
106
+ "step": 22
107
+ },
108
+ {
109
+ "epoch": 0.46265060240963857,
110
+ "grad_norm": 0.7553228131083111,
111
+ "learning_rate": 3.692307692307693e-05,
112
+ "loss": 0.2084,
113
+ "mean_token_accuracy": 0.9308155290782452,
114
+ "step": 24
115
+ },
116
+ {
117
+ "epoch": 0.5012048192771085,
118
+ "grad_norm": 0.7117402928034869,
119
+ "learning_rate": 3.9999999999999996e-05,
120
+ "loss": 0.2174,
121
+ "mean_token_accuracy": 0.928256306797266,
122
+ "step": 26
123
+ },
124
+ {
125
+ "epoch": 0.5397590361445783,
126
+ "grad_norm": 0.787482072880362,
127
+ "learning_rate": 4.307692307692308e-05,
128
+ "loss": 0.2049,
129
+ "mean_token_accuracy": 0.9328590780496597,
130
+ "step": 28
131
+ },
132
+ {
133
+ "epoch": 0.5783132530120482,
134
+ "grad_norm": 0.752105277951089,
135
+ "learning_rate": 4.615384615384616e-05,
136
+ "loss": 0.229,
137
+ "mean_token_accuracy": 0.9249282665550709,
138
+ "step": 30
139
+ },
140
+ {
141
+ "epoch": 0.6168674698795181,
142
+ "grad_norm": 0.8147848697294077,
143
+ "learning_rate": 4.923076923076923e-05,
144
+ "loss": 0.2179,
145
+ "mean_token_accuracy": 0.9284547679126263,
146
+ "step": 32
147
+ },
148
+ {
149
+ "epoch": 0.655421686746988,
150
+ "grad_norm": 0.7644654922148933,
151
+ "learning_rate": 5.230769230769231e-05,
152
+ "loss": 0.2247,
153
+ "mean_token_accuracy": 0.9260961338877678,
154
+ "step": 34
155
+ },
156
+ {
157
+ "epoch": 0.6939759036144578,
158
+ "grad_norm": 0.7817362701539053,
159
+ "learning_rate": 5.538461538461539e-05,
160
+ "loss": 0.2242,
161
+ "mean_token_accuracy": 0.9262716956436634,
162
+ "step": 36
163
+ },
164
+ {
165
+ "epoch": 0.7325301204819277,
166
+ "grad_norm": 0.774259135293273,
167
+ "learning_rate": 5.846153846153846e-05,
168
+ "loss": 0.2314,
169
+ "mean_token_accuracy": 0.9232718795537949,
170
+ "step": 38
171
+ },
172
+ {
173
+ "epoch": 0.7710843373493976,
174
+ "grad_norm": 0.7779113622447489,
175
+ "learning_rate": 5.999971912241308e-05,
176
+ "loss": 0.2287,
177
+ "mean_token_accuracy": 0.9244779124855995,
178
+ "step": 40
179
+ },
180
+ {
181
+ "epoch": 0.7710843373493976,
182
+ "eval_loss": 0.3469708263874054,
183
+ "eval_mean_token_accuracy": 0.8928724889443299,
184
+ "eval_runtime": 69.3388,
185
+ "eval_samples_per_second": 12.302,
186
+ "eval_steps_per_second": 1.543,
187
+ "step": 40
188
+ },
189
+ {
190
+ "epoch": 0.8096385542168675,
191
+ "grad_norm": 1.0113024310620926,
192
+ "learning_rate": 5.999747213327451e-05,
193
+ "loss": 0.2693,
194
+ "mean_token_accuracy": 0.9148754477500916,
195
+ "step": 42
196
+ },
197
+ {
198
+ "epoch": 0.8481927710843373,
199
+ "grad_norm": 0.7088415265241964,
200
+ "learning_rate": 5.9992978323297615e-05,
201
+ "loss": 0.2458,
202
+ "mean_token_accuracy": 0.9198446087539196,
203
+ "step": 44
204
+ },
205
+ {
206
+ "epoch": 0.8867469879518072,
207
+ "grad_norm": 0.7182198589386569,
208
+ "learning_rate": 5.998623802907028e-05,
209
+ "loss": 0.2506,
210
+ "mean_token_accuracy": 0.9187759719789028,
211
+ "step": 46
212
+ },
213
+ {
214
+ "epoch": 0.9253012048192771,
215
+ "grad_norm": 0.7310790646836636,
216
+ "learning_rate": 5.9977251755442846e-05,
217
+ "loss": 0.247,
218
+ "mean_token_accuracy": 0.9190579950809479,
219
+ "step": 48
220
+ },
221
+ {
222
+ "epoch": 0.963855421686747,
223
+ "grad_norm": 0.7741943498527103,
224
+ "learning_rate": 5.996602017549024e-05,
225
+ "loss": 0.2581,
226
+ "mean_token_accuracy": 0.9155904687941074,
227
+ "step": 50
228
+ },
229
+ {
230
+ "epoch": 1.0192771084337349,
231
+ "grad_norm": 1.2496640105784593,
232
+ "learning_rate": 5.995254413046162e-05,
233
+ "loss": 0.3363,
234
+ "mean_token_accuracy": 0.931157294072603,
235
+ "step": 52
236
+ },
237
+ {
238
+ "epoch": 1.0578313253012048,
239
+ "grad_norm": 0.7796457097751058,
240
+ "learning_rate": 5.9936824629717325e-05,
241
+ "loss": 0.1786,
242
+ "mean_token_accuracy": 0.9429653286933899,
243
+ "step": 54
244
+ },
245
+ {
246
+ "epoch": 1.0963855421686748,
247
+ "grad_norm": 3.026426945371409,
248
+ "learning_rate": 5.99188628506533e-05,
249
+ "loss": 0.1852,
250
+ "mean_token_accuracy": 0.9431561566889286,
251
+ "step": 56
252
+ },
253
+ {
254
+ "epoch": 1.1349397590361445,
255
+ "grad_norm": 1.0038422236143207,
256
+ "learning_rate": 5.9898660138612876e-05,
257
+ "loss": 0.1853,
258
+ "mean_token_accuracy": 0.9422325491905212,
259
+ "step": 58
260
+ },
261
+ {
262
+ "epoch": 1.1734939759036145,
263
+ "grad_norm": 0.7074992404348022,
264
+ "learning_rate": 5.987621800678605e-05,
265
+ "loss": 0.1831,
266
+ "mean_token_accuracy": 0.94137342274189,
267
+ "step": 60
268
+ },
269
+ {
270
+ "epoch": 1.1734939759036145,
271
+ "eval_loss": 0.35918718576431274,
272
+ "eval_mean_token_accuracy": 0.8896827536208607,
273
+ "eval_runtime": 69.4598,
274
+ "eval_samples_per_second": 12.28,
275
+ "eval_steps_per_second": 1.54,
276
+ "step": 60
277
+ },
278
+ {
279
+ "epoch": 1.2120481927710842,
280
+ "grad_norm": 0.7082061395367404,
281
+ "learning_rate": 5.985153813609611e-05,
282
+ "loss": 0.1842,
283
+ "mean_token_accuracy": 0.9406329356133938,
284
+ "step": 62
285
+ },
286
+ {
287
+ "epoch": 1.2506024096385542,
288
+ "grad_norm": 0.6821522908900178,
289
+ "learning_rate": 5.9824622375073734e-05,
290
+ "loss": 0.1752,
291
+ "mean_token_accuracy": 0.9430656358599663,
292
+ "step": 64
293
+ },
294
+ {
295
+ "epoch": 1.2891566265060241,
296
+ "grad_norm": 0.7166162494240023,
297
+ "learning_rate": 5.9795472739718545e-05,
298
+ "loss": 0.1808,
299
+ "mean_token_accuracy": 0.9407593570649624,
300
+ "step": 66
301
+ },
302
+ {
303
+ "epoch": 1.3277108433734939,
304
+ "grad_norm": 0.7660251684759504,
305
+ "learning_rate": 5.976409141334814e-05,
306
+ "loss": 0.1834,
307
+ "mean_token_accuracy": 0.9412631429731846,
308
+ "step": 68
309
+ },
310
+ {
311
+ "epoch": 1.3662650602409638,
312
+ "grad_norm": 0.7615899653640325,
313
+ "learning_rate": 5.973048074643451e-05,
314
+ "loss": 0.19,
315
+ "mean_token_accuracy": 0.9395075254142284,
316
+ "step": 70
317
+ },
318
+ {
319
+ "epoch": 1.4048192771084338,
320
+ "grad_norm": 0.6665145918954607,
321
+ "learning_rate": 5.969464325642798e-05,
322
+ "loss": 0.1937,
323
+ "mean_token_accuracy": 0.9372099563479424,
324
+ "step": 72
325
+ },
326
+ {
327
+ "epoch": 1.4433734939759035,
328
+ "grad_norm": 0.6756063324444066,
329
+ "learning_rate": 5.965658162756873e-05,
330
+ "loss": 0.1785,
331
+ "mean_token_accuracy": 0.9428446739912033,
332
+ "step": 74
333
+ },
334
+ {
335
+ "epoch": 1.4819277108433735,
336
+ "grad_norm": 5.007514408102458,
337
+ "learning_rate": 5.961629871068567e-05,
338
+ "loss": 0.1824,
339
+ "mean_token_accuracy": 0.9399459026753902,
340
+ "step": 76
341
+ },
342
+ {
343
+ "epoch": 1.5204819277108435,
344
+ "grad_norm": 0.6950003076179434,
345
+ "learning_rate": 5.957379752298294e-05,
346
+ "loss": 0.1894,
347
+ "mean_token_accuracy": 0.9380469061434269,
348
+ "step": 78
349
+ },
350
+ {
351
+ "epoch": 1.5590361445783132,
352
+ "grad_norm": 0.7292562229272133,
353
+ "learning_rate": 5.952908124781391e-05,
354
+ "loss": 0.1847,
355
+ "mean_token_accuracy": 0.9394388273358345,
356
+ "step": 80
357
+ },
358
+ {
359
+ "epoch": 1.5590361445783132,
360
+ "eval_loss": 0.3795740008354187,
361
+ "eval_mean_token_accuracy": 0.8898136326085742,
362
+ "eval_runtime": 69.3491,
363
+ "eval_samples_per_second": 12.3,
364
+ "eval_steps_per_second": 1.543,
365
+ "step": 80
366
+ },
367
+ {
368
+ "epoch": 1.5975903614457831,
369
+ "grad_norm": 0.7339322375026358,
370
+ "learning_rate": 5.9482153234442764e-05,
371
+ "loss": 0.1788,
372
+ "mean_token_accuracy": 0.9419959224760532,
373
+ "step": 82
374
+ },
375
+ {
376
+ "epoch": 1.636144578313253,
377
+ "grad_norm": 0.6479958500122328,
378
+ "learning_rate": 5.943301699779362e-05,
379
+ "loss": 0.1734,
380
+ "mean_token_accuracy": 0.943537812680006,
381
+ "step": 84
382
+ },
383
+ {
384
+ "epoch": 1.6746987951807228,
385
+ "grad_norm": 0.6703352220328588,
386
+ "learning_rate": 5.938167621818725e-05,
387
+ "loss": 0.179,
388
+ "mean_token_accuracy": 0.9419959224760532,
389
+ "step": 86
390
+ },
391
+ {
392
+ "epoch": 1.7132530120481928,
393
+ "grad_norm": 0.6792409729462423,
394
+ "learning_rate": 5.9328134741065505e-05,
395
+ "loss": 0.1855,
396
+ "mean_token_accuracy": 0.9391182363033295,
397
+ "step": 88
398
+ },
399
+ {
400
+ "epoch": 1.7518072289156628,
401
+ "grad_norm": 0.7099572223484931,
402
+ "learning_rate": 5.9272396576703156e-05,
403
+ "loss": 0.1912,
404
+ "mean_token_accuracy": 0.9383243918418884,
405
+ "step": 90
406
+ },
407
+ {
408
+ "epoch": 1.7903614457831325,
409
+ "grad_norm": 0.6140495004550495,
410
+ "learning_rate": 5.921446589990762e-05,
411
+ "loss": 0.1803,
412
+ "mean_token_accuracy": 0.9405914284288883,
413
+ "step": 92
414
+ },
415
+ {
416
+ "epoch": 1.8289156626506025,
417
+ "grad_norm": 0.6191702751024997,
418
+ "learning_rate": 5.915434704970626e-05,
419
+ "loss": 0.1839,
420
+ "mean_token_accuracy": 0.9397136196494102,
421
+ "step": 94
422
+ },
423
+ {
424
+ "epoch": 1.8674698795180724,
425
+ "grad_norm": 0.6503655036572544,
426
+ "learning_rate": 5.909204452902132e-05,
427
+ "loss": 0.1861,
428
+ "mean_token_accuracy": 0.938539806753397,
429
+ "step": 96
430
+ },
431
+ {
432
+ "epoch": 1.9060240963855422,
433
+ "grad_norm": 0.6250371366565243,
434
+ "learning_rate": 5.902756300433275e-05,
435
+ "loss": 0.1842,
436
+ "mean_token_accuracy": 0.9400800094008446,
437
+ "step": 98
438
+ },
439
+ {
440
+ "epoch": 1.944578313253012,
441
+ "grad_norm": 0.640465941392095,
442
+ "learning_rate": 5.896090730532861e-05,
443
+ "loss": 0.1844,
444
+ "mean_token_accuracy": 0.939599122852087,
445
+ "step": 100
446
+ },
447
+ {
448
+ "epoch": 1.944578313253012,
449
+ "eval_loss": 0.3779001832008362,
450
+ "eval_mean_token_accuracy": 0.8901177433049567,
451
+ "eval_runtime": 69.3149,
452
+ "eval_samples_per_second": 12.306,
453
+ "eval_steps_per_second": 1.544,
454
+ "step": 100
455
+ },
456
+ {
457
+ "epoch": 1.983132530120482,
458
+ "grad_norm": 0.6323323328748188,
459
+ "learning_rate": 5.889208242454339e-05,
460
+ "loss": 0.1882,
461
+ "mean_token_accuracy": 0.9382709600031376,
462
+ "step": 102
463
+ },
464
+ {
465
+ "epoch": 2.0385542168674697,
466
+ "grad_norm": 0.5923035432212858,
467
+ "learning_rate": 5.882109351698399e-05,
468
+ "loss": 0.2808,
469
+ "mean_token_accuracy": 0.9537320419361717,
470
+ "step": 104
471
+ },
472
+ {
473
+ "epoch": 2.07710843373494,
474
+ "grad_norm": 0.6399371482933023,
475
+ "learning_rate": 5.874794589974366e-05,
476
+ "loss": 0.1097,
477
+ "mean_token_accuracy": 0.9653303697705269,
478
+ "step": 106
479
+ },
480
+ {
481
+ "epoch": 2.1156626506024097,
482
+ "grad_norm": 1.671558218407247,
483
+ "learning_rate": 5.867264505160377e-05,
484
+ "loss": 0.122,
485
+ "mean_token_accuracy": 0.96179623529315,
486
+ "step": 108
487
+ },
488
+ {
489
+ "epoch": 2.1542168674698794,
490
+ "grad_norm": 0.7733840952353428,
491
+ "learning_rate": 5.8595196612623355e-05,
492
+ "loss": 0.1151,
493
+ "mean_token_accuracy": 0.9634220898151398,
494
+ "step": 110
495
+ },
496
+ {
497
+ "epoch": 2.1927710843373496,
498
+ "grad_norm": 0.6833358408916507,
499
+ "learning_rate": 5.85156063837168e-05,
500
+ "loss": 0.1171,
501
+ "mean_token_accuracy": 0.9626664109528065,
502
+ "step": 112
503
+ },
504
+ {
505
+ "epoch": 2.2313253012048193,
506
+ "grad_norm": 0.609042046972475,
507
+ "learning_rate": 5.8433880326219224e-05,
508
+ "loss": 0.111,
509
+ "mean_token_accuracy": 0.9642235673964024,
510
+ "step": 114
511
+ },
512
+ {
513
+ "epoch": 2.269879518072289,
514
+ "grad_norm": 0.5988284120745949,
515
+ "learning_rate": 5.835002456144005e-05,
516
+ "loss": 0.1125,
517
+ "mean_token_accuracy": 0.9635671190917492,
518
+ "step": 116
519
+ },
520
+ {
521
+ "epoch": 2.3084337349397592,
522
+ "grad_norm": 0.5980685515504778,
523
+ "learning_rate": 5.826404537020453e-05,
524
+ "loss": 0.1973,
525
+ "mean_token_accuracy": 0.9595486260950565,
526
+ "step": 118
527
+ },
528
+ {
529
+ "epoch": 2.346987951807229,
530
+ "grad_norm": 0.5537423277771285,
531
+ "learning_rate": 5.8175949192383246e-05,
532
+ "loss": 0.1109,
533
+ "mean_token_accuracy": 0.9636205509305,
534
+ "step": 120
535
+ },
536
+ {
537
+ "epoch": 2.346987951807229,
538
+ "eval_loss": 0.4340486228466034,
539
+ "eval_mean_token_accuracy": 0.8874053069364245,
540
+ "eval_runtime": 69.3444,
541
+ "eval_samples_per_second": 12.301,
542
+ "eval_steps_per_second": 1.543,
543
+ "step": 120
544
+ },
545
+ {
546
+ "epoch": 2.3855421686746987,
547
+ "grad_norm": 0.6329955705531911,
548
+ "learning_rate": 5.808574262640979e-05,
549
+ "loss": 0.1112,
550
+ "mean_token_accuracy": 0.9642672762274742,
551
+ "step": 122
552
+ },
553
+ {
554
+ "epoch": 2.4240963855421684,
555
+ "grad_norm": 0.6149955725738905,
556
+ "learning_rate": 5.7993432428786564e-05,
557
+ "loss": 0.1199,
558
+ "mean_token_accuracy": 0.961880199611187,
559
+ "step": 124
560
+ },
561
+ {
562
+ "epoch": 2.4626506024096386,
563
+ "grad_norm": 0.5673262904352961,
564
+ "learning_rate": 5.789902551357867e-05,
565
+ "loss": 0.1097,
566
+ "mean_token_accuracy": 0.9644601941108704,
567
+ "step": 126
568
+ },
569
+ {
570
+ "epoch": 2.5012048192771084,
571
+ "grad_norm": 0.5695978903253339,
572
+ "learning_rate": 5.7802528951896084e-05,
573
+ "loss": 0.123,
574
+ "mean_token_accuracy": 0.9608555659651756,
575
+ "step": 128
576
+ },
577
+ {
578
+ "epoch": 2.539759036144578,
579
+ "grad_norm": 0.5726596000252164,
580
+ "learning_rate": 5.770394997136403e-05,
581
+ "loss": 0.1173,
582
+ "mean_token_accuracy": 0.961727537214756,
583
+ "step": 130
584
+ },
585
+ {
586
+ "epoch": 2.5783132530120483,
587
+ "grad_norm": 0.6051634984658857,
588
+ "learning_rate": 5.760329595558155e-05,
589
+ "loss": 0.1235,
590
+ "mean_token_accuracy": 0.960479199886322,
591
+ "step": 132
592
+ },
593
+ {
594
+ "epoch": 2.616867469879518,
595
+ "grad_norm": 0.5843873679593171,
596
+ "learning_rate": 5.750057444356861e-05,
597
+ "loss": 0.1124,
598
+ "mean_token_accuracy": 0.9634606502950191,
599
+ "step": 134
600
+ },
601
+ {
602
+ "epoch": 2.6554216867469878,
603
+ "grad_norm": 0.5786531421048121,
604
+ "learning_rate": 5.7395793129201274e-05,
605
+ "loss": 0.1151,
606
+ "mean_token_accuracy": 0.9624832160770893,
607
+ "step": 136
608
+ },
609
+ {
610
+ "epoch": 2.693975903614458,
611
+ "grad_norm": 56.08130944258286,
612
+ "learning_rate": 5.728895986063555e-05,
613
+ "loss": 0.1915,
614
+ "mean_token_accuracy": 0.9590635783970356,
615
+ "step": 138
616
+ },
617
+ {
618
+ "epoch": 2.7325301204819277,
619
+ "grad_norm": 0.6521169160855299,
620
+ "learning_rate": 5.718008263971949e-05,
621
+ "loss": 0.1227,
622
+ "mean_token_accuracy": 0.9599490202963352,
623
+ "step": 140
624
+ },
625
+ {
626
+ "epoch": 2.7325301204819277,
627
+ "eval_loss": 0.4394315481185913,
628
+ "eval_mean_token_accuracy": 0.8881128068282226,
629
+ "eval_runtime": 69.3566,
630
+ "eval_samples_per_second": 12.299,
631
+ "eval_steps_per_second": 1.543,
632
+ "step": 140
633
+ },
634
+ {
635
+ "epoch": 2.7710843373493974,
636
+ "grad_norm": 0.5638094382208305,
637
+ "learning_rate": 5.706916962139386e-05,
638
+ "loss": 0.1097,
639
+ "mean_token_accuracy": 0.9637655802071095,
640
+ "step": 142
641
+ },
642
+ {
643
+ "epoch": 2.8096385542168676,
644
+ "grad_norm": 3.8715755391438718,
645
+ "learning_rate": 5.6956229113081366e-05,
646
+ "loss": 0.1453,
647
+ "mean_token_accuracy": 0.9584450386464596,
648
+ "step": 144
649
+ },
650
+ {
651
+ "epoch": 2.8481927710843373,
652
+ "grad_norm": 0.6064377456676171,
653
+ "learning_rate": 5.684126957406439e-05,
654
+ "loss": 0.1207,
655
+ "mean_token_accuracy": 0.9605062380433083,
656
+ "step": 146
657
+ },
658
+ {
659
+ "epoch": 2.886746987951807,
660
+ "grad_norm": 0.5771676373386834,
661
+ "learning_rate": 5.672429961485141e-05,
662
+ "loss": 0.1193,
663
+ "mean_token_accuracy": 0.9608955271542072,
664
+ "step": 148
665
+ },
666
+ {
667
+ "epoch": 2.9253012048192772,
668
+ "grad_norm": 0.5744641109441189,
669
+ "learning_rate": 5.660532799653203e-05,
670
+ "loss": 0.1116,
671
+ "mean_token_accuracy": 0.9642998985946178,
672
+ "step": 150
673
+ },
674
+ {
675
+ "epoch": 2.963855421686747,
676
+ "grad_norm": 0.5943353410877066,
677
+ "learning_rate": 5.648436363012083e-05,
678
+ "loss": 0.1286,
679
+ "mean_token_accuracy": 0.9584605619311333,
680
+ "step": 152
681
+ },
682
+ {
683
+ "epoch": 3.019277108433735,
684
+ "grad_norm": 0.6755233750902037,
685
+ "learning_rate": 5.636141557588988e-05,
686
+ "loss": 0.1502,
687
+ "mean_token_accuracy": 0.969435381261926,
688
+ "step": 154
689
+ },
690
+ {
691
+ "epoch": 3.057831325301205,
692
+ "grad_norm": 0.4869568501431861,
693
+ "learning_rate": 5.6236493042690166e-05,
694
+ "loss": 0.0735,
695
+ "mean_token_accuracy": 0.977940283715725,
696
+ "step": 156
697
+ },
698
+ {
699
+ "epoch": 3.0963855421686746,
700
+ "grad_norm": 0.5166738704029692,
701
+ "learning_rate": 5.6109605387261786e-05,
702
+ "loss": 0.0706,
703
+ "mean_token_accuracy": 0.9776273258030415,
704
+ "step": 158
705
+ },
706
+ {
707
+ "epoch": 3.1349397590361447,
708
+ "grad_norm": 0.6214310820779639,
709
+ "learning_rate": 5.5980762113533166e-05,
710
+ "loss": 0.0726,
711
+ "mean_token_accuracy": 0.9774517640471458,
712
+ "step": 160
713
+ },
714
+ {
715
+ "epoch": 3.1349397590361447,
716
+ "eval_loss": 0.5496253967285156,
717
+ "eval_mean_token_accuracy": 0.8859052630228417,
718
+ "eval_runtime": 69.5362,
719
+ "eval_samples_per_second": 12.267,
720
+ "eval_steps_per_second": 1.539,
721
+ "step": 160
722
+ },
723
+ {
724
+ "epoch": 3.1734939759036145,
725
+ "grad_norm": 0.6554284642200141,
726
+ "learning_rate": 5.584997287190922e-05,
727
+ "loss": 0.0754,
728
+ "mean_token_accuracy": 0.9765892215073109,
729
+ "step": 162
730
+ },
731
+ {
732
+ "epoch": 3.212048192771084,
733
+ "grad_norm": 0.5638612880738564,
734
+ "learning_rate": 5.571724745854852e-05,
735
+ "loss": 0.0725,
736
+ "mean_token_accuracy": 0.9769021794199944,
737
+ "step": 164
738
+ },
739
+ {
740
+ "epoch": 3.2506024096385544,
741
+ "grad_norm": 0.5454344948208613,
742
+ "learning_rate": 5.558259581462954e-05,
743
+ "loss": 0.0773,
744
+ "mean_token_accuracy": 0.9755587503314018,
745
+ "step": 166
746
+ },
747
+ {
748
+ "epoch": 3.289156626506024,
749
+ "grad_norm": 0.47578859073082264,
750
+ "learning_rate": 5.5446028025606084e-05,
751
+ "loss": 0.0749,
752
+ "mean_token_accuracy": 0.9767495170235634,
753
+ "step": 168
754
+ },
755
+ {
756
+ "epoch": 3.327710843373494,
757
+ "grad_norm": 0.5190652057788073,
758
+ "learning_rate": 5.5307554320451876e-05,
759
+ "loss": 0.0796,
760
+ "mean_token_accuracy": 0.9748107045888901,
761
+ "step": 170
762
+ },
763
+ {
764
+ "epoch": 3.3662650602409636,
765
+ "grad_norm": 0.47934707420847783,
766
+ "learning_rate": 5.5167185070894416e-05,
767
+ "loss": 0.0674,
768
+ "mean_token_accuracy": 0.9788944236934185,
769
+ "step": 172
770
+ },
771
+ {
772
+ "epoch": 3.404819277108434,
773
+ "grad_norm": 0.48562826419549304,
774
+ "learning_rate": 5.50249307906381e-05,
775
+ "loss": 0.0706,
776
+ "mean_token_accuracy": 0.9775891602039337,
777
+ "step": 174
778
+ },
779
+ {
780
+ "epoch": 3.4433734939759035,
781
+ "grad_norm": 0.49123485293415037,
782
+ "learning_rate": 5.488080213457677e-05,
783
+ "loss": 0.0764,
784
+ "mean_token_accuracy": 0.9759480394423008,
785
+ "step": 176
786
+ },
787
+ {
788
+ "epoch": 3.4819277108433733,
789
+ "grad_norm": 1.4341257923628998,
790
+ "learning_rate": 5.473480989799566e-05,
791
+ "loss": 0.1064,
792
+ "mean_token_accuracy": 0.9697589166462421,
793
+ "step": 178
794
+ },
795
+ {
796
+ "epoch": 3.5204819277108435,
797
+ "grad_norm": 0.5176661925926418,
798
+ "learning_rate": 5.458696501576282e-05,
799
+ "loss": 0.0792,
800
+ "mean_token_accuracy": 0.9750091657042503,
801
+ "step": 180
802
+ },
803
+ {
804
+ "epoch": 3.5204819277108435,
805
+ "eval_loss": 0.49517756700515747,
806
+ "eval_mean_token_accuracy": 0.8861142084977337,
807
+ "eval_runtime": 69.2961,
808
+ "eval_samples_per_second": 12.309,
809
+ "eval_steps_per_second": 1.544,
810
+ "step": 180
811
+ },
812
+ {
813
+ "epoch": 3.559036144578313,
814
+ "grad_norm": 0.5006454519910177,
815
+ "learning_rate": 5.4437278561510075e-05,
816
+ "loss": 0.0789,
817
+ "mean_token_accuracy": 0.9745583981275558,
818
+ "step": 182
819
+ },
820
+ {
821
+ "epoch": 3.597590361445783,
822
+ "grad_norm": 0.5341853598286592,
823
+ "learning_rate": 5.428576174680362e-05,
824
+ "loss": 0.0754,
825
+ "mean_token_accuracy": 0.9761541336774826,
826
+ "step": 184
827
+ },
828
+ {
829
+ "epoch": 3.636144578313253,
830
+ "grad_norm": 0.49927344239896265,
831
+ "learning_rate": 5.413242592030427e-05,
832
+ "loss": 0.0748,
833
+ "mean_token_accuracy": 0.9767720922827721,
834
+ "step": 186
835
+ },
836
+ {
837
+ "epoch": 3.674698795180723,
838
+ "grad_norm": 2.231693861264514,
839
+ "learning_rate": 5.397728256691746e-05,
840
+ "loss": 0.099,
841
+ "mean_token_accuracy": 0.9737420678138733,
842
+ "step": 188
843
+ },
844
+ {
845
+ "epoch": 3.7132530120481926,
846
+ "grad_norm": 0.5972180422630922,
847
+ "learning_rate": 5.382034330693297e-05,
848
+ "loss": 0.0877,
849
+ "mean_token_accuracy": 0.9732611812651157,
850
+ "step": 190
851
+ },
852
+ {
853
+ "epoch": 3.7518072289156628,
854
+ "grad_norm": 0.5140038859359555,
855
+ "learning_rate": 5.366161989515461e-05,
856
+ "loss": 0.0787,
857
+ "mean_token_accuracy": 0.975050512701273,
858
+ "step": 192
859
+ },
860
+ {
861
+ "epoch": 3.7903614457831325,
862
+ "grad_norm": 0.5792962377758555,
863
+ "learning_rate": 5.350112422001977e-05,
864
+ "loss": 0.0896,
865
+ "mean_token_accuracy": 0.9718314036726952,
866
+ "step": 194
867
+ },
868
+ {
869
+ "epoch": 3.8289156626506022,
870
+ "grad_norm": 0.5909352352233028,
871
+ "learning_rate": 5.333886830270895e-05,
872
+ "loss": 0.0792,
873
+ "mean_token_accuracy": 0.9747343733906746,
874
+ "step": 196
875
+ },
876
+ {
877
+ "epoch": 3.8674698795180724,
878
+ "grad_norm": 0.5539424147026931,
879
+ "learning_rate": 5.317486429624541e-05,
880
+ "loss": 0.0905,
881
+ "mean_token_accuracy": 0.9721391126513481,
882
+ "step": 198
883
+ },
884
+ {
885
+ "epoch": 3.906024096385542,
886
+ "grad_norm": 0.608718655213867,
887
+ "learning_rate": 5.3009124484584845e-05,
888
+ "loss": 0.0822,
889
+ "mean_token_accuracy": 0.9740779250860214,
890
+ "step": 200
891
+ },
892
+ {
893
+ "epoch": 3.906024096385542,
894
+ "eval_loss": 0.4955574572086334,
895
+ "eval_mean_token_accuracy": 0.8854407662543181,
896
+ "eval_runtime": 69.3978,
897
+ "eval_samples_per_second": 12.291,
898
+ "eval_steps_per_second": 1.542,
899
+ "step": 200
900
+ },
901
+ {
902
+ "epoch": 3.944578313253012,
903
+ "grad_norm": 1.1597024200841806,
904
+ "learning_rate": 5.28416612816954e-05,
905
+ "loss": 0.1246,
906
+ "mean_token_accuracy": 0.9720017164945602,
907
+ "step": 202
908
+ },
909
+ {
910
+ "epoch": 3.983132530120482,
911
+ "grad_norm": 1.970597468088243,
912
+ "learning_rate": 5.267248723062775e-05,
913
+ "loss": 0.1072,
914
+ "mean_token_accuracy": 0.9705285243690014,
915
+ "step": 204
916
+ },
917
+ {
918
+ "epoch": 4.03855421686747,
919
+ "grad_norm": 0.3840068639534002,
920
+ "learning_rate": 5.250161500257572e-05,
921
+ "loss": 0.0883,
922
+ "mean_token_accuracy": 0.9844252216188532,
923
+ "step": 206
924
+ },
925
+ {
926
+ "epoch": 4.0771084337349395,
927
+ "grad_norm": 1.666791743278462,
928
+ "learning_rate": 5.232905739592715e-05,
929
+ "loss": 0.051,
930
+ "mean_token_accuracy": 0.9864283129572868,
931
+ "step": 208
932
+ },
933
+ {
934
+ "epoch": 4.11566265060241,
935
+ "grad_norm": 0.4312181064343993,
936
+ "learning_rate": 5.2154827335305315e-05,
937
+ "loss": 0.0479,
938
+ "mean_token_accuracy": 0.9849169552326202,
939
+ "step": 210
940
+ },
941
+ {
942
+ "epoch": 4.15421686746988,
943
+ "grad_norm": 0.4536647987377283,
944
+ "learning_rate": 5.197893787060085e-05,
945
+ "loss": 0.0475,
946
+ "mean_token_accuracy": 0.9857413321733475,
947
+ "step": 212
948
+ },
949
+ {
950
+ "epoch": 4.192771084337349,
951
+ "grad_norm": 0.4768703042893274,
952
+ "learning_rate": 5.1801402175994324e-05,
953
+ "loss": 0.0474,
954
+ "mean_token_accuracy": 0.9853848293423653,
955
+ "step": 214
956
+ },
957
+ {
958
+ "epoch": 4.231325301204819,
959
+ "grad_norm": 0.48374901663774483,
960
+ "learning_rate": 5.162223354896949e-05,
961
+ "loss": 0.0462,
962
+ "mean_token_accuracy": 0.9860928803682327,
963
+ "step": 216
964
+ },
965
+ {
966
+ "epoch": 4.2698795180722895,
967
+ "grad_norm": 0.5296609550169239,
968
+ "learning_rate": 5.14414454093173e-05,
969
+ "loss": 0.0506,
970
+ "mean_token_accuracy": 0.9848558902740479,
971
+ "step": 218
972
+ },
973
+ {
974
+ "epoch": 4.308433734939759,
975
+ "grad_norm": 1.1023046735948403,
976
+ "learning_rate": 5.1259051298130726e-05,
977
+ "loss": 0.0662,
978
+ "mean_token_accuracy": 0.9829932153224945,
979
+ "step": 220
980
+ },
981
+ {
982
+ "epoch": 4.308433734939759,
983
+ "eval_loss": 0.5773541331291199,
984
+ "eval_mean_token_accuracy": 0.8854637480227747,
985
+ "eval_runtime": 69.3992,
986
+ "eval_samples_per_second": 12.291,
987
+ "eval_steps_per_second": 1.542,
988
+ "step": 220
989
+ },
990
+ {
991
+ "epoch": 4.346987951807229,
992
+ "grad_norm": 2.0894628719152055,
993
+ "learning_rate": 5.107506487679056e-05,
994
+ "loss": 0.0539,
995
+ "mean_token_accuracy": 0.9842141009867191,
996
+ "step": 222
997
+ },
998
+ {
999
+ "epoch": 4.385542168674699,
1000
+ "grad_norm": 0.4675070305271604,
1001
+ "learning_rate": 5.088949992594219e-05,
1002
+ "loss": 0.0583,
1003
+ "mean_token_accuracy": 0.9823980256915092,
1004
+ "step": 224
1005
+ },
1006
+ {
1007
+ "epoch": 4.424096385542168,
1008
+ "grad_norm": 0.45352999009820016,
1009
+ "learning_rate": 5.0702370344463365e-05,
1010
+ "loss": 0.0527,
1011
+ "mean_token_accuracy": 0.9836040586233139,
1012
+ "step": 226
1013
+ },
1014
+ {
1015
+ "epoch": 4.462650602409639,
1016
+ "grad_norm": 0.4094964433392435,
1017
+ "learning_rate": 5.051369014842321e-05,
1018
+ "loss": 0.0514,
1019
+ "mean_token_accuracy": 0.9839622713625431,
1020
+ "step": 228
1021
+ },
1022
+ {
1023
+ "epoch": 4.501204819277109,
1024
+ "grad_norm": 0.4518718249174457,
1025
+ "learning_rate": 5.032347347003244e-05,
1026
+ "loss": 0.0506,
1027
+ "mean_token_accuracy": 0.98417654260993,
1028
+ "step": 230
1029
+ },
1030
+ {
1031
+ "epoch": 4.539759036144578,
1032
+ "grad_norm": 0.45000426223491524,
1033
+ "learning_rate": 5.013173455658476e-05,
1034
+ "loss": 0.0513,
1035
+ "mean_token_accuracy": 0.9846268966794014,
1036
+ "step": 232
1037
+ },
1038
+ {
1039
+ "epoch": 4.578313253012048,
1040
+ "grad_norm": 0.4773481517279551,
1041
+ "learning_rate": 4.993848776938984e-05,
1042
+ "loss": 0.0523,
1043
+ "mean_token_accuracy": 0.9842299744486809,
1044
+ "step": 234
1045
+ },
1046
+ {
1047
+ "epoch": 4.6168674698795185,
1048
+ "grad_norm": 0.46970014873032684,
1049
+ "learning_rate": 4.97437475826976e-05,
1050
+ "loss": 0.0501,
1051
+ "mean_token_accuracy": 0.9848329909145832,
1052
+ "step": 236
1053
+ },
1054
+ {
1055
+ "epoch": 4.655421686746988,
1056
+ "grad_norm": 0.5155625752840027,
1057
+ "learning_rate": 4.9547528582614065e-05,
1058
+ "loss": 0.0563,
1059
+ "mean_token_accuracy": 0.9830544739961624,
1060
+ "step": 238
1061
+ },
1062
+ {
1063
+ "epoch": 4.693975903614458,
1064
+ "grad_norm": 0.42347885962594095,
1065
+ "learning_rate": 4.934984546600892e-05,
1066
+ "loss": 0.0516,
1067
+ "mean_token_accuracy": 0.9844055362045765,
1068
+ "step": 240
1069
+ },
1070
+ {
1071
+ "epoch": 4.693975903614458,
1072
+ "eval_loss": 0.5565339922904968,
1073
+ "eval_mean_token_accuracy": 0.8851385801752037,
1074
+ "eval_runtime": 69.3541,
1075
+ "eval_samples_per_second": 12.299,
1076
+ "eval_steps_per_second": 1.543,
1077
+ "step": 240
1078
+ },
1079
+ {
1080
+ "epoch": 4.732530120481927,
1081
+ "grad_norm": 0.4512891363195098,
1082
+ "learning_rate": 4.9150713039414644e-05,
1083
+ "loss": 0.0532,
1084
+ "mean_token_accuracy": 0.9838635846972466,
1085
+ "step": 242
1086
+ },
1087
+ {
1088
+ "epoch": 4.771084337349397,
1089
+ "grad_norm": 11.392609037956372,
1090
+ "learning_rate": 4.8950146217917525e-05,
1091
+ "loss": 0.0522,
1092
+ "mean_token_accuracy": 0.9835535250604153,
1093
+ "step": 244
1094
+ },
1095
+ {
1096
+ "epoch": 4.809638554216868,
1097
+ "grad_norm": 0.4489074622110076,
1098
+ "learning_rate": 4.8748160024040556e-05,
1099
+ "loss": 0.0524,
1100
+ "mean_token_accuracy": 0.9836727567017078,
1101
+ "step": 246
1102
+ },
1103
+ {
1104
+ "epoch": 4.848192771084337,
1105
+ "grad_norm": 0.42894806357411785,
1106
+ "learning_rate": 4.8544769586618155e-05,
1107
+ "loss": 0.0511,
1108
+ "mean_token_accuracy": 0.9840467795729637,
1109
+ "step": 248
1110
+ },
1111
+ {
1112
+ "epoch": 4.886746987951807,
1113
+ "grad_norm": 0.4512306266871983,
1114
+ "learning_rate": 4.833999013966309e-05,
1115
+ "loss": 0.0547,
1116
+ "mean_token_accuracy": 0.9832529351115227,
1117
+ "step": 250
1118
+ },
1119
+ {
1120
+ "epoch": 4.925301204819277,
1121
+ "grad_norm": 0.4727904458514347,
1122
+ "learning_rate": 4.813383702122539e-05,
1123
+ "loss": 0.055,
1124
+ "mean_token_accuracy": 0.982756782323122,
1125
+ "step": 252
1126
+ },
1127
+ {
1128
+ "epoch": 4.9638554216867465,
1129
+ "grad_norm": 0.4362392107100149,
1130
+ "learning_rate": 4.792632567224356e-05,
1131
+ "loss": 0.0499,
1132
+ "mean_token_accuracy": 0.9843750037252903,
1133
+ "step": 254
1134
+ },
1135
+ {
1136
+ "epoch": 5.019277108433735,
1137
+ "grad_norm": 0.9013663151630542,
1138
+ "learning_rate": 4.7717471635388036e-05,
1139
+ "loss": 0.0733,
1140
+ "mean_token_accuracy": 0.9859936268706071,
1141
+ "step": 256
1142
+ },
1143
+ {
1144
+ "epoch": 5.057831325301205,
1145
+ "grad_norm": 0.3407094315665775,
1146
+ "learning_rate": 4.750729055389702e-05,
1147
+ "loss": 0.0348,
1148
+ "mean_token_accuracy": 0.9899853467941284,
1149
+ "step": 258
1150
+ },
1151
+ {
1152
+ "epoch": 5.096385542168675,
1153
+ "grad_norm": 2.317065589278025,
1154
+ "learning_rate": 4.7295798170404804e-05,
1155
+ "loss": 0.042,
1156
+ "mean_token_accuracy": 0.9883900247514248,
1157
+ "step": 260
1158
+ },
1159
+ {
1160
+ "epoch": 5.096385542168675,
1161
+ "eval_loss": 0.6151586771011353,
1162
+ "eval_mean_token_accuracy": 0.8850325903045797,
1163
+ "eval_runtime": 69.4442,
1164
+ "eval_samples_per_second": 12.283,
1165
+ "eval_steps_per_second": 1.541,
1166
+ "step": 260
1167
+ },
1168
+ {
1169
+ "epoch": 5.134939759036144,
1170
+ "grad_norm": 0.40180917585444276,
1171
+ "learning_rate": 4.708301032576266e-05,
1172
+ "loss": 0.033,
1173
+ "mean_token_accuracy": 0.9899287261068821,
1174
+ "step": 262
1175
+ },
1176
+ {
1177
+ "epoch": 5.1734939759036145,
1178
+ "grad_norm": 0.3999401134163976,
1179
+ "learning_rate": 4.686894295785234e-05,
1180
+ "loss": 0.0319,
1181
+ "mean_token_accuracy": 0.9905349314212799,
1182
+ "step": 264
1183
+ },
1184
+ {
1185
+ "epoch": 5.212048192771085,
1186
+ "grad_norm": 0.4325841868929357,
1187
+ "learning_rate": 4.6653612100392306e-05,
1188
+ "loss": 0.0485,
1189
+ "mean_token_accuracy": 0.9876343458890915,
1190
+ "step": 266
1191
+ },
1192
+ {
1193
+ "epoch": 5.250602409638554,
1194
+ "grad_norm": 0.4006912604900792,
1195
+ "learning_rate": 4.6437033881736815e-05,
1196
+ "loss": 0.0314,
1197
+ "mean_token_accuracy": 0.9905448816716671,
1198
+ "step": 268
1199
+ },
1200
+ {
1201
+ "epoch": 5.289156626506024,
1202
+ "grad_norm": 0.42682716706260576,
1203
+ "learning_rate": 4.6219224523667933e-05,
1204
+ "loss": 0.0372,
1205
+ "mean_token_accuracy": 0.9889472424983978,
1206
+ "step": 270
1207
+ },
1208
+ {
1209
+ "epoch": 5.327710843373494,
1210
+ "grad_norm": 0.46677900961647506,
1211
+ "learning_rate": 4.600020034018044e-05,
1212
+ "loss": 0.0361,
1213
+ "mean_token_accuracy": 0.9891686029732227,
1214
+ "step": 272
1215
+ },
1216
+ {
1217
+ "epoch": 5.366265060240964,
1218
+ "grad_norm": 0.367574331415505,
1219
+ "learning_rate": 4.577997773626e-05,
1220
+ "loss": 0.0357,
1221
+ "mean_token_accuracy": 0.989687655121088,
1222
+ "step": 274
1223
+ },
1224
+ {
1225
+ "epoch": 5.404819277108434,
1226
+ "grad_norm": 0.3978490796069561,
1227
+ "learning_rate": 4.555857320665432e-05,
1228
+ "loss": 0.0367,
1229
+ "mean_token_accuracy": 0.9891533367335796,
1230
+ "step": 276
1231
+ },
1232
+ {
1233
+ "epoch": 5.443373493975904,
1234
+ "grad_norm": 1.4753909217401533,
1235
+ "learning_rate": 4.53360033346378e-05,
1236
+ "loss": 0.0391,
1237
+ "mean_token_accuracy": 0.9890312068164349,
1238
+ "step": 278
1239
+ },
1240
+ {
1241
+ "epoch": 5.481927710843373,
1242
+ "grad_norm": 0.37159800907214025,
1243
+ "learning_rate": 4.511228479076933e-05,
1244
+ "loss": 0.0356,
1245
+ "mean_token_accuracy": 0.9895801097154617,
1246
+ "step": 280
1247
+ },
1248
+ {
1249
+ "epoch": 5.481927710843373,
1250
+ "eval_loss": 0.6060265302658081,
1251
+ "eval_mean_token_accuracy": 0.8850450343060716,
1252
+ "eval_runtime": 69.362,
1253
+ "eval_samples_per_second": 12.298,
1254
+ "eval_steps_per_second": 1.543,
1255
+ "step": 280
1256
+ },
1257
+ {
1258
+ "epoch": 5.5204819277108435,
1259
+ "grad_norm": 0.38561901592446035,
1260
+ "learning_rate": 4.488743433164375e-05,
1261
+ "loss": 0.0355,
1262
+ "mean_token_accuracy": 0.9893594309687614,
1263
+ "step": 282
1264
+ },
1265
+ {
1266
+ "epoch": 5.559036144578314,
1267
+ "grad_norm": 0.3969250257532374,
1268
+ "learning_rate": 4.466146879863671e-05,
1269
+ "loss": 0.0343,
1270
+ "mean_token_accuracy": 0.9895349927246571,
1271
+ "step": 284
1272
+ },
1273
+ {
1274
+ "epoch": 5.597590361445783,
1275
+ "grad_norm": 0.39356249107474556,
1276
+ "learning_rate": 4.44344051166433e-05,
1277
+ "loss": 0.0341,
1278
+ "mean_token_accuracy": 0.9893517978489399,
1279
+ "step": 286
1280
+ },
1281
+ {
1282
+ "epoch": 5.636144578313253,
1283
+ "grad_norm": 0.35351272700215614,
1284
+ "learning_rate": 4.4206260292810285e-05,
1285
+ "loss": 0.0348,
1286
+ "mean_token_accuracy": 0.989603690803051,
1287
+ "step": 288
1288
+ },
1289
+ {
1290
+ "epoch": 5.674698795180722,
1291
+ "grad_norm": 0.3821901728251338,
1292
+ "learning_rate": 4.397705141526241e-05,
1293
+ "loss": 0.0347,
1294
+ "mean_token_accuracy": 0.9895550385117531,
1295
+ "step": 290
1296
+ },
1297
+ {
1298
+ "epoch": 5.713253012048193,
1299
+ "grad_norm": 0.37105024076268617,
1300
+ "learning_rate": 4.374679565182231e-05,
1301
+ "loss": 0.0422,
1302
+ "mean_token_accuracy": 0.9880160018801689,
1303
+ "step": 292
1304
+ },
1305
+ {
1306
+ "epoch": 5.751807228915663,
1307
+ "grad_norm": 0.3818536904918096,
1308
+ "learning_rate": 4.35155102487248e-05,
1309
+ "loss": 0.0351,
1310
+ "mean_token_accuracy": 0.9894428998231888,
1311
+ "step": 294
1312
+ },
1313
+ {
1314
+ "epoch": 5.790361445783132,
1315
+ "grad_norm": 0.39451644866700664,
1316
+ "learning_rate": 4.328321252932502e-05,
1317
+ "loss": 0.035,
1318
+ "mean_token_accuracy": 0.9894599840044975,
1319
+ "step": 296
1320
+ },
1321
+ {
1322
+ "epoch": 5.828915662650602,
1323
+ "grad_norm": 0.3644107075410049,
1324
+ "learning_rate": 4.3049919892800964e-05,
1325
+ "loss": 0.0329,
1326
+ "mean_token_accuracy": 0.9901151098310947,
1327
+ "step": 298
1328
+ },
1329
+ {
1330
+ "epoch": 5.867469879518072,
1331
+ "grad_norm": 0.3672249214462737,
1332
+ "learning_rate": 4.281564981285022e-05,
1333
+ "loss": 0.0337,
1334
+ "mean_token_accuracy": 0.9895426258444786,
1335
+ "step": 300
1336
+ },
1337
+ {
1338
+ "epoch": 5.867469879518072,
1339
+ "eval_loss": 0.6325972080230713,
1340
+ "eval_mean_token_accuracy": 0.8854980914392204,
1341
+ "eval_runtime": 69.2865,
1342
+ "eval_samples_per_second": 12.311,
1343
+ "eval_steps_per_second": 1.544,
1344
+ "step": 300
1345
+ },
1346
+ {
1347
+ "epoch": 5.906024096385542,
1348
+ "grad_norm": 0.3809979742908432,
1349
+ "learning_rate": 4.2580419836381245e-05,
1350
+ "loss": 0.0382,
1351
+ "mean_token_accuracy": 0.9889141246676445,
1352
+ "step": 302
1353
+ },
1354
+ {
1355
+ "epoch": 5.944578313253012,
1356
+ "grad_norm": 0.3938694960489042,
1357
+ "learning_rate": 4.2344247582199086e-05,
1358
+ "loss": 0.0358,
1359
+ "mean_token_accuracy": 0.9888174794614315,
1360
+ "step": 304
1361
+ },
1362
+ {
1363
+ "epoch": 5.983132530120482,
1364
+ "grad_norm": 0.36450811910210645,
1365
+ "learning_rate": 4.21071507396857e-05,
1366
+ "loss": 0.0334,
1367
+ "mean_token_accuracy": 0.9899090155959129,
1368
+ "step": 306
1369
+ },
1370
+ {
1371
+ "epoch": 6.03855421686747,
1372
+ "grad_norm": 0.3333479875344727,
1373
+ "learning_rate": 4.1869147067474994e-05,
1374
+ "loss": 0.0411,
1375
+ "mean_token_accuracy": 0.9931864362013968,
1376
+ "step": 308
1377
+ },
1378
+ {
1379
+ "epoch": 6.0771084337349395,
1380
+ "grad_norm": 0.27565330843199565,
1381
+ "learning_rate": 4.1630254392122764e-05,
1382
+ "loss": 0.0202,
1383
+ "mean_token_accuracy": 0.9942170679569244,
1384
+ "step": 310
1385
+ },
1386
+ {
1387
+ "epoch": 6.11566265060241,
1388
+ "grad_norm": 0.3195992750520225,
1389
+ "learning_rate": 4.1390490606771424e-05,
1390
+ "loss": 0.018,
1391
+ "mean_token_accuracy": 0.9947026148438454,
1392
+ "step": 312
1393
+ },
1394
+ {
1395
+ "epoch": 6.15421686746988,
1396
+ "grad_norm": 0.32720540548882965,
1397
+ "learning_rate": 4.1149873669809826e-05,
1398
+ "loss": 0.0198,
1399
+ "mean_token_accuracy": 0.9941377639770508,
1400
+ "step": 314
1401
+ },
1402
+ {
1403
+ "epoch": 6.192771084337349,
1404
+ "grad_norm": 0.3517395424488553,
1405
+ "learning_rate": 4.0908421603528173e-05,
1406
+ "loss": 0.0205,
1407
+ "mean_token_accuracy": 0.9938553385436535,
1408
+ "step": 316
1409
+ },
1410
+ {
1411
+ "epoch": 6.231325301204819,
1412
+ "grad_norm": 0.3045110807965078,
1413
+ "learning_rate": 4.066615249276814e-05,
1414
+ "loss": 0.0273,
1415
+ "mean_token_accuracy": 0.9927638024091721,
1416
+ "step": 318
1417
+ },
1418
+ {
1419
+ "epoch": 6.2698795180722895,
1420
+ "grad_norm": 0.4775008507889605,
1421
+ "learning_rate": 4.042308448356831e-05,
1422
+ "loss": 0.0218,
1423
+ "mean_token_accuracy": 0.9934889487922192,
1424
+ "step": 320
1425
+ },
1426
+ {
1427
+ "epoch": 6.2698795180722895,
1428
+ "eval_loss": 0.7256977558135986,
1429
+ "eval_mean_token_accuracy": 0.8851249279262864,
1430
+ "eval_runtime": 69.4321,
1431
+ "eval_samples_per_second": 12.285,
1432
+ "eval_steps_per_second": 1.541,
1433
+ "step": 320
1434
+ },
1435
+ {
1436
+ "epoch": 6.308433734939759,
1437
+ "grad_norm": 0.34268550398232106,
1438
+ "learning_rate": 4.017923578180499e-05,
1439
+ "loss": 0.0202,
1440
+ "mean_token_accuracy": 0.9937179423868656,
1441
+ "step": 322
1442
+ },
1443
+ {
1444
+ "epoch": 6.346987951807229,
1445
+ "grad_norm": 0.34323820800679206,
1446
+ "learning_rate": 3.9934624651828697e-05,
1447
+ "loss": 0.0204,
1448
+ "mean_token_accuracy": 0.993862971663475,
1449
+ "step": 324
1450
+ },
1451
+ {
1452
+ "epoch": 6.385542168674699,
1453
+ "grad_norm": 0.4686588907588089,
1454
+ "learning_rate": 3.968926941509602e-05,
1455
+ "loss": 0.0211,
1456
+ "mean_token_accuracy": 0.9933924674987793,
1457
+ "step": 326
1458
+ },
1459
+ {
1460
+ "epoch": 6.424096385542168,
1461
+ "grad_norm": 0.2966896982504412,
1462
+ "learning_rate": 3.9443188448797415e-05,
1463
+ "loss": 0.0206,
1464
+ "mean_token_accuracy": 0.9938858710229397,
1465
+ "step": 328
1466
+ },
1467
+ {
1468
+ "epoch": 6.462650602409639,
1469
+ "grad_norm": 0.3302298838417657,
1470
+ "learning_rate": 3.919640018448076e-05,
1471
+ "loss": 0.0222,
1472
+ "mean_token_accuracy": 0.9935118481516838,
1473
+ "step": 330
1474
+ },
1475
+ {
1476
+ "epoch": 6.501204819277109,
1477
+ "grad_norm": 0.34910864043440876,
1478
+ "learning_rate": 3.894892310667073e-05,
1479
+ "loss": 0.0222,
1480
+ "mean_token_accuracy": 0.993305753916502,
1481
+ "step": 332
1482
+ },
1483
+ {
1484
+ "epoch": 6.539759036144578,
1485
+ "grad_norm": 0.29452989847406147,
1486
+ "learning_rate": 3.870077575148441e-05,
1487
+ "loss": 0.0205,
1488
+ "mean_token_accuracy": 0.9938248060643673,
1489
+ "step": 334
1490
+ },
1491
+ {
1492
+ "epoch": 6.578313253012048,
1493
+ "grad_norm": 3.460895850171505,
1494
+ "learning_rate": 3.845197670524289e-05,
1495
+ "loss": 0.0711,
1496
+ "mean_token_accuracy": 0.9909890256822109,
1497
+ "step": 336
1498
+ },
1499
+ {
1500
+ "epoch": 6.6168674698795185,
1501
+ "grad_norm": 2.8845015439822315,
1502
+ "learning_rate": 3.820254460307913e-05,
1503
+ "loss": 0.0258,
1504
+ "mean_token_accuracy": 0.9928401336073875,
1505
+ "step": 338
1506
+ },
1507
+ {
1508
+ "epoch": 6.655421686746988,
1509
+ "grad_norm": 0.3548695208790569,
1510
+ "learning_rate": 3.7952498127542177e-05,
1511
+ "loss": 0.0225,
1512
+ "mean_token_accuracy": 0.9932523220777512,
1513
+ "step": 340
1514
+ },
1515
+ {
1516
+ "epoch": 6.655421686746988,
1517
+ "eval_loss": 0.6746823787689209,
1518
+ "eval_mean_token_accuracy": 0.8852459766040338,
1519
+ "eval_runtime": 69.3475,
1520
+ "eval_samples_per_second": 12.3,
1521
+ "eval_steps_per_second": 1.543,
1522
+ "step": 340
1523
+ },
1524
+ {
1525
+ "epoch": 6.693975903614458,
1526
+ "grad_norm": 0.3329494193630245,
1527
+ "learning_rate": 3.7701856007197895e-05,
1528
+ "loss": 0.0229,
1529
+ "mean_token_accuracy": 0.9935271143913269,
1530
+ "step": 342
1531
+ },
1532
+ {
1533
+ "epoch": 6.732530120481927,
1534
+ "grad_norm": 0.9026543863831081,
1535
+ "learning_rate": 3.7450637015226086e-05,
1536
+ "loss": 0.0227,
1537
+ "mean_token_accuracy": 0.9933727271854877,
1538
+ "step": 344
1539
+ },
1540
+ {
1541
+ "epoch": 6.771084337349397,
1542
+ "grad_norm": 0.3475545987173597,
1543
+ "learning_rate": 3.7198859968014495e-05,
1544
+ "loss": 0.0222,
1545
+ "mean_token_accuracy": 0.9932370558381081,
1546
+ "step": 346
1547
+ },
1548
+ {
1549
+ "epoch": 6.809638554216868,
1550
+ "grad_norm": 0.33965989477483866,
1551
+ "learning_rate": 3.694654372374934e-05,
1552
+ "loss": 0.0231,
1553
+ "mean_token_accuracy": 0.9932370558381081,
1554
+ "step": 348
1555
+ },
1556
+ {
1557
+ "epoch": 6.848192771084337,
1558
+ "grad_norm": 0.34940708444449203,
1559
+ "learning_rate": 3.669370718100293e-05,
1560
+ "loss": 0.0243,
1561
+ "mean_token_accuracy": 0.9930767603218555,
1562
+ "step": 350
1563
+ },
1564
+ {
1565
+ "epoch": 6.886746987951807,
1566
+ "grad_norm": 0.36671988614834666,
1567
+ "learning_rate": 3.644036927731805e-05,
1568
+ "loss": 0.0211,
1569
+ "mean_token_accuracy": 0.9938053227961063,
1570
+ "step": 352
1571
+ },
1572
+ {
1573
+ "epoch": 6.925301204819277,
1574
+ "grad_norm": 0.35024913971584376,
1575
+ "learning_rate": 3.6186548987789645e-05,
1576
+ "loss": 0.0234,
1577
+ "mean_token_accuracy": 0.9930894784629345,
1578
+ "step": 354
1579
+ },
1580
+ {
1581
+ "epoch": 6.9638554216867465,
1582
+ "grad_norm": 0.29801785598228037,
1583
+ "learning_rate": 3.5932265323643496e-05,
1584
+ "loss": 0.0196,
1585
+ "mean_token_accuracy": 0.9941072314977646,
1586
+ "step": 356
1587
+ },
1588
+ {
1589
+ "epoch": 7.019277108433735,
1590
+ "grad_norm": 0.5585320157706073,
1591
+ "learning_rate": 3.567753733081231e-05,
1592
+ "loss": 0.0244,
1593
+ "mean_token_accuracy": 0.995596895092412,
1594
+ "step": 358
1595
+ },
1596
+ {
1597
+ "epoch": 7.057831325301205,
1598
+ "grad_norm": 0.294767605579224,
1599
+ "learning_rate": 3.542238408850914e-05,
1600
+ "loss": 0.0157,
1601
+ "mean_token_accuracy": 0.9961529076099396,
1602
+ "step": 360
1603
+ },
1604
+ {
1605
+ "epoch": 7.057831325301205,
1606
+ "eval_loss": 0.7102182507514954,
1607
+ "eval_mean_token_accuracy": 0.8853897235103857,
1608
+ "eval_runtime": 69.5836,
1609
+ "eval_samples_per_second": 12.259,
1610
+ "eval_steps_per_second": 1.538,
1611
+ "step": 360
1612
+ },
1613
+ {
1614
+ "epoch": 7.096385542168675,
1615
+ "grad_norm": 0.3268950521648773,
1616
+ "learning_rate": 3.5166824707798406e-05,
1617
+ "loss": 0.0116,
1618
+ "mean_token_accuracy": 0.9966643266379833,
1619
+ "step": 362
1620
+ },
1621
+ {
1622
+ "epoch": 7.134939759036144,
1623
+ "grad_norm": 0.28509239805351405,
1624
+ "learning_rate": 3.4910878330164394e-05,
1625
+ "loss": 0.0112,
1626
+ "mean_token_accuracy": 0.9967989884316921,
1627
+ "step": 364
1628
+ },
1629
+ {
1630
+ "epoch": 7.1734939759036145,
1631
+ "grad_norm": 0.2809059258218904,
1632
+ "learning_rate": 3.465456412607762e-05,
1633
+ "loss": 0.0116,
1634
+ "mean_token_accuracy": 0.9965421967208385,
1635
+ "step": 366
1636
+ },
1637
+ {
1638
+ "epoch": 7.212048192771085,
1639
+ "grad_norm": 0.2971290168358078,
1640
+ "learning_rate": 3.4397901293558906e-05,
1641
+ "loss": 0.0121,
1642
+ "mean_token_accuracy": 0.9964811317622662,
1643
+ "step": 368
1644
+ },
1645
+ {
1646
+ "epoch": 7.250602409638554,
1647
+ "grad_norm": 0.2747014734396319,
1648
+ "learning_rate": 3.414090905674149e-05,
1649
+ "loss": 0.0128,
1650
+ "mean_token_accuracy": 0.9963132031261921,
1651
+ "step": 370
1652
+ },
1653
+ {
1654
+ "epoch": 7.289156626506024,
1655
+ "grad_norm": 0.27158019757971547,
1656
+ "learning_rate": 3.388360666443107e-05,
1657
+ "loss": 0.0123,
1658
+ "mean_token_accuracy": 0.9963666349649429,
1659
+ "step": 372
1660
+ },
1661
+ {
1662
+ "epoch": 7.327710843373494,
1663
+ "grad_norm": 0.24646137171200483,
1664
+ "learning_rate": 3.3626013388664105e-05,
1665
+ "loss": 0.0137,
1666
+ "mean_token_accuracy": 0.996061310172081,
1667
+ "step": 374
1668
+ },
1669
+ {
1670
+ "epoch": 7.366265060240964,
1671
+ "grad_norm": 0.23689198135324382,
1672
+ "learning_rate": 3.3368148523264335e-05,
1673
+ "loss": 0.0119,
1674
+ "mean_token_accuracy": 0.9967662692070007,
1675
+ "step": 376
1676
+ },
1677
+ {
1678
+ "epoch": 7.404819277108434,
1679
+ "grad_norm": 0.2635236417353691,
1680
+ "learning_rate": 3.3110031382397664e-05,
1681
+ "loss": 0.0107,
1682
+ "mean_token_accuracy": 0.9968704208731651,
1683
+ "step": 378
1684
+ },
1685
+ {
1686
+ "epoch": 7.443373493975904,
1687
+ "grad_norm": 0.28698588325229474,
1688
+ "learning_rate": 3.2851681299125474e-05,
1689
+ "loss": 0.0119,
1690
+ "mean_token_accuracy": 0.9962368719279766,
1691
+ "step": 380
1692
+ },
1693
+ {
1694
+ "epoch": 7.443373493975904,
1695
+ "eval_loss": 0.7539895176887512,
1696
+ "eval_mean_token_accuracy": 0.8854284091530559,
1697
+ "eval_runtime": 69.3359,
1698
+ "eval_samples_per_second": 12.302,
1699
+ "eval_steps_per_second": 1.543,
1700
+ "step": 380
1701
+ },
1702
+ {
1703
+ "epoch": 7.481927710843373,
1704
+ "grad_norm": 0.45965190863910016,
1705
+ "learning_rate": 3.259311762395667e-05,
1706
+ "loss": 0.0133,
1707
+ "mean_token_accuracy": 0.9960460439324379,
1708
+ "step": 382
1709
+ },
1710
+ {
1711
+ "epoch": 7.5204819277108435,
1712
+ "grad_norm": 0.37005500654226725,
1713
+ "learning_rate": 3.233435972339819e-05,
1714
+ "loss": 0.0128,
1715
+ "mean_token_accuracy": 0.9966417700052261,
1716
+ "step": 384
1717
+ },
1718
+ {
1719
+ "epoch": 7.559036144578314,
1720
+ "grad_norm": 0.2520013001616873,
1721
+ "learning_rate": 3.2075426978504596e-05,
1722
+ "loss": 0.012,
1723
+ "mean_token_accuracy": 0.9967646859586239,
1724
+ "step": 386
1725
+ },
1726
+ {
1727
+ "epoch": 7.597590361445783,
1728
+ "grad_norm": 0.23904449387388474,
1729
+ "learning_rate": 3.18163387834263e-05,
1730
+ "loss": 0.0119,
1731
+ "mean_token_accuracy": 0.9965754523873329,
1732
+ "step": 388
1733
+ },
1734
+ {
1735
+ "epoch": 7.636144578313253,
1736
+ "grad_norm": 0.2635604546362036,
1737
+ "learning_rate": 3.1557114543957e-05,
1738
+ "loss": 0.0111,
1739
+ "mean_token_accuracy": 0.9966490603983402,
1740
+ "step": 390
1741
+ },
1742
+ {
1743
+ "epoch": 7.674698795180722,
1744
+ "grad_norm": 0.2602914883802629,
1745
+ "learning_rate": 3.129777367608015e-05,
1746
+ "loss": 0.0131,
1747
+ "mean_token_accuracy": 0.9960994757711887,
1748
+ "step": 392
1749
+ },
1750
+ {
1751
+ "epoch": 7.713253012048193,
1752
+ "grad_norm": 0.28301518038355894,
1753
+ "learning_rate": 3.103833560451475e-05,
1754
+ "loss": 0.012,
1755
+ "mean_token_accuracy": 0.9964734986424446,
1756
+ "step": 394
1757
+ },
1758
+ {
1759
+ "epoch": 7.751807228915663,
1760
+ "grad_norm": 0.25207480811303823,
1761
+ "learning_rate": 3.077881976126035e-05,
1762
+ "loss": 0.013,
1763
+ "mean_token_accuracy": 0.996213972568512,
1764
+ "step": 396
1765
+ },
1766
+ {
1767
+ "epoch": 7.790361445783132,
1768
+ "grad_norm": 0.2514618756337283,
1769
+ "learning_rate": 3.0519245584141656e-05,
1770
+ "loss": 0.0121,
1771
+ "mean_token_accuracy": 0.9964200668036938,
1772
+ "step": 398
1773
+ },
1774
+ {
1775
+ "epoch": 7.828915662650602,
1776
+ "grad_norm": 0.26040743780115594,
1777
+ "learning_rate": 3.025963251535256e-05,
1778
+ "loss": 0.0116,
1779
+ "mean_token_accuracy": 0.9966032616794109,
1780
+ "step": 400
1781
+ },
1782
+ {
1783
+ "epoch": 7.828915662650602,
1784
+ "eval_loss": 0.75331050157547,
1785
+ "eval_mean_token_accuracy": 0.8853981912693131,
1786
+ "eval_runtime": 69.4599,
1787
+ "eval_samples_per_second": 12.28,
1788
+ "eval_steps_per_second": 1.54,
1789
+ "step": 400
1790
+ },
1791
+ {
1792
+ "epoch": 7.867469879518072,
1793
+ "grad_norm": 0.26248988546084573,
1794
+ "learning_rate": 3e-05,
1795
+ "loss": 0.012,
1796
+ "mean_token_accuracy": 0.9965727292001247,
1797
+ "step": 402
1798
+ },
1799
+ {
1800
+ "epoch": 7.906024096385542,
1801
+ "grad_norm": 22.364203930658036,
1802
+ "learning_rate": 2.974036748464744e-05,
1803
+ "loss": 0.0244,
1804
+ "mean_token_accuracy": 0.994572851806879,
1805
+ "step": 404
1806
+ },
1807
+ {
1808
+ "epoch": 7.944578313253012,
1809
+ "grad_norm": 0.2613601253288421,
1810
+ "learning_rate": 2.9480754415858362e-05,
1811
+ "loss": 0.012,
1812
+ "mean_token_accuracy": 0.9964658655226231,
1813
+ "step": 406
1814
+ },
1815
+ {
1816
+ "epoch": 7.983132530120482,
1817
+ "grad_norm": 0.26978140492430813,
1818
+ "learning_rate": 2.9221180238739657e-05,
1819
+ "loss": 0.0121,
1820
+ "mean_token_accuracy": 0.9964200668036938,
1821
+ "step": 408
1822
+ },
1823
+ {
1824
+ "epoch": 8.03855421686747,
1825
+ "grad_norm": 0.15830605174235476,
1826
+ "learning_rate": 2.8961664395485256e-05,
1827
+ "loss": 0.0124,
1828
+ "mean_token_accuracy": 0.9981359117909482,
1829
+ "step": 410
1830
+ },
1831
+ {
1832
+ "epoch": 8.07710843373494,
1833
+ "grad_norm": 0.1879125494974489,
1834
+ "learning_rate": 2.870222632391985e-05,
1835
+ "loss": 0.006,
1836
+ "mean_token_accuracy": 0.9983283467590809,
1837
+ "step": 412
1838
+ },
1839
+ {
1840
+ "epoch": 8.11566265060241,
1841
+ "grad_norm": 0.21501084480372112,
1842
+ "learning_rate": 2.8442885456043014e-05,
1843
+ "loss": 0.0065,
1844
+ "mean_token_accuracy": 0.9981756843626499,
1845
+ "step": 414
1846
+ },
1847
+ {
1848
+ "epoch": 8.154216867469879,
1849
+ "grad_norm": 0.2018501247928429,
1850
+ "learning_rate": 2.8183661216573706e-05,
1851
+ "loss": 0.0062,
1852
+ "mean_token_accuracy": 0.9983817785978317,
1853
+ "step": 416
1854
+ },
1855
+ {
1856
+ "epoch": 8.19277108433735,
1857
+ "grad_norm": 0.1919214437282262,
1858
+ "learning_rate": 2.7924573021495402e-05,
1859
+ "loss": 0.0059,
1860
+ "mean_token_accuracy": 0.9983512461185455,
1861
+ "step": 418
1862
+ },
1863
+ {
1864
+ "epoch": 8.23132530120482,
1865
+ "grad_norm": 0.21206736736635065,
1866
+ "learning_rate": 2.76656402766018e-05,
1867
+ "loss": 0.0058,
1868
+ "mean_token_accuracy": 0.9982672818005085,
1869
+ "step": 420
1870
+ },
1871
+ {
1872
+ "epoch": 8.23132530120482,
1873
+ "eval_loss": 0.8077970743179321,
1874
+ "eval_mean_token_accuracy": 0.8856883294114443,
1875
+ "eval_runtime": 69.4382,
1876
+ "eval_samples_per_second": 12.284,
1877
+ "eval_steps_per_second": 1.541,
1878
+ "step": 420
1879
+ },
1880
+ {
1881
+ "epoch": 8.269879518072289,
1882
+ "grad_norm": 0.23271209850137084,
1883
+ "learning_rate": 2.7406882376043344e-05,
1884
+ "loss": 0.0065,
1885
+ "mean_token_accuracy": 0.9983117282390594,
1886
+ "step": 422
1887
+ },
1888
+ {
1889
+ "epoch": 8.30843373493976,
1890
+ "grad_norm": 0.19538575173675904,
1891
+ "learning_rate": 2.7148318700874527e-05,
1892
+ "loss": 0.0059,
1893
+ "mean_token_accuracy": 0.9985344409942627,
1894
+ "step": 424
1895
+ },
1896
+ {
1897
+ "epoch": 8.346987951807229,
1898
+ "grad_norm": 0.22328484851599617,
1899
+ "learning_rate": 2.688996861760234e-05,
1900
+ "loss": 0.0064,
1901
+ "mean_token_accuracy": 0.9983225837349892,
1902
+ "step": 426
1903
+ },
1904
+ {
1905
+ "epoch": 8.385542168674698,
1906
+ "grad_norm": 0.19516697185141343,
1907
+ "learning_rate": 2.6631851476735663e-05,
1908
+ "loss": 0.0077,
1909
+ "mean_token_accuracy": 0.9978779926896095,
1910
+ "step": 428
1911
+ },
1912
+ {
1913
+ "epoch": 8.42409638554217,
1914
+ "grad_norm": 0.18659416768860523,
1915
+ "learning_rate": 2.6373986611335903e-05,
1916
+ "loss": 0.0052,
1917
+ "mean_token_accuracy": 0.9984886422753334,
1918
+ "step": 430
1919
+ },
1920
+ {
1921
+ "epoch": 8.462650602409639,
1922
+ "grad_norm": 0.20082308512633135,
1923
+ "learning_rate": 2.6116393335568938e-05,
1924
+ "loss": 0.006,
1925
+ "mean_token_accuracy": 0.9983588792383671,
1926
+ "step": 432
1927
+ },
1928
+ {
1929
+ "epoch": 8.501204819277108,
1930
+ "grad_norm": 0.20279324228038698,
1931
+ "learning_rate": 2.5859090943258513e-05,
1932
+ "loss": 0.0062,
1933
+ "mean_token_accuracy": 0.9983130805194378,
1934
+ "step": 434
1935
+ },
1936
+ {
1937
+ "epoch": 8.539759036144579,
1938
+ "grad_norm": 0.1750743562663046,
1939
+ "learning_rate": 2.560209870644109e-05,
1940
+ "loss": 0.0056,
1941
+ "mean_token_accuracy": 0.9984581097960472,
1942
+ "step": 436
1943
+ },
1944
+ {
1945
+ "epoch": 8.578313253012048,
1946
+ "grad_norm": 0.1755895995443044,
1947
+ "learning_rate": 2.5345435873922393e-05,
1948
+ "loss": 0.0063,
1949
+ "mean_token_accuracy": 0.9981527850031853,
1950
+ "step": 438
1951
+ },
1952
+ {
1953
+ "epoch": 8.616867469879518,
1954
+ "grad_norm": 0.2118846140765078,
1955
+ "learning_rate": 2.5089121669835614e-05,
1956
+ "loss": 0.0069,
1957
+ "mean_token_accuracy": 0.9980001226067543,
1958
+ "step": 440
1959
+ },
1960
+ {
1961
+ "epoch": 8.616867469879518,
1962
+ "eval_loss": 0.8199182152748108,
1963
+ "eval_mean_token_accuracy": 0.8858561499096523,
1964
+ "eval_runtime": 69.3511,
1965
+ "eval_samples_per_second": 12.3,
1966
+ "eval_steps_per_second": 1.543,
1967
+ "step": 440
1968
+ },
1969
+ {
1970
+ "epoch": 8.655421686746989,
1971
+ "grad_norm": 0.4135813676080103,
1972
+ "learning_rate": 2.4833175292201603e-05,
1973
+ "loss": 0.0079,
1974
+ "mean_token_accuracy": 0.9979237914085388,
1975
+ "step": 442
1976
+ },
1977
+ {
1978
+ "epoch": 8.693975903614458,
1979
+ "grad_norm": 0.20791105288984507,
1980
+ "learning_rate": 2.457761591149086e-05,
1981
+ "loss": 0.0063,
1982
+ "mean_token_accuracy": 0.9981083832681179,
1983
+ "step": 444
1984
+ },
1985
+ {
1986
+ "epoch": 8.732530120481927,
1987
+ "grad_norm": 0.20629484485924265,
1988
+ "learning_rate": 2.4322462669187706e-05,
1989
+ "loss": 0.0061,
1990
+ "mean_token_accuracy": 0.9982978142797947,
1991
+ "step": 446
1992
+ },
1993
+ {
1994
+ "epoch": 8.771084337349398,
1995
+ "grad_norm": 0.19188776573995286,
1996
+ "learning_rate": 2.406773467635651e-05,
1997
+ "loss": 0.0685,
1998
+ "mean_token_accuracy": 0.9924074709415436,
1999
+ "step": 448
2000
+ },
2001
+ {
2002
+ "epoch": 8.809638554216868,
2003
+ "grad_norm": 0.19107229397466804,
2004
+ "learning_rate": 2.381345101221036e-05,
2005
+ "loss": 0.0059,
2006
+ "mean_token_accuracy": 0.9982367493212223,
2007
+ "step": 450
2008
+ },
2009
+ {
2010
+ "epoch": 8.848192771084337,
2011
+ "grad_norm": 0.23889951775098972,
2012
+ "learning_rate": 2.3559630722681954e-05,
2013
+ "loss": 0.007,
2014
+ "mean_token_accuracy": 0.9981680512428284,
2015
+ "step": 452
2016
+ },
2017
+ {
2018
+ "epoch": 8.886746987951808,
2019
+ "grad_norm": 42.2029692813804,
2020
+ "learning_rate": 2.3306292818997087e-05,
2021
+ "loss": 0.0386,
2022
+ "mean_token_accuracy": 0.9919183924794197,
2023
+ "step": 454
2024
+ },
2025
+ {
2026
+ "epoch": 8.925301204819277,
2027
+ "grad_norm": 0.21850175531519617,
2028
+ "learning_rate": 2.3053456276250663e-05,
2029
+ "loss": 0.0061,
2030
+ "mean_token_accuracy": 0.9981656223535538,
2031
+ "step": 456
2032
+ },
2033
+ {
2034
+ "epoch": 8.963855421686747,
2035
+ "grad_norm": 0.1884420004377678,
2036
+ "learning_rate": 2.280114003198551e-05,
2037
+ "loss": 0.006,
2038
+ "mean_token_accuracy": 0.998259648680687,
2039
+ "step": 458
2040
+ },
2041
+ {
2042
+ "epoch": 9.019277108433736,
2043
+ "grad_norm": 0.309122496407327,
2044
+ "learning_rate": 2.2549362984773905e-05,
2045
+ "loss": 0.0065,
2046
+ "mean_token_accuracy": 0.9987853828229403,
2047
+ "step": 460
2048
+ },
2049
+ {
2050
+ "epoch": 9.019277108433736,
2051
+ "eval_loss": 0.8049155473709106,
2052
+ "eval_mean_token_accuracy": 0.88554618347471,
2053
+ "eval_runtime": 69.5882,
2054
+ "eval_samples_per_second": 12.258,
2055
+ "eval_steps_per_second": 1.538,
2056
+ "step": 460
2057
+ },
2058
+ {
2059
+ "epoch": 9.057831325301205,
2060
+ "grad_norm": 0.1786606737325342,
2061
+ "learning_rate": 2.2298143992802117e-05,
2062
+ "loss": 0.0032,
2063
+ "mean_token_accuracy": 0.9992595873773098,
2064
+ "step": 462
2065
+ },
2066
+ {
2067
+ "epoch": 9.096385542168674,
2068
+ "grad_norm": 0.18665264973791423,
2069
+ "learning_rate": 2.204750187245782e-05,
2070
+ "loss": 0.0032,
2071
+ "mean_token_accuracy": 0.9992137886583805,
2072
+ "step": 464
2073
+ },
2074
+ {
2075
+ "epoch": 9.134939759036145,
2076
+ "grad_norm": 1.9589732725477254,
2077
+ "learning_rate": 2.1797455396920875e-05,
2078
+ "loss": 0.0048,
2079
+ "mean_token_accuracy": 0.9988092333078384,
2080
+ "step": 466
2081
+ },
2082
+ {
2083
+ "epoch": 9.173493975903614,
2084
+ "grad_norm": 0.15777335644769483,
2085
+ "learning_rate": 2.154802329475711e-05,
2086
+ "loss": 0.0033,
2087
+ "mean_token_accuracy": 0.999137457460165,
2088
+ "step": 468
2089
+ },
2090
+ {
2091
+ "epoch": 9.212048192771084,
2092
+ "grad_norm": 0.17740831307622182,
2093
+ "learning_rate": 2.1299224248515597e-05,
2094
+ "loss": 0.0044,
2095
+ "mean_token_accuracy": 0.9988931976258755,
2096
+ "step": 470
2097
+ },
2098
+ {
2099
+ "epoch": 9.250602409638555,
2100
+ "grad_norm": 0.5247760818355152,
2101
+ "learning_rate": 2.1051076893329285e-05,
2102
+ "loss": 0.0046,
2103
+ "mean_token_accuracy": 0.9987252689898014,
2104
+ "step": 472
2105
+ },
2106
+ {
2107
+ "epoch": 9.289156626506024,
2108
+ "grad_norm": 2.9325011968809207,
2109
+ "learning_rate": 2.0803599815519255e-05,
2110
+ "loss": 0.0054,
2111
+ "mean_token_accuracy": 0.9986413046717644,
2112
+ "step": 474
2113
+ },
2114
+ {
2115
+ "epoch": 9.327710843373493,
2116
+ "grad_norm": 0.6343284005430022,
2117
+ "learning_rate": 2.055681155120258e-05,
2118
+ "loss": 0.0035,
2119
+ "mean_token_accuracy": 0.9990229606628418,
2120
+ "step": 476
2121
+ },
2122
+ {
2123
+ "epoch": 9.366265060240965,
2124
+ "grad_norm": 0.20991872318983149,
2125
+ "learning_rate": 2.0310730584903993e-05,
2126
+ "loss": 0.004,
2127
+ "mean_token_accuracy": 0.9989444799721241,
2128
+ "step": 478
2129
+ },
2130
+ {
2131
+ "epoch": 9.404819277108434,
2132
+ "grad_norm": 0.17676929600802058,
2133
+ "learning_rate": 2.0065375348171312e-05,
2134
+ "loss": 0.004,
2135
+ "mean_token_accuracy": 0.9987939670681953,
2136
+ "step": 480
2137
+ },
2138
+ {
2139
+ "epoch": 9.404819277108434,
2140
+ "eval_loss": 0.8617656826972961,
2141
+ "eval_mean_token_accuracy": 0.8854893195294888,
2142
+ "eval_runtime": 69.3609,
2143
+ "eval_samples_per_second": 12.298,
2144
+ "eval_steps_per_second": 1.543,
2145
+ "step": 480
2146
+ },
2147
+ {
2148
+ "epoch": 9.443373493975903,
2149
+ "grad_norm": 0.15741271862118592,
2150
+ "learning_rate": 1.982076421819501e-05,
2151
+ "loss": 0.0034,
2152
+ "mean_token_accuracy": 0.9989725835621357,
2153
+ "step": 482
2154
+ },
2155
+ {
2156
+ "epoch": 9.481927710843374,
2157
+ "grad_norm": 0.12128856010251869,
2158
+ "learning_rate": 1.9576915516431695e-05,
2159
+ "loss": 0.0033,
2160
+ "mean_token_accuracy": 0.9991450905799866,
2161
+ "step": 484
2162
+ },
2163
+ {
2164
+ "epoch": 9.520481927710843,
2165
+ "grad_norm": 0.1350351792184324,
2166
+ "learning_rate": 1.9333847507231863e-05,
2167
+ "loss": 0.0035,
2168
+ "mean_token_accuracy": 0.9989548921585083,
2169
+ "step": 486
2170
+ },
2171
+ {
2172
+ "epoch": 9.559036144578313,
2173
+ "grad_norm": 0.14241340431904073,
2174
+ "learning_rate": 1.9091578396471828e-05,
2175
+ "loss": 0.0034,
2176
+ "mean_token_accuracy": 0.9990153275430202,
2177
+ "step": 488
2178
+ },
2179
+ {
2180
+ "epoch": 9.597590361445784,
2181
+ "grad_norm": 1.529505371238827,
2182
+ "learning_rate": 1.885012633019018e-05,
2183
+ "loss": 0.0051,
2184
+ "mean_token_accuracy": 0.9988397657871246,
2185
+ "step": 490
2186
+ },
2187
+ {
2188
+ "epoch": 9.636144578313253,
2189
+ "grad_norm": 0.15744653269316328,
2190
+ "learning_rate": 1.8609509393228585e-05,
2191
+ "loss": 0.0033,
2192
+ "mean_token_accuracy": 0.9990305937826633,
2193
+ "step": 492
2194
+ },
2195
+ {
2196
+ "epoch": 9.674698795180722,
2197
+ "grad_norm": 0.18880658862049227,
2198
+ "learning_rate": 1.8369745607877248e-05,
2199
+ "loss": 0.0036,
2200
+ "mean_token_accuracy": 0.9991679899394512,
2201
+ "step": 494
2202
+ },
2203
+ {
2204
+ "epoch": 9.713253012048193,
2205
+ "grad_norm": 0.16462913886524327,
2206
+ "learning_rate": 1.8130852932525014e-05,
2207
+ "loss": 0.0037,
2208
+ "mean_token_accuracy": 0.9989932551980019,
2209
+ "step": 496
2210
+ },
2211
+ {
2212
+ "epoch": 9.751807228915663,
2213
+ "grad_norm": 0.33758275690868494,
2214
+ "learning_rate": 1.7892849260314306e-05,
2215
+ "loss": 0.0052,
2216
+ "mean_token_accuracy": 0.9987569116055965,
2217
+ "step": 498
2218
+ },
2219
+ {
2220
+ "epoch": 9.790361445783132,
2221
+ "grad_norm": 0.1974760552707555,
2222
+ "learning_rate": 1.7655752417800905e-05,
2223
+ "loss": 0.0034,
2224
+ "mean_token_accuracy": 0.9990458600223064,
2225
+ "step": 500
2226
+ },
2227
+ {
2228
+ "epoch": 9.790361445783132,
2229
+ "eval_loss": 0.8754935264587402,
2230
+ "eval_mean_token_accuracy": 0.885859943995966,
2231
+ "eval_runtime": 69.3143,
2232
+ "eval_samples_per_second": 12.306,
2233
+ "eval_steps_per_second": 1.544,
2234
+ "step": 500
2235
+ },
2236
+ {
2237
+ "epoch": 9.828915662650603,
2238
+ "grad_norm": 0.1532587568338562,
2239
+ "learning_rate": 1.7419580163618753e-05,
2240
+ "loss": 0.0037,
2241
+ "mean_token_accuracy": 0.9989313632249832,
2242
+ "step": 502
2243
+ },
2244
+ {
2245
+ "epoch": 9.867469879518072,
2246
+ "grad_norm": 0.35383816679395547,
2247
+ "learning_rate": 1.7184350187149786e-05,
2248
+ "loss": 0.0031,
2249
+ "mean_token_accuracy": 0.9991894327104092,
2250
+ "step": 504
2251
+ },
2252
+ {
2253
+ "epoch": 9.906024096385542,
2254
+ "grad_norm": 0.1561054970110093,
2255
+ "learning_rate": 1.695008010719904e-05,
2256
+ "loss": 0.0028,
2257
+ "mean_token_accuracy": 0.9992103353142738,
2258
+ "step": 506
2259
+ },
2260
+ {
2261
+ "epoch": 9.944578313253013,
2262
+ "grad_norm": 0.18408690008074102,
2263
+ "learning_rate": 1.671678747067497e-05,
2264
+ "loss": 0.0038,
2265
+ "mean_token_accuracy": 0.9988931976258755,
2266
+ "step": 508
2267
+ },
2268
+ {
2269
+ "epoch": 9.983132530120482,
2270
+ "grad_norm": 0.20048396437108135,
2271
+ "learning_rate": 1.64844897512752e-05,
2272
+ "loss": 0.0039,
2273
+ "mean_token_accuracy": 0.9988550320267677,
2274
+ "step": 510
2275
+ },
2276
+ {
2277
+ "epoch": 10.03855421686747,
2278
+ "grad_norm": 3.4513643360551365,
2279
+ "learning_rate": 1.6253204348177687e-05,
2280
+ "loss": 0.0064,
2281
+ "mean_token_accuracy": 0.9989136865264491,
2282
+ "step": 512
2283
+ },
2284
+ {
2285
+ "epoch": 10.07710843373494,
2286
+ "grad_norm": 0.13989334153800637,
2287
+ "learning_rate": 1.6022948584737598e-05,
2288
+ "loss": 0.0019,
2289
+ "mean_token_accuracy": 0.9994351491332054,
2290
+ "step": 514
2291
+ },
2292
+ {
2293
+ "epoch": 10.11566265060241,
2294
+ "grad_norm": 0.1074045297083226,
2295
+ "learning_rate": 1.579373970718971e-05,
2296
+ "loss": 0.0021,
2297
+ "mean_token_accuracy": 0.9994351491332054,
2298
+ "step": 516
2299
+ },
2300
+ {
2301
+ "epoch": 10.154216867469879,
2302
+ "grad_norm": 0.11600427030369441,
2303
+ "learning_rate": 1.556559488335672e-05,
2304
+ "loss": 0.0021,
2305
+ "mean_token_accuracy": 0.9993969835340977,
2306
+ "step": 518
2307
+ },
2308
+ {
2309
+ "epoch": 10.19277108433735,
2310
+ "grad_norm": 0.13085553223660323,
2311
+ "learning_rate": 1.5338531201363293e-05,
2312
+ "loss": 0.0022,
2313
+ "mean_token_accuracy": 0.9993969835340977,
2314
+ "step": 520
2315
+ },
2316
+ {
2317
+ "epoch": 10.19277108433735,
2318
+ "eval_loss": 0.8904346823692322,
2319
+ "eval_mean_token_accuracy": 0.8856022764589185,
2320
+ "eval_runtime": 69.539,
2321
+ "eval_samples_per_second": 12.266,
2322
+ "eval_steps_per_second": 1.539,
2323
+ "step": 520
2324
+ },
2325
+ {
2326
+ "epoch": 10.23132530120482,
2327
+ "grad_norm": 0.14190982118015144,
2328
+ "learning_rate": 1.511256566835625e-05,
2329
+ "loss": 0.0019,
2330
+ "mean_token_accuracy": 0.9995309263467789,
2331
+ "step": 522
2332
+ },
2333
+ {
2334
+ "epoch": 10.269879518072289,
2335
+ "grad_norm": 0.1341585509156664,
2336
+ "learning_rate": 1.488771520923067e-05,
2337
+ "loss": 0.0024,
2338
+ "mean_token_accuracy": 0.9992672204971313,
2339
+ "step": 524
2340
+ },
2341
+ {
2342
+ "epoch": 10.30843373493976,
2343
+ "grad_norm": 0.16502930673696362,
2344
+ "learning_rate": 1.4663996665362211e-05,
2345
+ "loss": 0.0021,
2346
+ "mean_token_accuracy": 0.9993752129375935,
2347
+ "step": 526
2348
+ },
2349
+ {
2350
+ "epoch": 10.346987951807229,
2351
+ "grad_norm": 0.13084629155976216,
2352
+ "learning_rate": 1.4441426793345683e-05,
2353
+ "loss": 0.002,
2354
+ "mean_token_accuracy": 0.9994122497737408,
2355
+ "step": 528
2356
+ },
2357
+ {
2358
+ "epoch": 10.385542168674698,
2359
+ "grad_norm": 0.11038300146743789,
2360
+ "learning_rate": 1.4220022263740011e-05,
2361
+ "loss": 0.0027,
2362
+ "mean_token_accuracy": 0.9993052184581757,
2363
+ "step": 530
2364
+ },
2365
+ {
2366
+ "epoch": 10.42409638554217,
2367
+ "grad_norm": 0.12294561296036827,
2368
+ "learning_rate": 1.3999799659819562e-05,
2369
+ "loss": 0.033,
2370
+ "mean_token_accuracy": 0.993626344949007,
2371
+ "step": 532
2372
+ },
2373
+ {
2374
+ "epoch": 10.462650602409639,
2375
+ "grad_norm": 0.10846986979952782,
2376
+ "learning_rate": 1.3780775476332083e-05,
2377
+ "loss": 0.0018,
2378
+ "mean_token_accuracy": 0.9993899054825306,
2379
+ "step": 534
2380
+ },
2381
+ {
2382
+ "epoch": 10.501204819277108,
2383
+ "grad_norm": 0.14225689722831972,
2384
+ "learning_rate": 1.3562966118263193e-05,
2385
+ "loss": 0.0019,
2386
+ "mean_token_accuracy": 0.9993664510548115,
2387
+ "step": 536
2388
+ },
2389
+ {
2390
+ "epoch": 10.539759036144579,
2391
+ "grad_norm": 0.10969405652880397,
2392
+ "learning_rate": 1.3346387899607707e-05,
2393
+ "loss": 0.0021,
2394
+ "mean_token_accuracy": 0.9993282854557037,
2395
+ "step": 538
2396
+ },
2397
+ {
2398
+ "epoch": 10.578313253012048,
2399
+ "grad_norm": 0.12332374063084073,
2400
+ "learning_rate": 1.3131057042147668e-05,
2401
+ "loss": 0.002,
2402
+ "mean_token_accuracy": 0.9993817172944546,
2403
+ "step": 540
2404
+ },
2405
+ {
2406
+ "epoch": 10.578313253012048,
2407
+ "eval_loss": 0.9242389798164368,
2408
+ "eval_mean_token_accuracy": 0.8855681163128292,
2409
+ "eval_runtime": 69.3277,
2410
+ "eval_samples_per_second": 12.304,
2411
+ "eval_steps_per_second": 1.543,
2412
+ "step": 540
2413
+ },
2414
+ {
2415
+ "epoch": 10.616867469879518,
2416
+ "grad_norm": 0.13695317144302582,
2417
+ "learning_rate": 1.2916989674237338e-05,
2418
+ "loss": 0.0022,
2419
+ "mean_token_accuracy": 0.9993282854557037,
2420
+ "step": 542
2421
+ },
2422
+ {
2423
+ "epoch": 10.655421686746989,
2424
+ "grad_norm": 0.12870435821718612,
2425
+ "learning_rate": 1.2704201829595197e-05,
2426
+ "loss": 0.0022,
2427
+ "mean_token_accuracy": 0.9994039945304394,
2428
+ "step": 544
2429
+ },
2430
+ {
2431
+ "epoch": 10.693975903614458,
2432
+ "grad_norm": 0.6208725073443113,
2433
+ "learning_rate": 1.2492709446102981e-05,
2434
+ "loss": 0.0042,
2435
+ "mean_token_accuracy": 0.9990916587412357,
2436
+ "step": 546
2437
+ },
2438
+ {
2439
+ "epoch": 10.732530120481927,
2440
+ "grad_norm": 0.12320342463115627,
2441
+ "learning_rate": 1.2282528364611962e-05,
2442
+ "loss": 0.0018,
2443
+ "mean_token_accuracy": 0.9993969835340977,
2444
+ "step": 548
2445
+ },
2446
+ {
2447
+ "epoch": 10.771084337349398,
2448
+ "grad_norm": 0.15008259040562927,
2449
+ "learning_rate": 1.2073674327756443e-05,
2450
+ "loss": 0.0031,
2451
+ "mean_token_accuracy": 0.9991450905799866,
2452
+ "step": 550
2453
+ },
2454
+ {
2455
+ "epoch": 10.809638554216868,
2456
+ "grad_norm": 0.15429428974419876,
2457
+ "learning_rate": 1.1866162978774612e-05,
2458
+ "loss": 0.0021,
2459
+ "mean_token_accuracy": 0.9993833713233471,
2460
+ "step": 552
2461
+ },
2462
+ {
2463
+ "epoch": 10.848192771084337,
2464
+ "grad_norm": 0.10621815475739295,
2465
+ "learning_rate": 1.1660009860336912e-05,
2466
+ "loss": 0.0018,
2467
+ "mean_token_accuracy": 0.9994275160133839,
2468
+ "step": 554
2469
+ },
2470
+ {
2471
+ "epoch": 10.886746987951808,
2472
+ "grad_norm": 0.11039364973964869,
2473
+ "learning_rate": 1.1455230413381842e-05,
2474
+ "loss": 0.002,
2475
+ "mean_token_accuracy": 0.9994198828935623,
2476
+ "step": 556
2477
+ },
2478
+ {
2479
+ "epoch": 10.925301204819277,
2480
+ "grad_norm": 0.11697088411711683,
2481
+ "learning_rate": 1.1251839975959452e-05,
2482
+ "loss": 0.0021,
2483
+ "mean_token_accuracy": 0.9993686564266682,
2484
+ "step": 558
2485
+ },
2486
+ {
2487
+ "epoch": 10.963855421686747,
2488
+ "grad_norm": 0.11358688244054382,
2489
+ "learning_rate": 1.1049853782082475e-05,
2490
+ "loss": 0.0022,
2491
+ "mean_token_accuracy": 0.9994046166539192,
2492
+ "step": 560
2493
+ },
2494
+ {
2495
+ "epoch": 10.963855421686747,
2496
+ "eval_loss": 0.9417920708656311,
2497
+ "eval_mean_token_accuracy": 0.8855189898303736,
2498
+ "eval_runtime": 69.3249,
2499
+ "eval_samples_per_second": 12.304,
2500
+ "eval_steps_per_second": 1.543,
2501
+ "step": 560
2502
+ },
2503
+ {
2504
+ "epoch": 11.019277108433736,
2505
+ "grad_norm": 0.17305539820556307,
2506
+ "learning_rate": 1.0849286960585366e-05,
2507
+ "loss": 0.0035,
2508
+ "mean_token_accuracy": 0.9992672204971313,
2509
+ "step": 562
2510
+ },
2511
+ {
2512
+ "epoch": 11.057831325301205,
2513
+ "grad_norm": 0.0906759313831292,
2514
+ "learning_rate": 1.0650154533991084e-05,
2515
+ "loss": 0.0015,
2516
+ "mean_token_accuracy": 0.9996336102485657,
2517
+ "step": 564
2518
+ },
2519
+ {
2520
+ "epoch": 11.096385542168674,
2521
+ "grad_norm": 0.11931089359310906,
2522
+ "learning_rate": 1.045247141738594e-05,
2523
+ "loss": 0.0014,
2524
+ "mean_token_accuracy": 0.999516811221838,
2525
+ "step": 566
2526
+ },
2527
+ {
2528
+ "epoch": 11.134939759036145,
2529
+ "grad_norm": 0.09291767153675214,
2530
+ "learning_rate": 1.0256252417302407e-05,
2531
+ "loss": 0.0017,
2532
+ "mean_token_accuracy": 0.9994809478521347,
2533
+ "step": 568
2534
+ },
2535
+ {
2536
+ "epoch": 11.173493975903614,
2537
+ "grad_norm": 1.0033676481832277,
2538
+ "learning_rate": 1.006151223061016e-05,
2539
+ "loss": 0.0069,
2540
+ "mean_token_accuracy": 0.9987023696303368,
2541
+ "step": 570
2542
+ },
2543
+ {
2544
+ "epoch": 11.212048192771084,
2545
+ "grad_norm": 0.10446383850799652,
2546
+ "learning_rate": 9.86826544341524e-06,
2547
+ "loss": 0.0015,
2548
+ "mean_token_accuracy": 0.9994880817830563,
2549
+ "step": 572
2550
+ },
2551
+ {
2552
+ "epoch": 11.250602409638555,
2553
+ "grad_norm": 0.1025544534836012,
2554
+ "learning_rate": 9.676526529967574e-06,
2555
+ "loss": 0.0026,
2556
+ "mean_token_accuracy": 0.9994580484926701,
2557
+ "step": 574
2558
+ },
2559
+ {
2560
+ "epoch": 11.289156626506024,
2561
+ "grad_norm": 0.15583526889102658,
2562
+ "learning_rate": 9.486309851576792e-06,
2563
+ "loss": 0.0016,
2564
+ "mean_token_accuracy": 0.9994726926088333,
2565
+ "step": 576
2566
+ },
2567
+ {
2568
+ "epoch": 11.327710843373493,
2569
+ "grad_norm": 0.12222578929385594,
2570
+ "learning_rate": 9.297629655536646e-06,
2571
+ "loss": 0.0015,
2572
+ "mean_token_accuracy": 0.9995191134512424,
2573
+ "step": 578
2574
+ },
2575
+ {
2576
+ "epoch": 11.366265060240965,
2577
+ "grad_norm": 0.11197490987962304,
2578
+ "learning_rate": 9.110500074057819e-06,
2579
+ "loss": 0.0017,
2580
+ "mean_token_accuracy": 0.9994733147323132,
2581
+ "step": 580
2582
+ },
2583
+ {
2584
+ "epoch": 11.366265060240965,
2585
+ "eval_loss": 0.9544482827186584,
2586
+ "eval_mean_token_accuracy": 0.8854990807649131,
2587
+ "eval_runtime": 69.3969,
2588
+ "eval_samples_per_second": 12.292,
2589
+ "eval_steps_per_second": 1.542,
2590
+ "step": 580
2591
+ },
2592
+ {
2593
+ "epoch": 11.404819277108434,
2594
+ "grad_norm": 0.11335826027199154,
2595
+ "learning_rate": 8.92493512320944e-06,
2596
+ "loss": 0.0016,
2597
+ "mean_token_accuracy": 0.9994962140917778,
2598
+ "step": 582
2599
+ },
2600
+ {
2601
+ "epoch": 11.443373493975903,
2602
+ "grad_norm": 0.10733379829091633,
2603
+ "learning_rate": 8.740948701869277e-06,
2604
+ "loss": 0.0016,
2605
+ "mean_token_accuracy": 0.9994504153728485,
2606
+ "step": 584
2607
+ },
2608
+ {
2609
+ "epoch": 11.481927710843374,
2610
+ "grad_norm": 0.10081806344544539,
2611
+ "learning_rate": 8.558554590682697e-06,
2612
+ "loss": 0.0014,
2613
+ "mean_token_accuracy": 0.9995367042720318,
2614
+ "step": 586
2615
+ },
2616
+ {
2617
+ "epoch": 11.520481927710843,
2618
+ "grad_norm": 0.1196540536055791,
2619
+ "learning_rate": 8.377766451030499e-06,
2620
+ "loss": 0.002,
2621
+ "mean_token_accuracy": 0.9994733147323132,
2622
+ "step": 588
2623
+ },
2624
+ {
2625
+ "epoch": 11.559036144578313,
2626
+ "grad_norm": 0.11356619126334871,
2627
+ "learning_rate": 8.198597824005679e-06,
2628
+ "loss": 0.0017,
2629
+ "mean_token_accuracy": 0.9994809478521347,
2630
+ "step": 590
2631
+ },
2632
+ {
2633
+ "epoch": 11.597590361445784,
2634
+ "grad_norm": 0.10331218579457416,
2635
+ "learning_rate": 8.021062129399154e-06,
2636
+ "loss": 0.0015,
2637
+ "mean_token_accuracy": 0.999526746571064,
2638
+ "step": 592
2639
+ },
2640
+ {
2641
+ "epoch": 11.636144578313253,
2642
+ "grad_norm": 0.12174233097842206,
2643
+ "learning_rate": 7.845172664694688e-06,
2644
+ "loss": 0.0017,
2645
+ "mean_token_accuracy": 0.9994339644908905,
2646
+ "step": 594
2647
+ },
2648
+ {
2649
+ "epoch": 11.674698795180722,
2650
+ "grad_norm": 0.1048083019753585,
2651
+ "learning_rate": 7.670942604072847e-06,
2652
+ "loss": 0.0017,
2653
+ "mean_token_accuracy": 0.9994885809719563,
2654
+ "step": 596
2655
+ },
2656
+ {
2657
+ "epoch": 11.713253012048193,
2658
+ "grad_norm": 0.14893430096921834,
2659
+ "learning_rate": 7.4983849974242845e-06,
2660
+ "loss": 0.0018,
2661
+ "mean_token_accuracy": 0.999433733522892,
2662
+ "step": 598
2663
+ },
2664
+ {
2665
+ "epoch": 11.751807228915663,
2666
+ "grad_norm": 0.13675411372001317,
2667
+ "learning_rate": 7.3275127693722555e-06,
2668
+ "loss": 0.0017,
2669
+ "mean_token_accuracy": 0.9994351491332054,
2670
+ "step": 600
2671
+ },
2672
+ {
2673
+ "epoch": 11.751807228915663,
2674
+ "eval_loss": 0.969817578792572,
2675
+ "eval_mean_token_accuracy": 0.8854909840031205,
2676
+ "eval_runtime": 69.2767,
2677
+ "eval_samples_per_second": 12.313,
2678
+ "eval_steps_per_second": 1.545,
2679
+ "step": 600
2680
+ },
2681
+ {
2682
+ "epoch": 11.790361445783132,
2683
+ "grad_norm": 0.12080578212454941,
2684
+ "learning_rate": 7.1583387183046055e-06,
2685
+ "loss": 0.0016,
2686
+ "mean_token_accuracy": 0.9994351491332054,
2687
+ "step": 602
2688
+ },
2689
+ {
2690
+ "epoch": 11.828915662650603,
2691
+ "grad_norm": 0.09355811487825055,
2692
+ "learning_rate": 6.9908755154151525e-06,
2693
+ "loss": 0.0016,
2694
+ "mean_token_accuracy": 0.9994733147323132,
2695
+ "step": 604
2696
+ },
2697
+ {
2698
+ "epoch": 11.867469879518072,
2699
+ "grad_norm": 0.1224252310829274,
2700
+ "learning_rate": 6.825135703754604e-06,
2701
+ "loss": 0.0018,
2702
+ "mean_token_accuracy": 0.9994275160133839,
2703
+ "step": 606
2704
+ },
2705
+ {
2706
+ "epoch": 11.906024096385542,
2707
+ "grad_norm": 0.21861785634644101,
2708
+ "learning_rate": 6.661131697291059e-06,
2709
+ "loss": 0.0026,
2710
+ "mean_token_accuracy": 0.9993282854557037,
2711
+ "step": 608
2712
+ },
2713
+ {
2714
+ "epoch": 11.944578313253013,
2715
+ "grad_norm": 0.10430055767813079,
2716
+ "learning_rate": 6.498875779980243e-06,
2717
+ "loss": 0.0018,
2718
+ "mean_token_accuracy": 0.9994656816124916,
2719
+ "step": 610
2720
+ },
2721
+ {
2722
+ "epoch": 11.983132530120482,
2723
+ "grad_norm": 0.1191659336374284,
2724
+ "learning_rate": 6.338380104845397e-06,
2725
+ "loss": 0.0017,
2726
+ "mean_token_accuracy": 0.9994122497737408,
2727
+ "step": 612
2728
+ },
2729
+ {
2730
+ "epoch": 12.03855421686747,
2731
+ "grad_norm": 0.11508451095498799,
2732
+ "learning_rate": 6.1796566930670476e-06,
2733
+ "loss": 0.002,
2734
+ "mean_token_accuracy": 0.9995629034544292,
2735
+ "step": 614
2736
+ },
2737
+ {
2738
+ "epoch": 12.07710843373494,
2739
+ "grad_norm": 0.0950350680757556,
2740
+ "learning_rate": 6.022717433082552e-06,
2741
+ "loss": 0.0013,
2742
+ "mean_token_accuracy": 0.9996259771287441,
2743
+ "step": 616
2744
+ },
2745
+ {
2746
+ "epoch": 12.11566265060241,
2747
+ "grad_norm": 0.13300027554181304,
2748
+ "learning_rate": 5.867574079695734e-06,
2749
+ "loss": 0.0013,
2750
+ "mean_token_accuracy": 0.9995725452899933,
2751
+ "step": 618
2752
+ },
2753
+ {
2754
+ "epoch": 12.154216867469879,
2755
+ "grad_norm": 0.10052046295652498,
2756
+ "learning_rate": 5.714238253196389e-06,
2757
+ "loss": 0.0357,
2758
+ "mean_token_accuracy": 0.9919894672930241,
2759
+ "step": 620
2760
+ },
2761
+ {
2762
+ "epoch": 12.154216867469879,
2763
+ "eval_loss": 0.9818074703216553,
2764
+ "eval_mean_token_accuracy": 0.8854417923454926,
2765
+ "eval_runtime": 69.6206,
2766
+ "eval_samples_per_second": 12.252,
2767
+ "eval_steps_per_second": 1.537,
2768
+ "step": 620
2769
+ },
2770
+ {
2771
+ "epoch": 12.19277108433735,
2772
+ "grad_norm": 0.1037152483574447,
2773
+ "learning_rate": 5.562721438489928e-06,
2774
+ "loss": 0.0014,
2775
+ "mean_token_accuracy": 0.9994885809719563,
2776
+ "step": 622
2777
+ },
2778
+ {
2779
+ "epoch": 12.23132530120482,
2780
+ "grad_norm": 0.10827605801786266,
2781
+ "learning_rate": 5.413034984237181e-06,
2782
+ "loss": 0.0013,
2783
+ "mean_token_accuracy": 0.9995649121701717,
2784
+ "step": 624
2785
+ },
2786
+ {
2787
+ "epoch": 12.269879518072289,
2788
+ "grad_norm": 0.12011769938846284,
2789
+ "learning_rate": 5.265190102004335e-06,
2790
+ "loss": 0.0015,
2791
+ "mean_token_accuracy": 0.9995649121701717,
2792
+ "step": 626
2793
+ },
2794
+ {
2795
+ "epoch": 12.30843373493976,
2796
+ "grad_norm": 0.10453987820429272,
2797
+ "learning_rate": 5.119197865423229e-06,
2798
+ "loss": 0.0016,
2799
+ "mean_token_accuracy": 0.9995420128107071,
2800
+ "step": 628
2801
+ },
2802
+ {
2803
+ "epoch": 12.346987951807229,
2804
+ "grad_norm": 0.10456835958595356,
2805
+ "learning_rate": 4.975069209361906e-06,
2806
+ "loss": 0.0013,
2807
+ "mean_token_accuracy": 0.9995405711233616,
2808
+ "step": 630
2809
+ },
2810
+ {
2811
+ "epoch": 12.385542168674698,
2812
+ "grad_norm": 0.11452539491834104,
2813
+ "learning_rate": 4.832814929105588e-06,
2814
+ "loss": 0.0014,
2815
+ "mean_token_accuracy": 0.999526746571064,
2816
+ "step": 632
2817
+ },
2818
+ {
2819
+ "epoch": 12.42409638554217,
2820
+ "grad_norm": 0.09571585143522116,
2821
+ "learning_rate": 4.692445679548123e-06,
2822
+ "loss": 0.0014,
2823
+ "mean_token_accuracy": 0.9995420128107071,
2824
+ "step": 634
2825
+ },
2826
+ {
2827
+ "epoch": 12.462650602409639,
2828
+ "grad_norm": 0.12833024252684958,
2829
+ "learning_rate": 4.553971974393919e-06,
2830
+ "loss": 0.0014,
2831
+ "mean_token_accuracy": 0.9995191134512424,
2832
+ "step": 636
2833
+ },
2834
+ {
2835
+ "epoch": 12.501204819277108,
2836
+ "grad_norm": 0.11292528405649,
2837
+ "learning_rate": 4.417404185370469e-06,
2838
+ "loss": 0.0015,
2839
+ "mean_token_accuracy": 0.9995114803314209,
2840
+ "step": 638
2841
+ },
2842
+ {
2843
+ "epoch": 12.539759036144579,
2844
+ "grad_norm": 0.12831556871732822,
2845
+ "learning_rate": 4.282752541451489e-06,
2846
+ "loss": 0.0013,
2847
+ "mean_token_accuracy": 0.999526746571064,
2848
+ "step": 640
2849
+ },
2850
+ {
2851
+ "epoch": 12.539759036144579,
2852
+ "eval_loss": 0.991666853427887,
2853
+ "eval_mean_token_accuracy": 0.8853799277376906,
2854
+ "eval_runtime": 69.3869,
2855
+ "eval_samples_per_second": 12.293,
2856
+ "eval_steps_per_second": 1.542,
2857
+ "step": 640
2858
+ },
2859
+ {
2860
+ "epoch": 12.578313253012048,
2861
+ "grad_norm": 0.12436227744705454,
2862
+ "learning_rate": 4.1500271280907835e-06,
2863
+ "loss": 0.0017,
2864
+ "mean_token_accuracy": 0.9994809478521347,
2865
+ "step": 642
2866
+ },
2867
+ {
2868
+ "epoch": 12.616867469879518,
2869
+ "grad_norm": 0.17261943340443744,
2870
+ "learning_rate": 4.019237886466839e-06,
2871
+ "loss": 0.0016,
2872
+ "mean_token_accuracy": 0.9994580484926701,
2873
+ "step": 644
2874
+ },
2875
+ {
2876
+ "epoch": 12.655421686746989,
2877
+ "grad_norm": 0.10058604035427425,
2878
+ "learning_rate": 3.890394612738227e-06,
2879
+ "loss": 0.0014,
2880
+ "mean_token_accuracy": 0.9995114803314209,
2881
+ "step": 646
2882
+ },
2883
+ {
2884
+ "epoch": 12.693975903614458,
2885
+ "grad_norm": 0.11695808542802424,
2886
+ "learning_rate": 3.76350695730984e-06,
2887
+ "loss": 0.0015,
2888
+ "mean_token_accuracy": 0.9995450414717197,
2889
+ "step": 648
2890
+ },
2891
+ {
2892
+ "epoch": 12.732530120481927,
2893
+ "grad_norm": 0.10621245905708254,
2894
+ "learning_rate": 3.6385844241101185e-06,
2895
+ "loss": 0.0014,
2896
+ "mean_token_accuracy": 0.9995114803314209,
2897
+ "step": 650
2898
+ },
2899
+ {
2900
+ "epoch": 12.771084337349398,
2901
+ "grad_norm": 0.16504270528888113,
2902
+ "learning_rate": 3.5156363698791715e-06,
2903
+ "loss": 0.002,
2904
+ "mean_token_accuracy": 0.9994298405945301,
2905
+ "step": 652
2906
+ },
2907
+ {
2908
+ "epoch": 12.809638554216868,
2909
+ "grad_norm": 0.1331096001191443,
2910
+ "learning_rate": 3.3946720034679777e-06,
2911
+ "loss": 0.0021,
2912
+ "mean_token_accuracy": 0.9994504153728485,
2913
+ "step": 654
2914
+ },
2915
+ {
2916
+ "epoch": 12.848192771084337,
2917
+ "grad_norm": 0.1019875409973128,
2918
+ "learning_rate": 3.2757003851486e-06,
2919
+ "loss": 0.0014,
2920
+ "mean_token_accuracy": 0.9995572790503502,
2921
+ "step": 656
2922
+ },
2923
+ {
2924
+ "epoch": 12.886746987951808,
2925
+ "grad_norm": 0.11076935341045883,
2926
+ "learning_rate": 3.158730425935611e-06,
2927
+ "loss": 0.0015,
2928
+ "mean_token_accuracy": 0.999442782253027,
2929
+ "step": 658
2930
+ },
2931
+ {
2932
+ "epoch": 12.925301204819277,
2933
+ "grad_norm": 0.14608416850344932,
2934
+ "learning_rate": 3.0437708869186344e-06,
2935
+ "loss": 0.0015,
2936
+ "mean_token_accuracy": 0.999440137296915,
2937
+ "step": 660
2938
+ },
2939
+ {
2940
+ "epoch": 12.925301204819277,
2941
+ "eval_loss": 0.9993261098861694,
2942
+ "eval_mean_token_accuracy": 0.8853809326608605,
2943
+ "eval_runtime": 69.3391,
2944
+ "eval_samples_per_second": 12.302,
2945
+ "eval_steps_per_second": 1.543,
2946
+ "step": 660
2947
+ },
2948
+ {
2949
+ "epoch": 12.963855421686747,
2950
+ "grad_norm": 0.09245271040605461,
2951
+ "learning_rate": 2.930830378606143e-06,
2952
+ "loss": 0.0015,
2953
+ "mean_token_accuracy": 0.9995038472115993,
2954
+ "step": 662
2955
+ },
2956
+ {
2957
+ "epoch": 13.019277108433736,
2958
+ "grad_norm": 0.2141536047773108,
2959
+ "learning_rate": 2.819917360280515e-06,
2960
+ "loss": 0.002,
2961
+ "mean_token_accuracy": 0.9995436197833011,
2962
+ "step": 664
2963
+ },
2964
+ {
2965
+ "epoch": 13.057831325301205,
2966
+ "grad_norm": 0.09350801754258221,
2967
+ "learning_rate": 2.711040139364447e-06,
2968
+ "loss": 0.0012,
2969
+ "mean_token_accuracy": 0.9996412433683872,
2970
+ "step": 666
2971
+ },
2972
+ {
2973
+ "epoch": 13.096385542168674,
2974
+ "grad_norm": 0.36829671417560017,
2975
+ "learning_rate": 2.604206870798721e-06,
2976
+ "loss": 0.0051,
2977
+ "mean_token_accuracy": 0.9988485015928745,
2978
+ "step": 668
2979
+ },
2980
+ {
2981
+ "epoch": 13.134939759036145,
2982
+ "grad_norm": 0.12298017906768886,
2983
+ "learning_rate": 2.499425556431392e-06,
2984
+ "loss": 0.0013,
2985
+ "mean_token_accuracy": 0.9995496459305286,
2986
+ "step": 670
2987
+ },
2988
+ {
2989
+ "epoch": 13.173493975903614,
2990
+ "grad_norm": 0.11348242540867796,
2991
+ "learning_rate": 2.396704044418444e-06,
2992
+ "loss": 0.002,
2993
+ "mean_token_accuracy": 0.9994962140917778,
2994
+ "step": 672
2995
+ },
2996
+ {
2997
+ "epoch": 13.212048192771084,
2998
+ "grad_norm": 0.1102909386969301,
2999
+ "learning_rate": 2.2960500286359743e-06,
3000
+ "loss": 0.0013,
3001
+ "mean_token_accuracy": 0.9995384737849236,
3002
+ "step": 674
3003
+ },
3004
+ {
3005
+ "epoch": 13.250602409638555,
3006
+ "grad_norm": 0.10546278464445576,
3007
+ "learning_rate": 2.1974710481039108e-06,
3008
+ "loss": 0.0015,
3009
+ "mean_token_accuracy": 0.9995343796908855,
3010
+ "step": 676
3011
+ },
3012
+ {
3013
+ "epoch": 13.289156626506024,
3014
+ "grad_norm": 0.11337762452983983,
3015
+ "learning_rate": 2.1009744864213352e-06,
3016
+ "loss": 0.0013,
3017
+ "mean_token_accuracy": 0.9995725452899933,
3018
+ "step": 678
3019
+ },
3020
+ {
3021
+ "epoch": 13.327710843373493,
3022
+ "grad_norm": 0.14767839429897353,
3023
+ "learning_rate": 2.00656757121344e-06,
3024
+ "loss": 0.0013,
3025
+ "mean_token_accuracy": 0.9995801784098148,
3026
+ "step": 680
3027
+ },
3028
+ {
3029
+ "epoch": 13.327710843373493,
3030
+ "eval_loss": 1.0032727718353271,
3031
+ "eval_mean_token_accuracy": 0.8853370770115718,
3032
+ "eval_runtime": 69.3469,
3033
+ "eval_samples_per_second": 12.3,
3034
+ "eval_steps_per_second": 1.543,
3035
+ "step": 680
3036
+ },
3037
+ {
3038
+ "epoch": 13.366265060240965,
3039
+ "grad_norm": 0.13721848380464344,
3040
+ "learning_rate": 1.914257373590209e-06,
3041
+ "loss": 0.0015,
3042
+ "mean_token_accuracy": 0.999526746571064,
3043
+ "step": 682
3044
+ },
3045
+ {
3046
+ "epoch": 13.404819277108434,
3047
+ "grad_norm": 0.1311621970905313,
3048
+ "learning_rate": 1.8240508076167528e-06,
3049
+ "loss": 0.0015,
3050
+ "mean_token_accuracy": 0.9995725452899933,
3051
+ "step": 684
3052
+ },
3053
+ {
3054
+ "epoch": 13.443373493975903,
3055
+ "grad_norm": 0.10388591574641104,
3056
+ "learning_rate": 1.7359546297954688e-06,
3057
+ "loss": 0.0013,
3058
+ "mean_token_accuracy": 0.999610710889101,
3059
+ "step": 686
3060
+ },
3061
+ {
3062
+ "epoch": 13.481927710843374,
3063
+ "grad_norm": 0.10648821327271897,
3064
+ "learning_rate": 1.6499754385599463e-06,
3065
+ "loss": 0.0014,
3066
+ "mean_token_accuracy": 0.9995058849453926,
3067
+ "step": 688
3068
+ },
3069
+ {
3070
+ "epoch": 13.520481927710843,
3071
+ "grad_norm": 0.08872002930308646,
3072
+ "learning_rate": 1.5661196737807859e-06,
3073
+ "loss": 0.0014,
3074
+ "mean_token_accuracy": 0.9995420128107071,
3075
+ "step": 690
3076
+ },
3077
+ {
3078
+ "epoch": 13.559036144578313,
3079
+ "grad_norm": 0.09347980960553842,
3080
+ "learning_rate": 1.4843936162832072e-06,
3081
+ "loss": 0.0015,
3082
+ "mean_token_accuracy": 0.9994733147323132,
3083
+ "step": 692
3084
+ },
3085
+ {
3086
+ "epoch": 13.597590361445784,
3087
+ "grad_norm": 0.12361516911263896,
3088
+ "learning_rate": 1.4048033873766463e-06,
3089
+ "loss": 0.0015,
3090
+ "mean_token_accuracy": 0.9995572790503502,
3091
+ "step": 694
3092
+ },
3093
+ {
3094
+ "epoch": 13.636144578313253,
3095
+ "grad_norm": 0.12107654956377063,
3096
+ "learning_rate": 1.3273549483962355e-06,
3097
+ "loss": 0.0014,
3098
+ "mean_token_accuracy": 0.9994864575564861,
3099
+ "step": 696
3100
+ },
3101
+ {
3102
+ "epoch": 13.674698795180722,
3103
+ "grad_norm": 0.10092411840523163,
3104
+ "learning_rate": 1.2520541002563367e-06,
3105
+ "loss": 0.0011,
3106
+ "mean_token_accuracy": 0.9996412433683872,
3107
+ "step": 698
3108
+ },
3109
+ {
3110
+ "epoch": 13.713253012048193,
3111
+ "grad_norm": 0.11231592007453403,
3112
+ "learning_rate": 1.1789064830160135e-06,
3113
+ "loss": 0.0012,
3114
+ "mean_token_accuracy": 0.9995343796908855,
3115
+ "step": 700
3116
+ },
3117
+ {
3118
+ "epoch": 13.713253012048193,
3119
+ "eval_loss": 1.006074070930481,
3120
+ "eval_mean_token_accuracy": 0.8853545851796587,
3121
+ "eval_runtime": 69.3632,
3122
+ "eval_samples_per_second": 12.298,
3123
+ "eval_steps_per_second": 1.543,
3124
+ "step": 700
3125
+ },
3126
+ {
3127
+ "epoch": 13.751807228915663,
3128
+ "grad_norm": 0.12189315581983552,
3129
+ "learning_rate": 1.1079175754566106e-06,
3130
+ "loss": 0.0016,
3131
+ "mean_token_accuracy": 0.9995114803314209,
3132
+ "step": 702
3133
+ },
3134
+ {
3135
+ "epoch": 13.790361445783132,
3136
+ "grad_norm": 0.12382096947597966,
3137
+ "learning_rate": 1.0390926946713874e-06,
3138
+ "loss": 0.0013,
3139
+ "mean_token_accuracy": 0.9995801784098148,
3140
+ "step": 704
3141
+ },
3142
+ {
3143
+ "epoch": 13.828915662650603,
3144
+ "grad_norm": 0.11568709703961172,
3145
+ "learning_rate": 9.724369956672551e-07,
3146
+ "loss": 0.0018,
3147
+ "mean_token_accuracy": 0.9995037615299225,
3148
+ "step": 706
3149
+ },
3150
+ {
3151
+ "epoch": 13.867469879518072,
3152
+ "grad_norm": 0.1165383652245498,
3153
+ "learning_rate": 9.079554709786864e-07,
3154
+ "loss": 0.0013,
3155
+ "mean_token_accuracy": 0.9995496459305286,
3156
+ "step": 708
3157
+ },
3158
+ {
3159
+ "epoch": 13.906024096385542,
3160
+ "grad_norm": 0.11205030884377394,
3161
+ "learning_rate": 8.456529502937504e-07,
3162
+ "loss": 0.0012,
3163
+ "mean_token_accuracy": 0.9995725452899933,
3164
+ "step": 710
3165
+ },
3166
+ {
3167
+ "epoch": 13.944578313253013,
3168
+ "grad_norm": 0.11456802074059572,
3169
+ "learning_rate": 7.855341000923766e-07,
3170
+ "loss": 0.0016,
3171
+ "mean_token_accuracy": 0.9994656816124916,
3172
+ "step": 712
3173
+ },
3174
+ {
3175
+ "epoch": 13.983132530120482,
3176
+ "grad_norm": 0.11695236633196396,
3177
+ "learning_rate": 7.276034232968432e-07,
3178
+ "loss": 0.0013,
3179
+ "mean_token_accuracy": 0.9995191134512424,
3180
+ "step": 714
3181
+ },
3182
+ {
3183
+ "epoch": 14.03855421686747,
3184
+ "grad_norm": 0.0920328425193028,
3185
+ "learning_rate": 6.71865258934491e-07,
3186
+ "loss": 0.002,
3187
+ "mean_token_accuracy": 0.9995629034544292,
3188
+ "step": 716
3189
+ },
3190
+ {
3191
+ "epoch": 14.07710843373494,
3192
+ "grad_norm": 0.12109216397122943,
3193
+ "learning_rate": 6.18323781812743e-07,
3194
+ "loss": 0.0013,
3195
+ "mean_token_accuracy": 0.9995725452899933,
3196
+ "step": 718
3197
+ },
3198
+ {
3199
+ "epoch": 14.11566265060241,
3200
+ "grad_norm": 0.13601845285094027,
3201
+ "learning_rate": 5.669830022063883e-07,
3202
+ "loss": 0.0014,
3203
+ "mean_token_accuracy": 0.9996259771287441,
3204
+ "step": 720
3205
+ },
3206
+ {
3207
+ "epoch": 14.11566265060241,
3208
+ "eval_loss": 1.008071780204773,
3209
+ "eval_mean_token_accuracy": 0.8852501450297988,
3210
+ "eval_runtime": 69.5899,
3211
+ "eval_samples_per_second": 12.258,
3212
+ "eval_steps_per_second": 1.538,
3213
+ "step": 720
3214
+ },
3215
+ {
3216
+ "epoch": 14.154216867469879,
3217
+ "grad_norm": 0.07361085391354506,
3218
+ "learning_rate": 5.178467655572417e-07,
3219
+ "loss": 0.0013,
3220
+ "mean_token_accuracy": 0.999610710889101,
3221
+ "step": 722
3222
+ },
3223
+ {
3224
+ "epoch": 14.19277108433735,
3225
+ "grad_norm": 0.13110789138181567,
3226
+ "learning_rate": 4.7091875218609135e-07,
3227
+ "loss": 0.0013,
3228
+ "mean_token_accuracy": 0.9995413981378078,
3229
+ "step": 724
3230
+ },
3231
+ {
3232
+ "epoch": 14.23132530120482,
3233
+ "grad_norm": 0.13427894721533884,
3234
+ "learning_rate": 4.262024770170625e-07,
3235
+ "loss": 0.0014,
3236
+ "mean_token_accuracy": 0.9995191134512424,
3237
+ "step": 726
3238
+ },
3239
+ {
3240
+ "epoch": 14.269879518072289,
3241
+ "grad_norm": 0.11780039568540966,
3242
+ "learning_rate": 3.8370128931432767e-07,
3243
+ "loss": 0.0014,
3244
+ "mean_token_accuracy": 0.9995191134512424,
3245
+ "step": 728
3246
+ },
3247
+ {
3248
+ "epoch": 14.30843373493976,
3249
+ "grad_norm": 0.10723204604717335,
3250
+ "learning_rate": 3.4341837243126784e-07,
3251
+ "loss": 0.0011,
3252
+ "mean_token_accuracy": 0.9995954446494579,
3253
+ "step": 730
3254
+ },
3255
+ {
3256
+ "epoch": 14.346987951807229,
3257
+ "grad_norm": 0.12499794214768714,
3258
+ "learning_rate": 3.053567435720195e-07,
3259
+ "loss": 0.0013,
3260
+ "mean_token_accuracy": 0.9995965473353863,
3261
+ "step": 732
3262
+ },
3263
+ {
3264
+ "epoch": 14.385542168674698,
3265
+ "grad_norm": 0.10656431757764143,
3266
+ "learning_rate": 2.6951925356549554e-07,
3267
+ "loss": 0.0014,
3268
+ "mean_token_accuracy": 0.9995496459305286,
3269
+ "step": 734
3270
+ },
3271
+ {
3272
+ "epoch": 14.42409638554217,
3273
+ "grad_norm": 0.11531561120886899,
3274
+ "learning_rate": 2.359085866518562e-07,
3275
+ "loss": 0.0013,
3276
+ "mean_token_accuracy": 0.9995420128107071,
3277
+ "step": 736
3278
+ },
3279
+ {
3280
+ "epoch": 14.462650602409639,
3281
+ "grad_norm": 0.10344106361490216,
3282
+ "learning_rate": 2.0452726028144963e-07,
3283
+ "loss": 0.0014,
3284
+ "mean_token_accuracy": 0.9995138049125671,
3285
+ "step": 738
3286
+ },
3287
+ {
3288
+ "epoch": 14.501204819277108,
3289
+ "grad_norm": 0.10683466554674165,
3290
+ "learning_rate": 1.7537762492626953e-07,
3291
+ "loss": 0.0013,
3292
+ "mean_token_accuracy": 0.9995725452899933,
3293
+ "step": 740
3294
+ },
3295
+ {
3296
+ "epoch": 14.501204819277108,
3297
+ "eval_loss": 1.00869619846344,
3298
+ "eval_mean_token_accuracy": 0.8853217357787017,
3299
+ "eval_runtime": 69.3589,
3300
+ "eval_samples_per_second": 12.298,
3301
+ "eval_steps_per_second": 1.543,
3302
+ "step": 740
3303
+ },
3304
+ {
3305
+ "epoch": 14.539759036144579,
3306
+ "grad_norm": 0.13500845194083458,
3307
+ "learning_rate": 1.484618639038926e-07,
3308
+ "loss": 0.0013,
3309
+ "mean_token_accuracy": 0.9995496459305286,
3310
+ "step": 742
3311
+ },
3312
+ {
3313
+ "epoch": 14.578313253012048,
3314
+ "grad_norm": 0.10277444758015324,
3315
+ "learning_rate": 1.2378199321394945e-07,
3316
+ "loss": 0.0011,
3317
+ "mean_token_accuracy": 0.9996412433683872,
3318
+ "step": 744
3319
+ },
3320
+ {
3321
+ "epoch": 14.616867469879518,
3322
+ "grad_norm": 0.13757719889150138,
3323
+ "learning_rate": 1.0133986138712192e-07,
3324
+ "loss": 0.0014,
3325
+ "mean_token_accuracy": 0.9994969069957733,
3326
+ "step": 746
3327
+ },
3328
+ {
3329
+ "epoch": 14.655421686746989,
3330
+ "grad_norm": 0.10671677663082194,
3331
+ "learning_rate": 8.11371493467039e-08,
3332
+ "loss": 0.0019,
3333
+ "mean_token_accuracy": 0.9994580484926701,
3334
+ "step": 748
3335
+ },
3336
+ {
3337
+ "epoch": 14.693975903614458,
3338
+ "grad_norm": 0.11699985233599694,
3339
+ "learning_rate": 6.31753702826754e-08,
3340
+ "loss": 0.0016,
3341
+ "mean_token_accuracy": 0.9996336102485657,
3342
+ "step": 750
3343
+ },
3344
+ {
3345
+ "epoch": 14.732530120481927,
3346
+ "grad_norm": 0.11852201973617134,
3347
+ "learning_rate": 4.745586953837977e-08,
3348
+ "loss": 0.0014,
3349
+ "mean_token_accuracy": 0.9995475225150585,
3350
+ "step": 752
3351
+ },
3352
+ {
3353
+ "epoch": 14.771084337349398,
3354
+ "grad_norm": 0.1334526665028109,
3355
+ "learning_rate": 3.397982450976112e-08,
3356
+ "loss": 0.0015,
3357
+ "mean_token_accuracy": 0.9995114803314209,
3358
+ "step": 754
3359
+ },
3360
+ {
3361
+ "epoch": 14.809638554216868,
3362
+ "grad_norm": 0.13895005076813235,
3363
+ "learning_rate": 2.274824455715807e-08,
3364
+ "loss": 0.0014,
3365
+ "mean_token_accuracy": 0.9995496459305286,
3366
+ "step": 756
3367
+ },
3368
+ {
3369
+ "epoch": 14.848192771084337,
3370
+ "grad_norm": 0.11401752929884874,
3371
+ "learning_rate": 1.376197092972098e-08,
3372
+ "loss": 0.0013,
3373
+ "mean_token_accuracy": 0.9995725452899933,
3374
+ "step": 758
3375
+ },
3376
+ {
3377
+ "epoch": 14.886746987951808,
3378
+ "grad_norm": 0.1133344451356705,
3379
+ "learning_rate": 7.0216767023889575e-09,
3380
+ "loss": 0.0012,
3381
+ "mean_token_accuracy": 0.9996488764882088,
3382
+ "step": 760
3383
+ },
3384
+ {
3385
+ "epoch": 14.886746987951808,
3386
+ "eval_loss": 1.0088684558868408,
3387
+ "eval_mean_token_accuracy": 0.8853153948471925,
3388
+ "eval_runtime": 69.333,
3389
+ "eval_samples_per_second": 12.303,
3390
+ "eval_steps_per_second": 1.543,
3391
+ "step": 760
3392
+ },
3393
+ {
3394
+ "epoch": 14.925301204819277,
3395
+ "grad_norm": 0.09678481987597229,
3396
+ "learning_rate": 2.527866725493544e-09,
3397
+ "loss": 0.0014,
3398
+ "mean_token_accuracy": 0.9995649121701717,
3399
+ "step": 762
3400
+ },
3401
+ {
3402
+ "epoch": 14.963855421686747,
3403
+ "grad_norm": 0.430926247169553,
3404
+ "learning_rate": 2.808775869189706e-10,
3405
+ "loss": 0.0036,
3406
+ "mean_token_accuracy": 0.9991543292999268,
3407
+ "step": 764
3408
+ },
3409
+ {
3410
+ "epoch": 14.983132530120482,
3411
+ "step": 765,
3412
+ "total_flos": 73182014865408.0,
3413
+ "train_loss": 0.0,
3414
+ "train_runtime": 4.0071,
3415
+ "train_samples_per_second": 6210.29,
3416
+ "train_steps_per_second": 190.913
3417
+ }
3418
+ ],
3419
+ "logging_steps": 2,
3420
+ "max_steps": 765,
3421
+ "num_input_tokens_seen": 0,
3422
+ "num_train_epochs": 15,
3423
+ "save_steps": 3.0,
3424
+ "stateful_callbacks": {
3425
+ "TrainerControl": {
3426
+ "args": {
3427
+ "should_epoch_stop": false,
3428
+ "should_evaluate": false,
3429
+ "should_log": false,
3430
+ "should_save": true,
3431
+ "should_training_stop": true
3432
+ },
3433
+ "attributes": {}
3434
+ }
3435
+ },
3436
+ "total_flos": 73182014865408.0,
3437
+ "train_batch_size": 4,
3438
+ "trial_name": null,
3439
+ "trial_params": null
3440
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1162c39e39e5cf5ae4306c2f10a421ba80c1d368272f171bc4d433328c59e183
3
+ size 7288
vocab.json ADDED
The diff for this file is too large to render. See raw diff