Model save
Browse files- .gitattributes +1 -0
- README.md +58 -0
- added_tokens.json +24 -0
- all_results.json +13 -0
- config.json +30 -0
- eval_results.json +7 -0
- generation_config.json +6 -0
- merges.txt +0 -0
- model-00001-of-00002.safetensors +3 -0
- model-00002-of-00002.safetensors +3 -0
- model.safetensors.index.json +441 -0
- special_tokens_map.json +31 -0
- tokenizer.json +3 -0
- tokenizer_config.json +208 -0
- train_results.json +8 -0
- trainer_state.json +3440 -0
- training_args.bin +3 -0
- vocab.json +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: Qwen/Qwen2.5-3B
|
3 |
+
library_name: transformers
|
4 |
+
model_name: Qwen2.5-3B-MATH-lighteval-gen-SFT-15epoch
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
- trl
|
8 |
+
- sft
|
9 |
+
licence: license
|
10 |
+
---
|
11 |
+
|
12 |
+
# Model Card for Qwen2.5-3B-MATH-lighteval-gen-SFT-15epoch
|
13 |
+
|
14 |
+
This model is a fine-tuned version of [Qwen/Qwen2.5-3B](https://huggingface.co/Qwen/Qwen2.5-3B).
|
15 |
+
It has been trained using [TRL](https://github.com/huggingface/trl).
|
16 |
+
|
17 |
+
## Quick start
|
18 |
+
|
19 |
+
```python
|
20 |
+
from transformers import pipeline
|
21 |
+
|
22 |
+
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
|
23 |
+
generator = pipeline("text-generation", model="tongliuphysics/Qwen2.5-3B-MATH-lighteval-gen-SFT-15epoch", device="cuda")
|
24 |
+
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
|
25 |
+
print(output["generated_text"])
|
26 |
+
```
|
27 |
+
|
28 |
+
## Training procedure
|
29 |
+
|
30 |
+
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/pl03818948-ludwig-maximilianuniversity-of-munich/qwen-math-sft/runs/bb2izx4l)
|
31 |
+
|
32 |
+
|
33 |
+
This model was trained with SFT.
|
34 |
+
|
35 |
+
### Framework versions
|
36 |
+
|
37 |
+
- TRL: 0.16.0.dev0
|
38 |
+
- Transformers: 4.49.0
|
39 |
+
- Pytorch: 2.5.1
|
40 |
+
- Datasets: 3.4.1
|
41 |
+
- Tokenizers: 0.21.1
|
42 |
+
|
43 |
+
## Citations
|
44 |
+
|
45 |
+
|
46 |
+
|
47 |
+
Cite TRL as:
|
48 |
+
|
49 |
+
```bibtex
|
50 |
+
@misc{vonwerra2022trl,
|
51 |
+
title = {{TRL: Transformer Reinforcement Learning}},
|
52 |
+
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
|
53 |
+
year = 2020,
|
54 |
+
journal = {GitHub repository},
|
55 |
+
publisher = {GitHub},
|
56 |
+
howpublished = {\url{https://github.com/huggingface/trl}}
|
57 |
+
}
|
58 |
+
```
|
added_tokens.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<tool_call>": 151657,
|
4 |
+
"<|box_end|>": 151649,
|
5 |
+
"<|box_start|>": 151648,
|
6 |
+
"<|endoftext|>": 151643,
|
7 |
+
"<|file_sep|>": 151664,
|
8 |
+
"<|fim_middle|>": 151660,
|
9 |
+
"<|fim_pad|>": 151662,
|
10 |
+
"<|fim_prefix|>": 151659,
|
11 |
+
"<|fim_suffix|>": 151661,
|
12 |
+
"<|im_end|>": 151645,
|
13 |
+
"<|im_start|>": 151644,
|
14 |
+
"<|image_pad|>": 151655,
|
15 |
+
"<|object_ref_end|>": 151647,
|
16 |
+
"<|object_ref_start|>": 151646,
|
17 |
+
"<|quad_end|>": 151651,
|
18 |
+
"<|quad_start|>": 151650,
|
19 |
+
"<|repo_name|>": 151663,
|
20 |
+
"<|video_pad|>": 151656,
|
21 |
+
"<|vision_end|>": 151653,
|
22 |
+
"<|vision_pad|>": 151654,
|
23 |
+
"<|vision_start|>": 151652
|
24 |
+
}
|
all_results.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"eval_loss": 1.0088802576065063,
|
3 |
+
"eval_runtime": 69.2558,
|
4 |
+
"eval_samples": 3537,
|
5 |
+
"eval_samples_per_second": 12.317,
|
6 |
+
"eval_steps_per_second": 1.545,
|
7 |
+
"total_flos": 73182014865408.0,
|
8 |
+
"train_loss": 0.0,
|
9 |
+
"train_runtime": 4.0071,
|
10 |
+
"train_samples": 6726,
|
11 |
+
"train_samples_per_second": 6210.29,
|
12 |
+
"train_steps_per_second": 190.913
|
13 |
+
}
|
config.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Qwen/Qwen2.5-3B",
|
3 |
+
"architectures": [
|
4 |
+
"Qwen2ForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 151643,
|
8 |
+
"eos_token_id": 151643,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 2048,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 11008,
|
13 |
+
"max_position_embeddings": 32768,
|
14 |
+
"max_window_layers": 36,
|
15 |
+
"model_type": "qwen2",
|
16 |
+
"num_attention_heads": 16,
|
17 |
+
"num_hidden_layers": 36,
|
18 |
+
"num_key_value_heads": 2,
|
19 |
+
"rms_norm_eps": 1e-06,
|
20 |
+
"rope_scaling": null,
|
21 |
+
"rope_theta": 1000000.0,
|
22 |
+
"sliding_window": 32768,
|
23 |
+
"tie_word_embeddings": true,
|
24 |
+
"torch_dtype": "bfloat16",
|
25 |
+
"transformers_version": "4.49.0",
|
26 |
+
"use_cache": false,
|
27 |
+
"use_mrope": false,
|
28 |
+
"use_sliding_window": false,
|
29 |
+
"vocab_size": 151936
|
30 |
+
}
|
eval_results.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"eval_loss": 1.0088802576065063,
|
3 |
+
"eval_runtime": 69.2558,
|
4 |
+
"eval_samples": 3537,
|
5 |
+
"eval_samples_per_second": 12.317,
|
6 |
+
"eval_steps_per_second": 1.545
|
7 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"eos_token_id": 151643,
|
4 |
+
"max_new_tokens": 2048,
|
5 |
+
"transformers_version": "4.49.0"
|
6 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model-00001-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3a75cbbcc6444628839d5778ae5bf8c294b5d306b33b35b7cfde2c57f3dc1dc4
|
3 |
+
size 4957560304
|
model-00002-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:af8fb7c8e91bd68706798fb1b1782b82f8dcf5994a105abe48963dd60dd5491a
|
3 |
+
size 1214366696
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,441 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 6171877376
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
7 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
8 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
9 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
10 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
11 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
12 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
15 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
16 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
17 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
18 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
19 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
20 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
21 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
22 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
23 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
24 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
25 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
26 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
27 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
28 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
29 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
30 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
31 |
+
"model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
32 |
+
"model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
33 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
34 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
35 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
36 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
37 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
38 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
39 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
40 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
41 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
42 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
43 |
+
"model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
44 |
+
"model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
45 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
46 |
+
"model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
47 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
48 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
49 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
50 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
51 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
52 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
53 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
54 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
55 |
+
"model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
56 |
+
"model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
57 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
58 |
+
"model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
59 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
60 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
61 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
62 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
63 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
64 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
65 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
66 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
67 |
+
"model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
68 |
+
"model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
69 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
70 |
+
"model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
71 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
72 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
73 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
74 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
75 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
76 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
77 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
78 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
79 |
+
"model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
80 |
+
"model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
81 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
82 |
+
"model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
83 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
84 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
85 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
86 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
87 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
88 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
89 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
90 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
91 |
+
"model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
92 |
+
"model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
93 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
94 |
+
"model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
95 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
96 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
97 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
98 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
99 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
100 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
101 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
102 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
103 |
+
"model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
104 |
+
"model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
105 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
106 |
+
"model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
107 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
108 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
109 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
110 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
111 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
112 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
113 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
114 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
115 |
+
"model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
116 |
+
"model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
117 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
118 |
+
"model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
119 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
120 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
121 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
122 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
123 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
124 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
125 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
126 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
127 |
+
"model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
128 |
+
"model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
129 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
130 |
+
"model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
131 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
132 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
133 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
134 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
135 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
136 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
137 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
138 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
139 |
+
"model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
140 |
+
"model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
141 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
142 |
+
"model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
143 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
144 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
145 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
146 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
147 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
148 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
149 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
150 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
151 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
152 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
153 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
154 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
155 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
156 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
157 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
158 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
159 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
160 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
161 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
162 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
163 |
+
"model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
164 |
+
"model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
165 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
166 |
+
"model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
167 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
168 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
169 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
170 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
171 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
172 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
173 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
174 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
175 |
+
"model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
176 |
+
"model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
177 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
178 |
+
"model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
179 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
180 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
181 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
182 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
183 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
184 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
185 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
186 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
187 |
+
"model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
188 |
+
"model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
189 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
190 |
+
"model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
191 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
192 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
193 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
194 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
195 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
196 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
197 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
198 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
199 |
+
"model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
200 |
+
"model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
201 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
202 |
+
"model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
203 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
204 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
205 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
206 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
207 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
208 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
209 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
210 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
211 |
+
"model.layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
212 |
+
"model.layers.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
213 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
214 |
+
"model.layers.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
215 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
216 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
217 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
218 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
219 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
220 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
221 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
222 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
223 |
+
"model.layers.25.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
224 |
+
"model.layers.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
225 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
226 |
+
"model.layers.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
227 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
228 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
229 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
230 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
231 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
232 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
233 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
234 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
235 |
+
"model.layers.26.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
236 |
+
"model.layers.26.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
237 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
238 |
+
"model.layers.26.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
239 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
240 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
241 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
242 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
243 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
244 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
245 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
246 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
247 |
+
"model.layers.27.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
248 |
+
"model.layers.27.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
249 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
250 |
+
"model.layers.27.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
251 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
252 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
253 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
254 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
255 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
256 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
257 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
258 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
259 |
+
"model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
260 |
+
"model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
261 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
262 |
+
"model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
263 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
264 |
+
"model.layers.28.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
265 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
266 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
267 |
+
"model.layers.28.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
268 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
269 |
+
"model.layers.28.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
270 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
271 |
+
"model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
272 |
+
"model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
273 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
274 |
+
"model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
275 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
276 |
+
"model.layers.29.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
277 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
278 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
279 |
+
"model.layers.29.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
280 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
281 |
+
"model.layers.29.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
282 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
283 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
284 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
285 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
286 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
287 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
288 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
289 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
290 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
291 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
292 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
293 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
294 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
295 |
+
"model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
296 |
+
"model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
297 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
298 |
+
"model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
299 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
300 |
+
"model.layers.30.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
301 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
302 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
303 |
+
"model.layers.30.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
304 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
305 |
+
"model.layers.30.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
306 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
307 |
+
"model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
308 |
+
"model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
309 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
310 |
+
"model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
311 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
312 |
+
"model.layers.31.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
313 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
314 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
315 |
+
"model.layers.31.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
316 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
317 |
+
"model.layers.31.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
318 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
319 |
+
"model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
320 |
+
"model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
321 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
322 |
+
"model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
323 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
324 |
+
"model.layers.32.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
325 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
326 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
327 |
+
"model.layers.32.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
328 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
329 |
+
"model.layers.32.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
330 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
331 |
+
"model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
332 |
+
"model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
333 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
334 |
+
"model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
335 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
336 |
+
"model.layers.33.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
337 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
338 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
339 |
+
"model.layers.33.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
340 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
341 |
+
"model.layers.33.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
342 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
343 |
+
"model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
344 |
+
"model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
345 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
346 |
+
"model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
347 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
348 |
+
"model.layers.34.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
349 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
350 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
351 |
+
"model.layers.34.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
352 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
353 |
+
"model.layers.34.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
354 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
355 |
+
"model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
356 |
+
"model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
357 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
358 |
+
"model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
359 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
360 |
+
"model.layers.35.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
361 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
362 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
363 |
+
"model.layers.35.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
364 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
365 |
+
"model.layers.35.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
366 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
367 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
368 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
369 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
370 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
371 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
372 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
373 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
374 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
375 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
376 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
377 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
378 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
379 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
380 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
381 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
382 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
383 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
384 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
385 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
386 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
387 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
388 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
389 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
390 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
391 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
392 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
393 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
394 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
395 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
396 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
397 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
398 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
399 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
400 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
401 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
402 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
403 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
404 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
405 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
406 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
407 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
408 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
409 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
410 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
411 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
412 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
413 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
414 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
415 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
416 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
417 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
418 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
419 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
420 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
421 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
422 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
423 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
424 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
425 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
426 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
427 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
428 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
429 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
430 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
431 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
432 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
433 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
434 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
435 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
436 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
437 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
438 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
439 |
+
"model.norm.weight": "model-00002-of-00002.safetensors"
|
440 |
+
}
|
441 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|endoftext|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
|
3 |
+
size 11421896
|
tokenizer_config.json
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
}
|
181 |
+
},
|
182 |
+
"additional_special_tokens": [
|
183 |
+
"<|im_start|>",
|
184 |
+
"<|im_end|>",
|
185 |
+
"<|object_ref_start|>",
|
186 |
+
"<|object_ref_end|>",
|
187 |
+
"<|box_start|>",
|
188 |
+
"<|box_end|>",
|
189 |
+
"<|quad_start|>",
|
190 |
+
"<|quad_end|>",
|
191 |
+
"<|vision_start|>",
|
192 |
+
"<|vision_end|>",
|
193 |
+
"<|vision_pad|>",
|
194 |
+
"<|image_pad|>",
|
195 |
+
"<|video_pad|>"
|
196 |
+
],
|
197 |
+
"bos_token": null,
|
198 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
199 |
+
"clean_up_tokenization_spaces": false,
|
200 |
+
"eos_token": "<|endoftext|>",
|
201 |
+
"errors": "replace",
|
202 |
+
"extra_special_tokens": {},
|
203 |
+
"model_max_length": 131072,
|
204 |
+
"pad_token": "<|endoftext|>",
|
205 |
+
"split_special_tokens": false,
|
206 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
207 |
+
"unk_token": null
|
208 |
+
}
|
train_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"total_flos": 73182014865408.0,
|
3 |
+
"train_loss": 0.0,
|
4 |
+
"train_runtime": 4.0071,
|
5 |
+
"train_samples": 6726,
|
6 |
+
"train_samples_per_second": 6210.29,
|
7 |
+
"train_steps_per_second": 190.913
|
8 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,3440 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 14.983132530120482,
|
5 |
+
"eval_steps": 20,
|
6 |
+
"global_step": 765,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.03855421686746988,
|
13 |
+
"grad_norm": 1.705785639538995,
|
14 |
+
"learning_rate": 3.076923076923077e-06,
|
15 |
+
"loss": 0.2318,
|
16 |
+
"mean_token_accuracy": 0.9303401485085487,
|
17 |
+
"step": 2
|
18 |
+
},
|
19 |
+
{
|
20 |
+
"epoch": 0.07710843373493977,
|
21 |
+
"grad_norm": 1.3382310454836868,
|
22 |
+
"learning_rate": 6.153846153846154e-06,
|
23 |
+
"loss": 0.2394,
|
24 |
+
"mean_token_accuracy": 0.9281194359064102,
|
25 |
+
"step": 4
|
26 |
+
},
|
27 |
+
{
|
28 |
+
"epoch": 0.11566265060240964,
|
29 |
+
"grad_norm": 0.9286601308090225,
|
30 |
+
"learning_rate": 9.230769230769232e-06,
|
31 |
+
"loss": 0.2036,
|
32 |
+
"mean_token_accuracy": 0.9367443360388279,
|
33 |
+
"step": 6
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"epoch": 0.15421686746987953,
|
37 |
+
"grad_norm": 0.7792017510600757,
|
38 |
+
"learning_rate": 1.2307692307692308e-05,
|
39 |
+
"loss": 0.2032,
|
40 |
+
"mean_token_accuracy": 0.9357062317430973,
|
41 |
+
"step": 8
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"epoch": 0.1927710843373494,
|
45 |
+
"grad_norm": 0.9370950173956825,
|
46 |
+
"learning_rate": 1.5384615384615384e-05,
|
47 |
+
"loss": 0.1834,
|
48 |
+
"mean_token_accuracy": 0.9399731457233429,
|
49 |
+
"step": 10
|
50 |
+
},
|
51 |
+
{
|
52 |
+
"epoch": 0.23132530120481928,
|
53 |
+
"grad_norm": 0.8480517804963458,
|
54 |
+
"learning_rate": 1.8461538461538465e-05,
|
55 |
+
"loss": 0.1822,
|
56 |
+
"mean_token_accuracy": 0.939278531819582,
|
57 |
+
"step": 12
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"epoch": 0.26987951807228916,
|
61 |
+
"grad_norm": 0.6953427088211457,
|
62 |
+
"learning_rate": 2.153846153846154e-05,
|
63 |
+
"loss": 0.1899,
|
64 |
+
"mean_token_accuracy": 0.9386755153536797,
|
65 |
+
"step": 14
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.30843373493975906,
|
69 |
+
"grad_norm": 0.6445338354317891,
|
70 |
+
"learning_rate": 2.4615384615384616e-05,
|
71 |
+
"loss": 0.1902,
|
72 |
+
"mean_token_accuracy": 0.9381640963256359,
|
73 |
+
"step": 16
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"epoch": 0.3469879518072289,
|
77 |
+
"grad_norm": 16.86197827884376,
|
78 |
+
"learning_rate": 2.7692307692307694e-05,
|
79 |
+
"loss": 0.2164,
|
80 |
+
"mean_token_accuracy": 0.929523404687643,
|
81 |
+
"step": 18
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"epoch": 0.3855421686746988,
|
85 |
+
"grad_norm": 0.8093990311871346,
|
86 |
+
"learning_rate": 3.076923076923077e-05,
|
87 |
+
"loss": 0.2054,
|
88 |
+
"mean_token_accuracy": 0.9316003210842609,
|
89 |
+
"step": 20
|
90 |
+
},
|
91 |
+
{
|
92 |
+
"epoch": 0.3855421686746988,
|
93 |
+
"eval_loss": 0.3369506299495697,
|
94 |
+
"eval_mean_token_accuracy": 0.8973738456440863,
|
95 |
+
"eval_runtime": 69.8577,
|
96 |
+
"eval_samples_per_second": 12.211,
|
97 |
+
"eval_steps_per_second": 1.532,
|
98 |
+
"step": 20
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"epoch": 0.42409638554216866,
|
102 |
+
"grad_norm": 0.6956406793607236,
|
103 |
+
"learning_rate": 3.384615384615385e-05,
|
104 |
+
"loss": 0.2031,
|
105 |
+
"mean_token_accuracy": 0.932736948132515,
|
106 |
+
"step": 22
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.46265060240963857,
|
110 |
+
"grad_norm": 0.7553228131083111,
|
111 |
+
"learning_rate": 3.692307692307693e-05,
|
112 |
+
"loss": 0.2084,
|
113 |
+
"mean_token_accuracy": 0.9308155290782452,
|
114 |
+
"step": 24
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.5012048192771085,
|
118 |
+
"grad_norm": 0.7117402928034869,
|
119 |
+
"learning_rate": 3.9999999999999996e-05,
|
120 |
+
"loss": 0.2174,
|
121 |
+
"mean_token_accuracy": 0.928256306797266,
|
122 |
+
"step": 26
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.5397590361445783,
|
126 |
+
"grad_norm": 0.787482072880362,
|
127 |
+
"learning_rate": 4.307692307692308e-05,
|
128 |
+
"loss": 0.2049,
|
129 |
+
"mean_token_accuracy": 0.9328590780496597,
|
130 |
+
"step": 28
|
131 |
+
},
|
132 |
+
{
|
133 |
+
"epoch": 0.5783132530120482,
|
134 |
+
"grad_norm": 0.752105277951089,
|
135 |
+
"learning_rate": 4.615384615384616e-05,
|
136 |
+
"loss": 0.229,
|
137 |
+
"mean_token_accuracy": 0.9249282665550709,
|
138 |
+
"step": 30
|
139 |
+
},
|
140 |
+
{
|
141 |
+
"epoch": 0.6168674698795181,
|
142 |
+
"grad_norm": 0.8147848697294077,
|
143 |
+
"learning_rate": 4.923076923076923e-05,
|
144 |
+
"loss": 0.2179,
|
145 |
+
"mean_token_accuracy": 0.9284547679126263,
|
146 |
+
"step": 32
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"epoch": 0.655421686746988,
|
150 |
+
"grad_norm": 0.7644654922148933,
|
151 |
+
"learning_rate": 5.230769230769231e-05,
|
152 |
+
"loss": 0.2247,
|
153 |
+
"mean_token_accuracy": 0.9260961338877678,
|
154 |
+
"step": 34
|
155 |
+
},
|
156 |
+
{
|
157 |
+
"epoch": 0.6939759036144578,
|
158 |
+
"grad_norm": 0.7817362701539053,
|
159 |
+
"learning_rate": 5.538461538461539e-05,
|
160 |
+
"loss": 0.2242,
|
161 |
+
"mean_token_accuracy": 0.9262716956436634,
|
162 |
+
"step": 36
|
163 |
+
},
|
164 |
+
{
|
165 |
+
"epoch": 0.7325301204819277,
|
166 |
+
"grad_norm": 0.774259135293273,
|
167 |
+
"learning_rate": 5.846153846153846e-05,
|
168 |
+
"loss": 0.2314,
|
169 |
+
"mean_token_accuracy": 0.9232718795537949,
|
170 |
+
"step": 38
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.7710843373493976,
|
174 |
+
"grad_norm": 0.7779113622447489,
|
175 |
+
"learning_rate": 5.999971912241308e-05,
|
176 |
+
"loss": 0.2287,
|
177 |
+
"mean_token_accuracy": 0.9244779124855995,
|
178 |
+
"step": 40
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"epoch": 0.7710843373493976,
|
182 |
+
"eval_loss": 0.3469708263874054,
|
183 |
+
"eval_mean_token_accuracy": 0.8928724889443299,
|
184 |
+
"eval_runtime": 69.3388,
|
185 |
+
"eval_samples_per_second": 12.302,
|
186 |
+
"eval_steps_per_second": 1.543,
|
187 |
+
"step": 40
|
188 |
+
},
|
189 |
+
{
|
190 |
+
"epoch": 0.8096385542168675,
|
191 |
+
"grad_norm": 1.0113024310620926,
|
192 |
+
"learning_rate": 5.999747213327451e-05,
|
193 |
+
"loss": 0.2693,
|
194 |
+
"mean_token_accuracy": 0.9148754477500916,
|
195 |
+
"step": 42
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"epoch": 0.8481927710843373,
|
199 |
+
"grad_norm": 0.7088415265241964,
|
200 |
+
"learning_rate": 5.9992978323297615e-05,
|
201 |
+
"loss": 0.2458,
|
202 |
+
"mean_token_accuracy": 0.9198446087539196,
|
203 |
+
"step": 44
|
204 |
+
},
|
205 |
+
{
|
206 |
+
"epoch": 0.8867469879518072,
|
207 |
+
"grad_norm": 0.7182198589386569,
|
208 |
+
"learning_rate": 5.998623802907028e-05,
|
209 |
+
"loss": 0.2506,
|
210 |
+
"mean_token_accuracy": 0.9187759719789028,
|
211 |
+
"step": 46
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 0.9253012048192771,
|
215 |
+
"grad_norm": 0.7310790646836636,
|
216 |
+
"learning_rate": 5.9977251755442846e-05,
|
217 |
+
"loss": 0.247,
|
218 |
+
"mean_token_accuracy": 0.9190579950809479,
|
219 |
+
"step": 48
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.963855421686747,
|
223 |
+
"grad_norm": 0.7741943498527103,
|
224 |
+
"learning_rate": 5.996602017549024e-05,
|
225 |
+
"loss": 0.2581,
|
226 |
+
"mean_token_accuracy": 0.9155904687941074,
|
227 |
+
"step": 50
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"epoch": 1.0192771084337349,
|
231 |
+
"grad_norm": 1.2496640105784593,
|
232 |
+
"learning_rate": 5.995254413046162e-05,
|
233 |
+
"loss": 0.3363,
|
234 |
+
"mean_token_accuracy": 0.931157294072603,
|
235 |
+
"step": 52
|
236 |
+
},
|
237 |
+
{
|
238 |
+
"epoch": 1.0578313253012048,
|
239 |
+
"grad_norm": 0.7796457097751058,
|
240 |
+
"learning_rate": 5.9936824629717325e-05,
|
241 |
+
"loss": 0.1786,
|
242 |
+
"mean_token_accuracy": 0.9429653286933899,
|
243 |
+
"step": 54
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"epoch": 1.0963855421686748,
|
247 |
+
"grad_norm": 3.026426945371409,
|
248 |
+
"learning_rate": 5.99188628506533e-05,
|
249 |
+
"loss": 0.1852,
|
250 |
+
"mean_token_accuracy": 0.9431561566889286,
|
251 |
+
"step": 56
|
252 |
+
},
|
253 |
+
{
|
254 |
+
"epoch": 1.1349397590361445,
|
255 |
+
"grad_norm": 1.0038422236143207,
|
256 |
+
"learning_rate": 5.9898660138612876e-05,
|
257 |
+
"loss": 0.1853,
|
258 |
+
"mean_token_accuracy": 0.9422325491905212,
|
259 |
+
"step": 58
|
260 |
+
},
|
261 |
+
{
|
262 |
+
"epoch": 1.1734939759036145,
|
263 |
+
"grad_norm": 0.7074992404348022,
|
264 |
+
"learning_rate": 5.987621800678605e-05,
|
265 |
+
"loss": 0.1831,
|
266 |
+
"mean_token_accuracy": 0.94137342274189,
|
267 |
+
"step": 60
|
268 |
+
},
|
269 |
+
{
|
270 |
+
"epoch": 1.1734939759036145,
|
271 |
+
"eval_loss": 0.35918718576431274,
|
272 |
+
"eval_mean_token_accuracy": 0.8896827536208607,
|
273 |
+
"eval_runtime": 69.4598,
|
274 |
+
"eval_samples_per_second": 12.28,
|
275 |
+
"eval_steps_per_second": 1.54,
|
276 |
+
"step": 60
|
277 |
+
},
|
278 |
+
{
|
279 |
+
"epoch": 1.2120481927710842,
|
280 |
+
"grad_norm": 0.7082061395367404,
|
281 |
+
"learning_rate": 5.985153813609611e-05,
|
282 |
+
"loss": 0.1842,
|
283 |
+
"mean_token_accuracy": 0.9406329356133938,
|
284 |
+
"step": 62
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"epoch": 1.2506024096385542,
|
288 |
+
"grad_norm": 0.6821522908900178,
|
289 |
+
"learning_rate": 5.9824622375073734e-05,
|
290 |
+
"loss": 0.1752,
|
291 |
+
"mean_token_accuracy": 0.9430656358599663,
|
292 |
+
"step": 64
|
293 |
+
},
|
294 |
+
{
|
295 |
+
"epoch": 1.2891566265060241,
|
296 |
+
"grad_norm": 0.7166162494240023,
|
297 |
+
"learning_rate": 5.9795472739718545e-05,
|
298 |
+
"loss": 0.1808,
|
299 |
+
"mean_token_accuracy": 0.9407593570649624,
|
300 |
+
"step": 66
|
301 |
+
},
|
302 |
+
{
|
303 |
+
"epoch": 1.3277108433734939,
|
304 |
+
"grad_norm": 0.7660251684759504,
|
305 |
+
"learning_rate": 5.976409141334814e-05,
|
306 |
+
"loss": 0.1834,
|
307 |
+
"mean_token_accuracy": 0.9412631429731846,
|
308 |
+
"step": 68
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"epoch": 1.3662650602409638,
|
312 |
+
"grad_norm": 0.7615899653640325,
|
313 |
+
"learning_rate": 5.973048074643451e-05,
|
314 |
+
"loss": 0.19,
|
315 |
+
"mean_token_accuracy": 0.9395075254142284,
|
316 |
+
"step": 70
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 1.4048192771084338,
|
320 |
+
"grad_norm": 0.6665145918954607,
|
321 |
+
"learning_rate": 5.969464325642798e-05,
|
322 |
+
"loss": 0.1937,
|
323 |
+
"mean_token_accuracy": 0.9372099563479424,
|
324 |
+
"step": 72
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 1.4433734939759035,
|
328 |
+
"grad_norm": 0.6756063324444066,
|
329 |
+
"learning_rate": 5.965658162756873e-05,
|
330 |
+
"loss": 0.1785,
|
331 |
+
"mean_token_accuracy": 0.9428446739912033,
|
332 |
+
"step": 74
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"epoch": 1.4819277108433735,
|
336 |
+
"grad_norm": 5.007514408102458,
|
337 |
+
"learning_rate": 5.961629871068567e-05,
|
338 |
+
"loss": 0.1824,
|
339 |
+
"mean_token_accuracy": 0.9399459026753902,
|
340 |
+
"step": 76
|
341 |
+
},
|
342 |
+
{
|
343 |
+
"epoch": 1.5204819277108435,
|
344 |
+
"grad_norm": 0.6950003076179434,
|
345 |
+
"learning_rate": 5.957379752298294e-05,
|
346 |
+
"loss": 0.1894,
|
347 |
+
"mean_token_accuracy": 0.9380469061434269,
|
348 |
+
"step": 78
|
349 |
+
},
|
350 |
+
{
|
351 |
+
"epoch": 1.5590361445783132,
|
352 |
+
"grad_norm": 0.7292562229272133,
|
353 |
+
"learning_rate": 5.952908124781391e-05,
|
354 |
+
"loss": 0.1847,
|
355 |
+
"mean_token_accuracy": 0.9394388273358345,
|
356 |
+
"step": 80
|
357 |
+
},
|
358 |
+
{
|
359 |
+
"epoch": 1.5590361445783132,
|
360 |
+
"eval_loss": 0.3795740008354187,
|
361 |
+
"eval_mean_token_accuracy": 0.8898136326085742,
|
362 |
+
"eval_runtime": 69.3491,
|
363 |
+
"eval_samples_per_second": 12.3,
|
364 |
+
"eval_steps_per_second": 1.543,
|
365 |
+
"step": 80
|
366 |
+
},
|
367 |
+
{
|
368 |
+
"epoch": 1.5975903614457831,
|
369 |
+
"grad_norm": 0.7339322375026358,
|
370 |
+
"learning_rate": 5.9482153234442764e-05,
|
371 |
+
"loss": 0.1788,
|
372 |
+
"mean_token_accuracy": 0.9419959224760532,
|
373 |
+
"step": 82
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 1.636144578313253,
|
377 |
+
"grad_norm": 0.6479958500122328,
|
378 |
+
"learning_rate": 5.943301699779362e-05,
|
379 |
+
"loss": 0.1734,
|
380 |
+
"mean_token_accuracy": 0.943537812680006,
|
381 |
+
"step": 84
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"epoch": 1.6746987951807228,
|
385 |
+
"grad_norm": 0.6703352220328588,
|
386 |
+
"learning_rate": 5.938167621818725e-05,
|
387 |
+
"loss": 0.179,
|
388 |
+
"mean_token_accuracy": 0.9419959224760532,
|
389 |
+
"step": 86
|
390 |
+
},
|
391 |
+
{
|
392 |
+
"epoch": 1.7132530120481928,
|
393 |
+
"grad_norm": 0.6792409729462423,
|
394 |
+
"learning_rate": 5.9328134741065505e-05,
|
395 |
+
"loss": 0.1855,
|
396 |
+
"mean_token_accuracy": 0.9391182363033295,
|
397 |
+
"step": 88
|
398 |
+
},
|
399 |
+
{
|
400 |
+
"epoch": 1.7518072289156628,
|
401 |
+
"grad_norm": 0.7099572223484931,
|
402 |
+
"learning_rate": 5.9272396576703156e-05,
|
403 |
+
"loss": 0.1912,
|
404 |
+
"mean_token_accuracy": 0.9383243918418884,
|
405 |
+
"step": 90
|
406 |
+
},
|
407 |
+
{
|
408 |
+
"epoch": 1.7903614457831325,
|
409 |
+
"grad_norm": 0.6140495004550495,
|
410 |
+
"learning_rate": 5.921446589990762e-05,
|
411 |
+
"loss": 0.1803,
|
412 |
+
"mean_token_accuracy": 0.9405914284288883,
|
413 |
+
"step": 92
|
414 |
+
},
|
415 |
+
{
|
416 |
+
"epoch": 1.8289156626506025,
|
417 |
+
"grad_norm": 0.6191702751024997,
|
418 |
+
"learning_rate": 5.915434704970626e-05,
|
419 |
+
"loss": 0.1839,
|
420 |
+
"mean_token_accuracy": 0.9397136196494102,
|
421 |
+
"step": 94
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"epoch": 1.8674698795180724,
|
425 |
+
"grad_norm": 0.6503655036572544,
|
426 |
+
"learning_rate": 5.909204452902132e-05,
|
427 |
+
"loss": 0.1861,
|
428 |
+
"mean_token_accuracy": 0.938539806753397,
|
429 |
+
"step": 96
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 1.9060240963855422,
|
433 |
+
"grad_norm": 0.6250371366565243,
|
434 |
+
"learning_rate": 5.902756300433275e-05,
|
435 |
+
"loss": 0.1842,
|
436 |
+
"mean_token_accuracy": 0.9400800094008446,
|
437 |
+
"step": 98
|
438 |
+
},
|
439 |
+
{
|
440 |
+
"epoch": 1.944578313253012,
|
441 |
+
"grad_norm": 0.640465941392095,
|
442 |
+
"learning_rate": 5.896090730532861e-05,
|
443 |
+
"loss": 0.1844,
|
444 |
+
"mean_token_accuracy": 0.939599122852087,
|
445 |
+
"step": 100
|
446 |
+
},
|
447 |
+
{
|
448 |
+
"epoch": 1.944578313253012,
|
449 |
+
"eval_loss": 0.3779001832008362,
|
450 |
+
"eval_mean_token_accuracy": 0.8901177433049567,
|
451 |
+
"eval_runtime": 69.3149,
|
452 |
+
"eval_samples_per_second": 12.306,
|
453 |
+
"eval_steps_per_second": 1.544,
|
454 |
+
"step": 100
|
455 |
+
},
|
456 |
+
{
|
457 |
+
"epoch": 1.983132530120482,
|
458 |
+
"grad_norm": 0.6323323328748188,
|
459 |
+
"learning_rate": 5.889208242454339e-05,
|
460 |
+
"loss": 0.1882,
|
461 |
+
"mean_token_accuracy": 0.9382709600031376,
|
462 |
+
"step": 102
|
463 |
+
},
|
464 |
+
{
|
465 |
+
"epoch": 2.0385542168674697,
|
466 |
+
"grad_norm": 0.5923035432212858,
|
467 |
+
"learning_rate": 5.882109351698399e-05,
|
468 |
+
"loss": 0.2808,
|
469 |
+
"mean_token_accuracy": 0.9537320419361717,
|
470 |
+
"step": 104
|
471 |
+
},
|
472 |
+
{
|
473 |
+
"epoch": 2.07710843373494,
|
474 |
+
"grad_norm": 0.6399371482933023,
|
475 |
+
"learning_rate": 5.874794589974366e-05,
|
476 |
+
"loss": 0.1097,
|
477 |
+
"mean_token_accuracy": 0.9653303697705269,
|
478 |
+
"step": 106
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 2.1156626506024097,
|
482 |
+
"grad_norm": 1.671558218407247,
|
483 |
+
"learning_rate": 5.867264505160377e-05,
|
484 |
+
"loss": 0.122,
|
485 |
+
"mean_token_accuracy": 0.96179623529315,
|
486 |
+
"step": 108
|
487 |
+
},
|
488 |
+
{
|
489 |
+
"epoch": 2.1542168674698794,
|
490 |
+
"grad_norm": 0.7733840952353428,
|
491 |
+
"learning_rate": 5.8595196612623355e-05,
|
492 |
+
"loss": 0.1151,
|
493 |
+
"mean_token_accuracy": 0.9634220898151398,
|
494 |
+
"step": 110
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"epoch": 2.1927710843373496,
|
498 |
+
"grad_norm": 0.6833358408916507,
|
499 |
+
"learning_rate": 5.85156063837168e-05,
|
500 |
+
"loss": 0.1171,
|
501 |
+
"mean_token_accuracy": 0.9626664109528065,
|
502 |
+
"step": 112
|
503 |
+
},
|
504 |
+
{
|
505 |
+
"epoch": 2.2313253012048193,
|
506 |
+
"grad_norm": 0.609042046972475,
|
507 |
+
"learning_rate": 5.8433880326219224e-05,
|
508 |
+
"loss": 0.111,
|
509 |
+
"mean_token_accuracy": 0.9642235673964024,
|
510 |
+
"step": 114
|
511 |
+
},
|
512 |
+
{
|
513 |
+
"epoch": 2.269879518072289,
|
514 |
+
"grad_norm": 0.5988284120745949,
|
515 |
+
"learning_rate": 5.835002456144005e-05,
|
516 |
+
"loss": 0.1125,
|
517 |
+
"mean_token_accuracy": 0.9635671190917492,
|
518 |
+
"step": 116
|
519 |
+
},
|
520 |
+
{
|
521 |
+
"epoch": 2.3084337349397592,
|
522 |
+
"grad_norm": 0.5980685515504778,
|
523 |
+
"learning_rate": 5.826404537020453e-05,
|
524 |
+
"loss": 0.1973,
|
525 |
+
"mean_token_accuracy": 0.9595486260950565,
|
526 |
+
"step": 118
|
527 |
+
},
|
528 |
+
{
|
529 |
+
"epoch": 2.346987951807229,
|
530 |
+
"grad_norm": 0.5537423277771285,
|
531 |
+
"learning_rate": 5.8175949192383246e-05,
|
532 |
+
"loss": 0.1109,
|
533 |
+
"mean_token_accuracy": 0.9636205509305,
|
534 |
+
"step": 120
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 2.346987951807229,
|
538 |
+
"eval_loss": 0.4340486228466034,
|
539 |
+
"eval_mean_token_accuracy": 0.8874053069364245,
|
540 |
+
"eval_runtime": 69.3444,
|
541 |
+
"eval_samples_per_second": 12.301,
|
542 |
+
"eval_steps_per_second": 1.543,
|
543 |
+
"step": 120
|
544 |
+
},
|
545 |
+
{
|
546 |
+
"epoch": 2.3855421686746987,
|
547 |
+
"grad_norm": 0.6329955705531911,
|
548 |
+
"learning_rate": 5.808574262640979e-05,
|
549 |
+
"loss": 0.1112,
|
550 |
+
"mean_token_accuracy": 0.9642672762274742,
|
551 |
+
"step": 122
|
552 |
+
},
|
553 |
+
{
|
554 |
+
"epoch": 2.4240963855421684,
|
555 |
+
"grad_norm": 0.6149955725738905,
|
556 |
+
"learning_rate": 5.7993432428786564e-05,
|
557 |
+
"loss": 0.1199,
|
558 |
+
"mean_token_accuracy": 0.961880199611187,
|
559 |
+
"step": 124
|
560 |
+
},
|
561 |
+
{
|
562 |
+
"epoch": 2.4626506024096386,
|
563 |
+
"grad_norm": 0.5673262904352961,
|
564 |
+
"learning_rate": 5.789902551357867e-05,
|
565 |
+
"loss": 0.1097,
|
566 |
+
"mean_token_accuracy": 0.9644601941108704,
|
567 |
+
"step": 126
|
568 |
+
},
|
569 |
+
{
|
570 |
+
"epoch": 2.5012048192771084,
|
571 |
+
"grad_norm": 0.5695978903253339,
|
572 |
+
"learning_rate": 5.7802528951896084e-05,
|
573 |
+
"loss": 0.123,
|
574 |
+
"mean_token_accuracy": 0.9608555659651756,
|
575 |
+
"step": 128
|
576 |
+
},
|
577 |
+
{
|
578 |
+
"epoch": 2.539759036144578,
|
579 |
+
"grad_norm": 0.5726596000252164,
|
580 |
+
"learning_rate": 5.770394997136403e-05,
|
581 |
+
"loss": 0.1173,
|
582 |
+
"mean_token_accuracy": 0.961727537214756,
|
583 |
+
"step": 130
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 2.5783132530120483,
|
587 |
+
"grad_norm": 0.6051634984658857,
|
588 |
+
"learning_rate": 5.760329595558155e-05,
|
589 |
+
"loss": 0.1235,
|
590 |
+
"mean_token_accuracy": 0.960479199886322,
|
591 |
+
"step": 132
|
592 |
+
},
|
593 |
+
{
|
594 |
+
"epoch": 2.616867469879518,
|
595 |
+
"grad_norm": 0.5843873679593171,
|
596 |
+
"learning_rate": 5.750057444356861e-05,
|
597 |
+
"loss": 0.1124,
|
598 |
+
"mean_token_accuracy": 0.9634606502950191,
|
599 |
+
"step": 134
|
600 |
+
},
|
601 |
+
{
|
602 |
+
"epoch": 2.6554216867469878,
|
603 |
+
"grad_norm": 0.5786531421048121,
|
604 |
+
"learning_rate": 5.7395793129201274e-05,
|
605 |
+
"loss": 0.1151,
|
606 |
+
"mean_token_accuracy": 0.9624832160770893,
|
607 |
+
"step": 136
|
608 |
+
},
|
609 |
+
{
|
610 |
+
"epoch": 2.693975903614458,
|
611 |
+
"grad_norm": 56.08130944258286,
|
612 |
+
"learning_rate": 5.728895986063555e-05,
|
613 |
+
"loss": 0.1915,
|
614 |
+
"mean_token_accuracy": 0.9590635783970356,
|
615 |
+
"step": 138
|
616 |
+
},
|
617 |
+
{
|
618 |
+
"epoch": 2.7325301204819277,
|
619 |
+
"grad_norm": 0.6521169160855299,
|
620 |
+
"learning_rate": 5.718008263971949e-05,
|
621 |
+
"loss": 0.1227,
|
622 |
+
"mean_token_accuracy": 0.9599490202963352,
|
623 |
+
"step": 140
|
624 |
+
},
|
625 |
+
{
|
626 |
+
"epoch": 2.7325301204819277,
|
627 |
+
"eval_loss": 0.4394315481185913,
|
628 |
+
"eval_mean_token_accuracy": 0.8881128068282226,
|
629 |
+
"eval_runtime": 69.3566,
|
630 |
+
"eval_samples_per_second": 12.299,
|
631 |
+
"eval_steps_per_second": 1.543,
|
632 |
+
"step": 140
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 2.7710843373493974,
|
636 |
+
"grad_norm": 0.5638094382208305,
|
637 |
+
"learning_rate": 5.706916962139386e-05,
|
638 |
+
"loss": 0.1097,
|
639 |
+
"mean_token_accuracy": 0.9637655802071095,
|
640 |
+
"step": 142
|
641 |
+
},
|
642 |
+
{
|
643 |
+
"epoch": 2.8096385542168676,
|
644 |
+
"grad_norm": 3.8715755391438718,
|
645 |
+
"learning_rate": 5.6956229113081366e-05,
|
646 |
+
"loss": 0.1453,
|
647 |
+
"mean_token_accuracy": 0.9584450386464596,
|
648 |
+
"step": 144
|
649 |
+
},
|
650 |
+
{
|
651 |
+
"epoch": 2.8481927710843373,
|
652 |
+
"grad_norm": 0.6064377456676171,
|
653 |
+
"learning_rate": 5.684126957406439e-05,
|
654 |
+
"loss": 0.1207,
|
655 |
+
"mean_token_accuracy": 0.9605062380433083,
|
656 |
+
"step": 146
|
657 |
+
},
|
658 |
+
{
|
659 |
+
"epoch": 2.886746987951807,
|
660 |
+
"grad_norm": 0.5771676373386834,
|
661 |
+
"learning_rate": 5.672429961485141e-05,
|
662 |
+
"loss": 0.1193,
|
663 |
+
"mean_token_accuracy": 0.9608955271542072,
|
664 |
+
"step": 148
|
665 |
+
},
|
666 |
+
{
|
667 |
+
"epoch": 2.9253012048192772,
|
668 |
+
"grad_norm": 0.5744641109441189,
|
669 |
+
"learning_rate": 5.660532799653203e-05,
|
670 |
+
"loss": 0.1116,
|
671 |
+
"mean_token_accuracy": 0.9642998985946178,
|
672 |
+
"step": 150
|
673 |
+
},
|
674 |
+
{
|
675 |
+
"epoch": 2.963855421686747,
|
676 |
+
"grad_norm": 0.5943353410877066,
|
677 |
+
"learning_rate": 5.648436363012083e-05,
|
678 |
+
"loss": 0.1286,
|
679 |
+
"mean_token_accuracy": 0.9584605619311333,
|
680 |
+
"step": 152
|
681 |
+
},
|
682 |
+
{
|
683 |
+
"epoch": 3.019277108433735,
|
684 |
+
"grad_norm": 0.6755233750902037,
|
685 |
+
"learning_rate": 5.636141557588988e-05,
|
686 |
+
"loss": 0.1502,
|
687 |
+
"mean_token_accuracy": 0.969435381261926,
|
688 |
+
"step": 154
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 3.057831325301205,
|
692 |
+
"grad_norm": 0.4869568501431861,
|
693 |
+
"learning_rate": 5.6236493042690166e-05,
|
694 |
+
"loss": 0.0735,
|
695 |
+
"mean_token_accuracy": 0.977940283715725,
|
696 |
+
"step": 156
|
697 |
+
},
|
698 |
+
{
|
699 |
+
"epoch": 3.0963855421686746,
|
700 |
+
"grad_norm": 0.5166738704029692,
|
701 |
+
"learning_rate": 5.6109605387261786e-05,
|
702 |
+
"loss": 0.0706,
|
703 |
+
"mean_token_accuracy": 0.9776273258030415,
|
704 |
+
"step": 158
|
705 |
+
},
|
706 |
+
{
|
707 |
+
"epoch": 3.1349397590361447,
|
708 |
+
"grad_norm": 0.6214310820779639,
|
709 |
+
"learning_rate": 5.5980762113533166e-05,
|
710 |
+
"loss": 0.0726,
|
711 |
+
"mean_token_accuracy": 0.9774517640471458,
|
712 |
+
"step": 160
|
713 |
+
},
|
714 |
+
{
|
715 |
+
"epoch": 3.1349397590361447,
|
716 |
+
"eval_loss": 0.5496253967285156,
|
717 |
+
"eval_mean_token_accuracy": 0.8859052630228417,
|
718 |
+
"eval_runtime": 69.5362,
|
719 |
+
"eval_samples_per_second": 12.267,
|
720 |
+
"eval_steps_per_second": 1.539,
|
721 |
+
"step": 160
|
722 |
+
},
|
723 |
+
{
|
724 |
+
"epoch": 3.1734939759036145,
|
725 |
+
"grad_norm": 0.6554284642200141,
|
726 |
+
"learning_rate": 5.584997287190922e-05,
|
727 |
+
"loss": 0.0754,
|
728 |
+
"mean_token_accuracy": 0.9765892215073109,
|
729 |
+
"step": 162
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"epoch": 3.212048192771084,
|
733 |
+
"grad_norm": 0.5638612880738564,
|
734 |
+
"learning_rate": 5.571724745854852e-05,
|
735 |
+
"loss": 0.0725,
|
736 |
+
"mean_token_accuracy": 0.9769021794199944,
|
737 |
+
"step": 164
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"epoch": 3.2506024096385544,
|
741 |
+
"grad_norm": 0.5454344948208613,
|
742 |
+
"learning_rate": 5.558259581462954e-05,
|
743 |
+
"loss": 0.0773,
|
744 |
+
"mean_token_accuracy": 0.9755587503314018,
|
745 |
+
"step": 166
|
746 |
+
},
|
747 |
+
{
|
748 |
+
"epoch": 3.289156626506024,
|
749 |
+
"grad_norm": 0.47578859073082264,
|
750 |
+
"learning_rate": 5.5446028025606084e-05,
|
751 |
+
"loss": 0.0749,
|
752 |
+
"mean_token_accuracy": 0.9767495170235634,
|
753 |
+
"step": 168
|
754 |
+
},
|
755 |
+
{
|
756 |
+
"epoch": 3.327710843373494,
|
757 |
+
"grad_norm": 0.5190652057788073,
|
758 |
+
"learning_rate": 5.5307554320451876e-05,
|
759 |
+
"loss": 0.0796,
|
760 |
+
"mean_token_accuracy": 0.9748107045888901,
|
761 |
+
"step": 170
|
762 |
+
},
|
763 |
+
{
|
764 |
+
"epoch": 3.3662650602409636,
|
765 |
+
"grad_norm": 0.47934707420847783,
|
766 |
+
"learning_rate": 5.5167185070894416e-05,
|
767 |
+
"loss": 0.0674,
|
768 |
+
"mean_token_accuracy": 0.9788944236934185,
|
769 |
+
"step": 172
|
770 |
+
},
|
771 |
+
{
|
772 |
+
"epoch": 3.404819277108434,
|
773 |
+
"grad_norm": 0.48562826419549304,
|
774 |
+
"learning_rate": 5.50249307906381e-05,
|
775 |
+
"loss": 0.0706,
|
776 |
+
"mean_token_accuracy": 0.9775891602039337,
|
777 |
+
"step": 174
|
778 |
+
},
|
779 |
+
{
|
780 |
+
"epoch": 3.4433734939759035,
|
781 |
+
"grad_norm": 0.49123485293415037,
|
782 |
+
"learning_rate": 5.488080213457677e-05,
|
783 |
+
"loss": 0.0764,
|
784 |
+
"mean_token_accuracy": 0.9759480394423008,
|
785 |
+
"step": 176
|
786 |
+
},
|
787 |
+
{
|
788 |
+
"epoch": 3.4819277108433733,
|
789 |
+
"grad_norm": 1.4341257923628998,
|
790 |
+
"learning_rate": 5.473480989799566e-05,
|
791 |
+
"loss": 0.1064,
|
792 |
+
"mean_token_accuracy": 0.9697589166462421,
|
793 |
+
"step": 178
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"epoch": 3.5204819277108435,
|
797 |
+
"grad_norm": 0.5176661925926418,
|
798 |
+
"learning_rate": 5.458696501576282e-05,
|
799 |
+
"loss": 0.0792,
|
800 |
+
"mean_token_accuracy": 0.9750091657042503,
|
801 |
+
"step": 180
|
802 |
+
},
|
803 |
+
{
|
804 |
+
"epoch": 3.5204819277108435,
|
805 |
+
"eval_loss": 0.49517756700515747,
|
806 |
+
"eval_mean_token_accuracy": 0.8861142084977337,
|
807 |
+
"eval_runtime": 69.2961,
|
808 |
+
"eval_samples_per_second": 12.309,
|
809 |
+
"eval_steps_per_second": 1.544,
|
810 |
+
"step": 180
|
811 |
+
},
|
812 |
+
{
|
813 |
+
"epoch": 3.559036144578313,
|
814 |
+
"grad_norm": 0.5006454519910177,
|
815 |
+
"learning_rate": 5.4437278561510075e-05,
|
816 |
+
"loss": 0.0789,
|
817 |
+
"mean_token_accuracy": 0.9745583981275558,
|
818 |
+
"step": 182
|
819 |
+
},
|
820 |
+
{
|
821 |
+
"epoch": 3.597590361445783,
|
822 |
+
"grad_norm": 0.5341853598286592,
|
823 |
+
"learning_rate": 5.428576174680362e-05,
|
824 |
+
"loss": 0.0754,
|
825 |
+
"mean_token_accuracy": 0.9761541336774826,
|
826 |
+
"step": 184
|
827 |
+
},
|
828 |
+
{
|
829 |
+
"epoch": 3.636144578313253,
|
830 |
+
"grad_norm": 0.49927344239896265,
|
831 |
+
"learning_rate": 5.413242592030427e-05,
|
832 |
+
"loss": 0.0748,
|
833 |
+
"mean_token_accuracy": 0.9767720922827721,
|
834 |
+
"step": 186
|
835 |
+
},
|
836 |
+
{
|
837 |
+
"epoch": 3.674698795180723,
|
838 |
+
"grad_norm": 2.231693861264514,
|
839 |
+
"learning_rate": 5.397728256691746e-05,
|
840 |
+
"loss": 0.099,
|
841 |
+
"mean_token_accuracy": 0.9737420678138733,
|
842 |
+
"step": 188
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 3.7132530120481926,
|
846 |
+
"grad_norm": 0.5972180422630922,
|
847 |
+
"learning_rate": 5.382034330693297e-05,
|
848 |
+
"loss": 0.0877,
|
849 |
+
"mean_token_accuracy": 0.9732611812651157,
|
850 |
+
"step": 190
|
851 |
+
},
|
852 |
+
{
|
853 |
+
"epoch": 3.7518072289156628,
|
854 |
+
"grad_norm": 0.5140038859359555,
|
855 |
+
"learning_rate": 5.366161989515461e-05,
|
856 |
+
"loss": 0.0787,
|
857 |
+
"mean_token_accuracy": 0.975050512701273,
|
858 |
+
"step": 192
|
859 |
+
},
|
860 |
+
{
|
861 |
+
"epoch": 3.7903614457831325,
|
862 |
+
"grad_norm": 0.5792962377758555,
|
863 |
+
"learning_rate": 5.350112422001977e-05,
|
864 |
+
"loss": 0.0896,
|
865 |
+
"mean_token_accuracy": 0.9718314036726952,
|
866 |
+
"step": 194
|
867 |
+
},
|
868 |
+
{
|
869 |
+
"epoch": 3.8289156626506022,
|
870 |
+
"grad_norm": 0.5909352352233028,
|
871 |
+
"learning_rate": 5.333886830270895e-05,
|
872 |
+
"loss": 0.0792,
|
873 |
+
"mean_token_accuracy": 0.9747343733906746,
|
874 |
+
"step": 196
|
875 |
+
},
|
876 |
+
{
|
877 |
+
"epoch": 3.8674698795180724,
|
878 |
+
"grad_norm": 0.5539424147026931,
|
879 |
+
"learning_rate": 5.317486429624541e-05,
|
880 |
+
"loss": 0.0905,
|
881 |
+
"mean_token_accuracy": 0.9721391126513481,
|
882 |
+
"step": 198
|
883 |
+
},
|
884 |
+
{
|
885 |
+
"epoch": 3.906024096385542,
|
886 |
+
"grad_norm": 0.608718655213867,
|
887 |
+
"learning_rate": 5.3009124484584845e-05,
|
888 |
+
"loss": 0.0822,
|
889 |
+
"mean_token_accuracy": 0.9740779250860214,
|
890 |
+
"step": 200
|
891 |
+
},
|
892 |
+
{
|
893 |
+
"epoch": 3.906024096385542,
|
894 |
+
"eval_loss": 0.4955574572086334,
|
895 |
+
"eval_mean_token_accuracy": 0.8854407662543181,
|
896 |
+
"eval_runtime": 69.3978,
|
897 |
+
"eval_samples_per_second": 12.291,
|
898 |
+
"eval_steps_per_second": 1.542,
|
899 |
+
"step": 200
|
900 |
+
},
|
901 |
+
{
|
902 |
+
"epoch": 3.944578313253012,
|
903 |
+
"grad_norm": 1.1597024200841806,
|
904 |
+
"learning_rate": 5.28416612816954e-05,
|
905 |
+
"loss": 0.1246,
|
906 |
+
"mean_token_accuracy": 0.9720017164945602,
|
907 |
+
"step": 202
|
908 |
+
},
|
909 |
+
{
|
910 |
+
"epoch": 3.983132530120482,
|
911 |
+
"grad_norm": 1.970597468088243,
|
912 |
+
"learning_rate": 5.267248723062775e-05,
|
913 |
+
"loss": 0.1072,
|
914 |
+
"mean_token_accuracy": 0.9705285243690014,
|
915 |
+
"step": 204
|
916 |
+
},
|
917 |
+
{
|
918 |
+
"epoch": 4.03855421686747,
|
919 |
+
"grad_norm": 0.3840068639534002,
|
920 |
+
"learning_rate": 5.250161500257572e-05,
|
921 |
+
"loss": 0.0883,
|
922 |
+
"mean_token_accuracy": 0.9844252216188532,
|
923 |
+
"step": 206
|
924 |
+
},
|
925 |
+
{
|
926 |
+
"epoch": 4.0771084337349395,
|
927 |
+
"grad_norm": 1.666791743278462,
|
928 |
+
"learning_rate": 5.232905739592715e-05,
|
929 |
+
"loss": 0.051,
|
930 |
+
"mean_token_accuracy": 0.9864283129572868,
|
931 |
+
"step": 208
|
932 |
+
},
|
933 |
+
{
|
934 |
+
"epoch": 4.11566265060241,
|
935 |
+
"grad_norm": 0.4312181064343993,
|
936 |
+
"learning_rate": 5.2154827335305315e-05,
|
937 |
+
"loss": 0.0479,
|
938 |
+
"mean_token_accuracy": 0.9849169552326202,
|
939 |
+
"step": 210
|
940 |
+
},
|
941 |
+
{
|
942 |
+
"epoch": 4.15421686746988,
|
943 |
+
"grad_norm": 0.4536647987377283,
|
944 |
+
"learning_rate": 5.197893787060085e-05,
|
945 |
+
"loss": 0.0475,
|
946 |
+
"mean_token_accuracy": 0.9857413321733475,
|
947 |
+
"step": 212
|
948 |
+
},
|
949 |
+
{
|
950 |
+
"epoch": 4.192771084337349,
|
951 |
+
"grad_norm": 0.4768703042893274,
|
952 |
+
"learning_rate": 5.1801402175994324e-05,
|
953 |
+
"loss": 0.0474,
|
954 |
+
"mean_token_accuracy": 0.9853848293423653,
|
955 |
+
"step": 214
|
956 |
+
},
|
957 |
+
{
|
958 |
+
"epoch": 4.231325301204819,
|
959 |
+
"grad_norm": 0.48374901663774483,
|
960 |
+
"learning_rate": 5.162223354896949e-05,
|
961 |
+
"loss": 0.0462,
|
962 |
+
"mean_token_accuracy": 0.9860928803682327,
|
963 |
+
"step": 216
|
964 |
+
},
|
965 |
+
{
|
966 |
+
"epoch": 4.2698795180722895,
|
967 |
+
"grad_norm": 0.5296609550169239,
|
968 |
+
"learning_rate": 5.14414454093173e-05,
|
969 |
+
"loss": 0.0506,
|
970 |
+
"mean_token_accuracy": 0.9848558902740479,
|
971 |
+
"step": 218
|
972 |
+
},
|
973 |
+
{
|
974 |
+
"epoch": 4.308433734939759,
|
975 |
+
"grad_norm": 1.1023046735948403,
|
976 |
+
"learning_rate": 5.1259051298130726e-05,
|
977 |
+
"loss": 0.0662,
|
978 |
+
"mean_token_accuracy": 0.9829932153224945,
|
979 |
+
"step": 220
|
980 |
+
},
|
981 |
+
{
|
982 |
+
"epoch": 4.308433734939759,
|
983 |
+
"eval_loss": 0.5773541331291199,
|
984 |
+
"eval_mean_token_accuracy": 0.8854637480227747,
|
985 |
+
"eval_runtime": 69.3992,
|
986 |
+
"eval_samples_per_second": 12.291,
|
987 |
+
"eval_steps_per_second": 1.542,
|
988 |
+
"step": 220
|
989 |
+
},
|
990 |
+
{
|
991 |
+
"epoch": 4.346987951807229,
|
992 |
+
"grad_norm": 2.0894628719152055,
|
993 |
+
"learning_rate": 5.107506487679056e-05,
|
994 |
+
"loss": 0.0539,
|
995 |
+
"mean_token_accuracy": 0.9842141009867191,
|
996 |
+
"step": 222
|
997 |
+
},
|
998 |
+
{
|
999 |
+
"epoch": 4.385542168674699,
|
1000 |
+
"grad_norm": 0.4675070305271604,
|
1001 |
+
"learning_rate": 5.088949992594219e-05,
|
1002 |
+
"loss": 0.0583,
|
1003 |
+
"mean_token_accuracy": 0.9823980256915092,
|
1004 |
+
"step": 224
|
1005 |
+
},
|
1006 |
+
{
|
1007 |
+
"epoch": 4.424096385542168,
|
1008 |
+
"grad_norm": 0.45352999009820016,
|
1009 |
+
"learning_rate": 5.0702370344463365e-05,
|
1010 |
+
"loss": 0.0527,
|
1011 |
+
"mean_token_accuracy": 0.9836040586233139,
|
1012 |
+
"step": 226
|
1013 |
+
},
|
1014 |
+
{
|
1015 |
+
"epoch": 4.462650602409639,
|
1016 |
+
"grad_norm": 0.4094964433392435,
|
1017 |
+
"learning_rate": 5.051369014842321e-05,
|
1018 |
+
"loss": 0.0514,
|
1019 |
+
"mean_token_accuracy": 0.9839622713625431,
|
1020 |
+
"step": 228
|
1021 |
+
},
|
1022 |
+
{
|
1023 |
+
"epoch": 4.501204819277109,
|
1024 |
+
"grad_norm": 0.4518718249174457,
|
1025 |
+
"learning_rate": 5.032347347003244e-05,
|
1026 |
+
"loss": 0.0506,
|
1027 |
+
"mean_token_accuracy": 0.98417654260993,
|
1028 |
+
"step": 230
|
1029 |
+
},
|
1030 |
+
{
|
1031 |
+
"epoch": 4.539759036144578,
|
1032 |
+
"grad_norm": 0.45000426223491524,
|
1033 |
+
"learning_rate": 5.013173455658476e-05,
|
1034 |
+
"loss": 0.0513,
|
1035 |
+
"mean_token_accuracy": 0.9846268966794014,
|
1036 |
+
"step": 232
|
1037 |
+
},
|
1038 |
+
{
|
1039 |
+
"epoch": 4.578313253012048,
|
1040 |
+
"grad_norm": 0.4773481517279551,
|
1041 |
+
"learning_rate": 4.993848776938984e-05,
|
1042 |
+
"loss": 0.0523,
|
1043 |
+
"mean_token_accuracy": 0.9842299744486809,
|
1044 |
+
"step": 234
|
1045 |
+
},
|
1046 |
+
{
|
1047 |
+
"epoch": 4.6168674698795185,
|
1048 |
+
"grad_norm": 0.46970014873032684,
|
1049 |
+
"learning_rate": 4.97437475826976e-05,
|
1050 |
+
"loss": 0.0501,
|
1051 |
+
"mean_token_accuracy": 0.9848329909145832,
|
1052 |
+
"step": 236
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 4.655421686746988,
|
1056 |
+
"grad_norm": 0.5155625752840027,
|
1057 |
+
"learning_rate": 4.9547528582614065e-05,
|
1058 |
+
"loss": 0.0563,
|
1059 |
+
"mean_token_accuracy": 0.9830544739961624,
|
1060 |
+
"step": 238
|
1061 |
+
},
|
1062 |
+
{
|
1063 |
+
"epoch": 4.693975903614458,
|
1064 |
+
"grad_norm": 0.42347885962594095,
|
1065 |
+
"learning_rate": 4.934984546600892e-05,
|
1066 |
+
"loss": 0.0516,
|
1067 |
+
"mean_token_accuracy": 0.9844055362045765,
|
1068 |
+
"step": 240
|
1069 |
+
},
|
1070 |
+
{
|
1071 |
+
"epoch": 4.693975903614458,
|
1072 |
+
"eval_loss": 0.5565339922904968,
|
1073 |
+
"eval_mean_token_accuracy": 0.8851385801752037,
|
1074 |
+
"eval_runtime": 69.3541,
|
1075 |
+
"eval_samples_per_second": 12.299,
|
1076 |
+
"eval_steps_per_second": 1.543,
|
1077 |
+
"step": 240
|
1078 |
+
},
|
1079 |
+
{
|
1080 |
+
"epoch": 4.732530120481927,
|
1081 |
+
"grad_norm": 0.4512891363195098,
|
1082 |
+
"learning_rate": 4.9150713039414644e-05,
|
1083 |
+
"loss": 0.0532,
|
1084 |
+
"mean_token_accuracy": 0.9838635846972466,
|
1085 |
+
"step": 242
|
1086 |
+
},
|
1087 |
+
{
|
1088 |
+
"epoch": 4.771084337349397,
|
1089 |
+
"grad_norm": 11.392609037956372,
|
1090 |
+
"learning_rate": 4.8950146217917525e-05,
|
1091 |
+
"loss": 0.0522,
|
1092 |
+
"mean_token_accuracy": 0.9835535250604153,
|
1093 |
+
"step": 244
|
1094 |
+
},
|
1095 |
+
{
|
1096 |
+
"epoch": 4.809638554216868,
|
1097 |
+
"grad_norm": 0.4489074622110076,
|
1098 |
+
"learning_rate": 4.8748160024040556e-05,
|
1099 |
+
"loss": 0.0524,
|
1100 |
+
"mean_token_accuracy": 0.9836727567017078,
|
1101 |
+
"step": 246
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 4.848192771084337,
|
1105 |
+
"grad_norm": 0.42894806357411785,
|
1106 |
+
"learning_rate": 4.8544769586618155e-05,
|
1107 |
+
"loss": 0.0511,
|
1108 |
+
"mean_token_accuracy": 0.9840467795729637,
|
1109 |
+
"step": 248
|
1110 |
+
},
|
1111 |
+
{
|
1112 |
+
"epoch": 4.886746987951807,
|
1113 |
+
"grad_norm": 0.4512306266871983,
|
1114 |
+
"learning_rate": 4.833999013966309e-05,
|
1115 |
+
"loss": 0.0547,
|
1116 |
+
"mean_token_accuracy": 0.9832529351115227,
|
1117 |
+
"step": 250
|
1118 |
+
},
|
1119 |
+
{
|
1120 |
+
"epoch": 4.925301204819277,
|
1121 |
+
"grad_norm": 0.4727904458514347,
|
1122 |
+
"learning_rate": 4.813383702122539e-05,
|
1123 |
+
"loss": 0.055,
|
1124 |
+
"mean_token_accuracy": 0.982756782323122,
|
1125 |
+
"step": 252
|
1126 |
+
},
|
1127 |
+
{
|
1128 |
+
"epoch": 4.9638554216867465,
|
1129 |
+
"grad_norm": 0.4362392107100149,
|
1130 |
+
"learning_rate": 4.792632567224356e-05,
|
1131 |
+
"loss": 0.0499,
|
1132 |
+
"mean_token_accuracy": 0.9843750037252903,
|
1133 |
+
"step": 254
|
1134 |
+
},
|
1135 |
+
{
|
1136 |
+
"epoch": 5.019277108433735,
|
1137 |
+
"grad_norm": 0.9013663151630542,
|
1138 |
+
"learning_rate": 4.7717471635388036e-05,
|
1139 |
+
"loss": 0.0733,
|
1140 |
+
"mean_token_accuracy": 0.9859936268706071,
|
1141 |
+
"step": 256
|
1142 |
+
},
|
1143 |
+
{
|
1144 |
+
"epoch": 5.057831325301205,
|
1145 |
+
"grad_norm": 0.3407094315665775,
|
1146 |
+
"learning_rate": 4.750729055389702e-05,
|
1147 |
+
"loss": 0.0348,
|
1148 |
+
"mean_token_accuracy": 0.9899853467941284,
|
1149 |
+
"step": 258
|
1150 |
+
},
|
1151 |
+
{
|
1152 |
+
"epoch": 5.096385542168675,
|
1153 |
+
"grad_norm": 2.317065589278025,
|
1154 |
+
"learning_rate": 4.7295798170404804e-05,
|
1155 |
+
"loss": 0.042,
|
1156 |
+
"mean_token_accuracy": 0.9883900247514248,
|
1157 |
+
"step": 260
|
1158 |
+
},
|
1159 |
+
{
|
1160 |
+
"epoch": 5.096385542168675,
|
1161 |
+
"eval_loss": 0.6151586771011353,
|
1162 |
+
"eval_mean_token_accuracy": 0.8850325903045797,
|
1163 |
+
"eval_runtime": 69.4442,
|
1164 |
+
"eval_samples_per_second": 12.283,
|
1165 |
+
"eval_steps_per_second": 1.541,
|
1166 |
+
"step": 260
|
1167 |
+
},
|
1168 |
+
{
|
1169 |
+
"epoch": 5.134939759036144,
|
1170 |
+
"grad_norm": 0.40180917585444276,
|
1171 |
+
"learning_rate": 4.708301032576266e-05,
|
1172 |
+
"loss": 0.033,
|
1173 |
+
"mean_token_accuracy": 0.9899287261068821,
|
1174 |
+
"step": 262
|
1175 |
+
},
|
1176 |
+
{
|
1177 |
+
"epoch": 5.1734939759036145,
|
1178 |
+
"grad_norm": 0.3999401134163976,
|
1179 |
+
"learning_rate": 4.686894295785234e-05,
|
1180 |
+
"loss": 0.0319,
|
1181 |
+
"mean_token_accuracy": 0.9905349314212799,
|
1182 |
+
"step": 264
|
1183 |
+
},
|
1184 |
+
{
|
1185 |
+
"epoch": 5.212048192771085,
|
1186 |
+
"grad_norm": 0.4325841868929357,
|
1187 |
+
"learning_rate": 4.6653612100392306e-05,
|
1188 |
+
"loss": 0.0485,
|
1189 |
+
"mean_token_accuracy": 0.9876343458890915,
|
1190 |
+
"step": 266
|
1191 |
+
},
|
1192 |
+
{
|
1193 |
+
"epoch": 5.250602409638554,
|
1194 |
+
"grad_norm": 0.4006912604900792,
|
1195 |
+
"learning_rate": 4.6437033881736815e-05,
|
1196 |
+
"loss": 0.0314,
|
1197 |
+
"mean_token_accuracy": 0.9905448816716671,
|
1198 |
+
"step": 268
|
1199 |
+
},
|
1200 |
+
{
|
1201 |
+
"epoch": 5.289156626506024,
|
1202 |
+
"grad_norm": 0.42682716706260576,
|
1203 |
+
"learning_rate": 4.6219224523667933e-05,
|
1204 |
+
"loss": 0.0372,
|
1205 |
+
"mean_token_accuracy": 0.9889472424983978,
|
1206 |
+
"step": 270
|
1207 |
+
},
|
1208 |
+
{
|
1209 |
+
"epoch": 5.327710843373494,
|
1210 |
+
"grad_norm": 0.46677900961647506,
|
1211 |
+
"learning_rate": 4.600020034018044e-05,
|
1212 |
+
"loss": 0.0361,
|
1213 |
+
"mean_token_accuracy": 0.9891686029732227,
|
1214 |
+
"step": 272
|
1215 |
+
},
|
1216 |
+
{
|
1217 |
+
"epoch": 5.366265060240964,
|
1218 |
+
"grad_norm": 0.367574331415505,
|
1219 |
+
"learning_rate": 4.577997773626e-05,
|
1220 |
+
"loss": 0.0357,
|
1221 |
+
"mean_token_accuracy": 0.989687655121088,
|
1222 |
+
"step": 274
|
1223 |
+
},
|
1224 |
+
{
|
1225 |
+
"epoch": 5.404819277108434,
|
1226 |
+
"grad_norm": 0.3978490796069561,
|
1227 |
+
"learning_rate": 4.555857320665432e-05,
|
1228 |
+
"loss": 0.0367,
|
1229 |
+
"mean_token_accuracy": 0.9891533367335796,
|
1230 |
+
"step": 276
|
1231 |
+
},
|
1232 |
+
{
|
1233 |
+
"epoch": 5.443373493975904,
|
1234 |
+
"grad_norm": 1.4753909217401533,
|
1235 |
+
"learning_rate": 4.53360033346378e-05,
|
1236 |
+
"loss": 0.0391,
|
1237 |
+
"mean_token_accuracy": 0.9890312068164349,
|
1238 |
+
"step": 278
|
1239 |
+
},
|
1240 |
+
{
|
1241 |
+
"epoch": 5.481927710843373,
|
1242 |
+
"grad_norm": 0.37159800907214025,
|
1243 |
+
"learning_rate": 4.511228479076933e-05,
|
1244 |
+
"loss": 0.0356,
|
1245 |
+
"mean_token_accuracy": 0.9895801097154617,
|
1246 |
+
"step": 280
|
1247 |
+
},
|
1248 |
+
{
|
1249 |
+
"epoch": 5.481927710843373,
|
1250 |
+
"eval_loss": 0.6060265302658081,
|
1251 |
+
"eval_mean_token_accuracy": 0.8850450343060716,
|
1252 |
+
"eval_runtime": 69.362,
|
1253 |
+
"eval_samples_per_second": 12.298,
|
1254 |
+
"eval_steps_per_second": 1.543,
|
1255 |
+
"step": 280
|
1256 |
+
},
|
1257 |
+
{
|
1258 |
+
"epoch": 5.5204819277108435,
|
1259 |
+
"grad_norm": 0.38561901592446035,
|
1260 |
+
"learning_rate": 4.488743433164375e-05,
|
1261 |
+
"loss": 0.0355,
|
1262 |
+
"mean_token_accuracy": 0.9893594309687614,
|
1263 |
+
"step": 282
|
1264 |
+
},
|
1265 |
+
{
|
1266 |
+
"epoch": 5.559036144578314,
|
1267 |
+
"grad_norm": 0.3969250257532374,
|
1268 |
+
"learning_rate": 4.466146879863671e-05,
|
1269 |
+
"loss": 0.0343,
|
1270 |
+
"mean_token_accuracy": 0.9895349927246571,
|
1271 |
+
"step": 284
|
1272 |
+
},
|
1273 |
+
{
|
1274 |
+
"epoch": 5.597590361445783,
|
1275 |
+
"grad_norm": 0.39356249107474556,
|
1276 |
+
"learning_rate": 4.44344051166433e-05,
|
1277 |
+
"loss": 0.0341,
|
1278 |
+
"mean_token_accuracy": 0.9893517978489399,
|
1279 |
+
"step": 286
|
1280 |
+
},
|
1281 |
+
{
|
1282 |
+
"epoch": 5.636144578313253,
|
1283 |
+
"grad_norm": 0.35351272700215614,
|
1284 |
+
"learning_rate": 4.4206260292810285e-05,
|
1285 |
+
"loss": 0.0348,
|
1286 |
+
"mean_token_accuracy": 0.989603690803051,
|
1287 |
+
"step": 288
|
1288 |
+
},
|
1289 |
+
{
|
1290 |
+
"epoch": 5.674698795180722,
|
1291 |
+
"grad_norm": 0.3821901728251338,
|
1292 |
+
"learning_rate": 4.397705141526241e-05,
|
1293 |
+
"loss": 0.0347,
|
1294 |
+
"mean_token_accuracy": 0.9895550385117531,
|
1295 |
+
"step": 290
|
1296 |
+
},
|
1297 |
+
{
|
1298 |
+
"epoch": 5.713253012048193,
|
1299 |
+
"grad_norm": 0.37105024076268617,
|
1300 |
+
"learning_rate": 4.374679565182231e-05,
|
1301 |
+
"loss": 0.0422,
|
1302 |
+
"mean_token_accuracy": 0.9880160018801689,
|
1303 |
+
"step": 292
|
1304 |
+
},
|
1305 |
+
{
|
1306 |
+
"epoch": 5.751807228915663,
|
1307 |
+
"grad_norm": 0.3818536904918096,
|
1308 |
+
"learning_rate": 4.35155102487248e-05,
|
1309 |
+
"loss": 0.0351,
|
1310 |
+
"mean_token_accuracy": 0.9894428998231888,
|
1311 |
+
"step": 294
|
1312 |
+
},
|
1313 |
+
{
|
1314 |
+
"epoch": 5.790361445783132,
|
1315 |
+
"grad_norm": 0.39451644866700664,
|
1316 |
+
"learning_rate": 4.328321252932502e-05,
|
1317 |
+
"loss": 0.035,
|
1318 |
+
"mean_token_accuracy": 0.9894599840044975,
|
1319 |
+
"step": 296
|
1320 |
+
},
|
1321 |
+
{
|
1322 |
+
"epoch": 5.828915662650602,
|
1323 |
+
"grad_norm": 0.3644107075410049,
|
1324 |
+
"learning_rate": 4.3049919892800964e-05,
|
1325 |
+
"loss": 0.0329,
|
1326 |
+
"mean_token_accuracy": 0.9901151098310947,
|
1327 |
+
"step": 298
|
1328 |
+
},
|
1329 |
+
{
|
1330 |
+
"epoch": 5.867469879518072,
|
1331 |
+
"grad_norm": 0.3672249214462737,
|
1332 |
+
"learning_rate": 4.281564981285022e-05,
|
1333 |
+
"loss": 0.0337,
|
1334 |
+
"mean_token_accuracy": 0.9895426258444786,
|
1335 |
+
"step": 300
|
1336 |
+
},
|
1337 |
+
{
|
1338 |
+
"epoch": 5.867469879518072,
|
1339 |
+
"eval_loss": 0.6325972080230713,
|
1340 |
+
"eval_mean_token_accuracy": 0.8854980914392204,
|
1341 |
+
"eval_runtime": 69.2865,
|
1342 |
+
"eval_samples_per_second": 12.311,
|
1343 |
+
"eval_steps_per_second": 1.544,
|
1344 |
+
"step": 300
|
1345 |
+
},
|
1346 |
+
{
|
1347 |
+
"epoch": 5.906024096385542,
|
1348 |
+
"grad_norm": 0.3809979742908432,
|
1349 |
+
"learning_rate": 4.2580419836381245e-05,
|
1350 |
+
"loss": 0.0382,
|
1351 |
+
"mean_token_accuracy": 0.9889141246676445,
|
1352 |
+
"step": 302
|
1353 |
+
},
|
1354 |
+
{
|
1355 |
+
"epoch": 5.944578313253012,
|
1356 |
+
"grad_norm": 0.3938694960489042,
|
1357 |
+
"learning_rate": 4.2344247582199086e-05,
|
1358 |
+
"loss": 0.0358,
|
1359 |
+
"mean_token_accuracy": 0.9888174794614315,
|
1360 |
+
"step": 304
|
1361 |
+
},
|
1362 |
+
{
|
1363 |
+
"epoch": 5.983132530120482,
|
1364 |
+
"grad_norm": 0.36450811910210645,
|
1365 |
+
"learning_rate": 4.21071507396857e-05,
|
1366 |
+
"loss": 0.0334,
|
1367 |
+
"mean_token_accuracy": 0.9899090155959129,
|
1368 |
+
"step": 306
|
1369 |
+
},
|
1370 |
+
{
|
1371 |
+
"epoch": 6.03855421686747,
|
1372 |
+
"grad_norm": 0.3333479875344727,
|
1373 |
+
"learning_rate": 4.1869147067474994e-05,
|
1374 |
+
"loss": 0.0411,
|
1375 |
+
"mean_token_accuracy": 0.9931864362013968,
|
1376 |
+
"step": 308
|
1377 |
+
},
|
1378 |
+
{
|
1379 |
+
"epoch": 6.0771084337349395,
|
1380 |
+
"grad_norm": 0.27565330843199565,
|
1381 |
+
"learning_rate": 4.1630254392122764e-05,
|
1382 |
+
"loss": 0.0202,
|
1383 |
+
"mean_token_accuracy": 0.9942170679569244,
|
1384 |
+
"step": 310
|
1385 |
+
},
|
1386 |
+
{
|
1387 |
+
"epoch": 6.11566265060241,
|
1388 |
+
"grad_norm": 0.3195992750520225,
|
1389 |
+
"learning_rate": 4.1390490606771424e-05,
|
1390 |
+
"loss": 0.018,
|
1391 |
+
"mean_token_accuracy": 0.9947026148438454,
|
1392 |
+
"step": 312
|
1393 |
+
},
|
1394 |
+
{
|
1395 |
+
"epoch": 6.15421686746988,
|
1396 |
+
"grad_norm": 0.32720540548882965,
|
1397 |
+
"learning_rate": 4.1149873669809826e-05,
|
1398 |
+
"loss": 0.0198,
|
1399 |
+
"mean_token_accuracy": 0.9941377639770508,
|
1400 |
+
"step": 314
|
1401 |
+
},
|
1402 |
+
{
|
1403 |
+
"epoch": 6.192771084337349,
|
1404 |
+
"grad_norm": 0.3517395424488553,
|
1405 |
+
"learning_rate": 4.0908421603528173e-05,
|
1406 |
+
"loss": 0.0205,
|
1407 |
+
"mean_token_accuracy": 0.9938553385436535,
|
1408 |
+
"step": 316
|
1409 |
+
},
|
1410 |
+
{
|
1411 |
+
"epoch": 6.231325301204819,
|
1412 |
+
"grad_norm": 0.3045110807965078,
|
1413 |
+
"learning_rate": 4.066615249276814e-05,
|
1414 |
+
"loss": 0.0273,
|
1415 |
+
"mean_token_accuracy": 0.9927638024091721,
|
1416 |
+
"step": 318
|
1417 |
+
},
|
1418 |
+
{
|
1419 |
+
"epoch": 6.2698795180722895,
|
1420 |
+
"grad_norm": 0.4775008507889605,
|
1421 |
+
"learning_rate": 4.042308448356831e-05,
|
1422 |
+
"loss": 0.0218,
|
1423 |
+
"mean_token_accuracy": 0.9934889487922192,
|
1424 |
+
"step": 320
|
1425 |
+
},
|
1426 |
+
{
|
1427 |
+
"epoch": 6.2698795180722895,
|
1428 |
+
"eval_loss": 0.7256977558135986,
|
1429 |
+
"eval_mean_token_accuracy": 0.8851249279262864,
|
1430 |
+
"eval_runtime": 69.4321,
|
1431 |
+
"eval_samples_per_second": 12.285,
|
1432 |
+
"eval_steps_per_second": 1.541,
|
1433 |
+
"step": 320
|
1434 |
+
},
|
1435 |
+
{
|
1436 |
+
"epoch": 6.308433734939759,
|
1437 |
+
"grad_norm": 0.34268550398232106,
|
1438 |
+
"learning_rate": 4.017923578180499e-05,
|
1439 |
+
"loss": 0.0202,
|
1440 |
+
"mean_token_accuracy": 0.9937179423868656,
|
1441 |
+
"step": 322
|
1442 |
+
},
|
1443 |
+
{
|
1444 |
+
"epoch": 6.346987951807229,
|
1445 |
+
"grad_norm": 0.34323820800679206,
|
1446 |
+
"learning_rate": 3.9934624651828697e-05,
|
1447 |
+
"loss": 0.0204,
|
1448 |
+
"mean_token_accuracy": 0.993862971663475,
|
1449 |
+
"step": 324
|
1450 |
+
},
|
1451 |
+
{
|
1452 |
+
"epoch": 6.385542168674699,
|
1453 |
+
"grad_norm": 0.4686588907588089,
|
1454 |
+
"learning_rate": 3.968926941509602e-05,
|
1455 |
+
"loss": 0.0211,
|
1456 |
+
"mean_token_accuracy": 0.9933924674987793,
|
1457 |
+
"step": 326
|
1458 |
+
},
|
1459 |
+
{
|
1460 |
+
"epoch": 6.424096385542168,
|
1461 |
+
"grad_norm": 0.2966896982504412,
|
1462 |
+
"learning_rate": 3.9443188448797415e-05,
|
1463 |
+
"loss": 0.0206,
|
1464 |
+
"mean_token_accuracy": 0.9938858710229397,
|
1465 |
+
"step": 328
|
1466 |
+
},
|
1467 |
+
{
|
1468 |
+
"epoch": 6.462650602409639,
|
1469 |
+
"grad_norm": 0.3302298838417657,
|
1470 |
+
"learning_rate": 3.919640018448076e-05,
|
1471 |
+
"loss": 0.0222,
|
1472 |
+
"mean_token_accuracy": 0.9935118481516838,
|
1473 |
+
"step": 330
|
1474 |
+
},
|
1475 |
+
{
|
1476 |
+
"epoch": 6.501204819277109,
|
1477 |
+
"grad_norm": 0.34910864043440876,
|
1478 |
+
"learning_rate": 3.894892310667073e-05,
|
1479 |
+
"loss": 0.0222,
|
1480 |
+
"mean_token_accuracy": 0.993305753916502,
|
1481 |
+
"step": 332
|
1482 |
+
},
|
1483 |
+
{
|
1484 |
+
"epoch": 6.539759036144578,
|
1485 |
+
"grad_norm": 0.29452989847406147,
|
1486 |
+
"learning_rate": 3.870077575148441e-05,
|
1487 |
+
"loss": 0.0205,
|
1488 |
+
"mean_token_accuracy": 0.9938248060643673,
|
1489 |
+
"step": 334
|
1490 |
+
},
|
1491 |
+
{
|
1492 |
+
"epoch": 6.578313253012048,
|
1493 |
+
"grad_norm": 3.460895850171505,
|
1494 |
+
"learning_rate": 3.845197670524289e-05,
|
1495 |
+
"loss": 0.0711,
|
1496 |
+
"mean_token_accuracy": 0.9909890256822109,
|
1497 |
+
"step": 336
|
1498 |
+
},
|
1499 |
+
{
|
1500 |
+
"epoch": 6.6168674698795185,
|
1501 |
+
"grad_norm": 2.8845015439822315,
|
1502 |
+
"learning_rate": 3.820254460307913e-05,
|
1503 |
+
"loss": 0.0258,
|
1504 |
+
"mean_token_accuracy": 0.9928401336073875,
|
1505 |
+
"step": 338
|
1506 |
+
},
|
1507 |
+
{
|
1508 |
+
"epoch": 6.655421686746988,
|
1509 |
+
"grad_norm": 0.3548695208790569,
|
1510 |
+
"learning_rate": 3.7952498127542177e-05,
|
1511 |
+
"loss": 0.0225,
|
1512 |
+
"mean_token_accuracy": 0.9932523220777512,
|
1513 |
+
"step": 340
|
1514 |
+
},
|
1515 |
+
{
|
1516 |
+
"epoch": 6.655421686746988,
|
1517 |
+
"eval_loss": 0.6746823787689209,
|
1518 |
+
"eval_mean_token_accuracy": 0.8852459766040338,
|
1519 |
+
"eval_runtime": 69.3475,
|
1520 |
+
"eval_samples_per_second": 12.3,
|
1521 |
+
"eval_steps_per_second": 1.543,
|
1522 |
+
"step": 340
|
1523 |
+
},
|
1524 |
+
{
|
1525 |
+
"epoch": 6.693975903614458,
|
1526 |
+
"grad_norm": 0.3329494193630245,
|
1527 |
+
"learning_rate": 3.7701856007197895e-05,
|
1528 |
+
"loss": 0.0229,
|
1529 |
+
"mean_token_accuracy": 0.9935271143913269,
|
1530 |
+
"step": 342
|
1531 |
+
},
|
1532 |
+
{
|
1533 |
+
"epoch": 6.732530120481927,
|
1534 |
+
"grad_norm": 0.9026543863831081,
|
1535 |
+
"learning_rate": 3.7450637015226086e-05,
|
1536 |
+
"loss": 0.0227,
|
1537 |
+
"mean_token_accuracy": 0.9933727271854877,
|
1538 |
+
"step": 344
|
1539 |
+
},
|
1540 |
+
{
|
1541 |
+
"epoch": 6.771084337349397,
|
1542 |
+
"grad_norm": 0.3475545987173597,
|
1543 |
+
"learning_rate": 3.7198859968014495e-05,
|
1544 |
+
"loss": 0.0222,
|
1545 |
+
"mean_token_accuracy": 0.9932370558381081,
|
1546 |
+
"step": 346
|
1547 |
+
},
|
1548 |
+
{
|
1549 |
+
"epoch": 6.809638554216868,
|
1550 |
+
"grad_norm": 0.33965989477483866,
|
1551 |
+
"learning_rate": 3.694654372374934e-05,
|
1552 |
+
"loss": 0.0231,
|
1553 |
+
"mean_token_accuracy": 0.9932370558381081,
|
1554 |
+
"step": 348
|
1555 |
+
},
|
1556 |
+
{
|
1557 |
+
"epoch": 6.848192771084337,
|
1558 |
+
"grad_norm": 0.34940708444449203,
|
1559 |
+
"learning_rate": 3.669370718100293e-05,
|
1560 |
+
"loss": 0.0243,
|
1561 |
+
"mean_token_accuracy": 0.9930767603218555,
|
1562 |
+
"step": 350
|
1563 |
+
},
|
1564 |
+
{
|
1565 |
+
"epoch": 6.886746987951807,
|
1566 |
+
"grad_norm": 0.36671988614834666,
|
1567 |
+
"learning_rate": 3.644036927731805e-05,
|
1568 |
+
"loss": 0.0211,
|
1569 |
+
"mean_token_accuracy": 0.9938053227961063,
|
1570 |
+
"step": 352
|
1571 |
+
},
|
1572 |
+
{
|
1573 |
+
"epoch": 6.925301204819277,
|
1574 |
+
"grad_norm": 0.35024913971584376,
|
1575 |
+
"learning_rate": 3.6186548987789645e-05,
|
1576 |
+
"loss": 0.0234,
|
1577 |
+
"mean_token_accuracy": 0.9930894784629345,
|
1578 |
+
"step": 354
|
1579 |
+
},
|
1580 |
+
{
|
1581 |
+
"epoch": 6.9638554216867465,
|
1582 |
+
"grad_norm": 0.29801785598228037,
|
1583 |
+
"learning_rate": 3.5932265323643496e-05,
|
1584 |
+
"loss": 0.0196,
|
1585 |
+
"mean_token_accuracy": 0.9941072314977646,
|
1586 |
+
"step": 356
|
1587 |
+
},
|
1588 |
+
{
|
1589 |
+
"epoch": 7.019277108433735,
|
1590 |
+
"grad_norm": 0.5585320157706073,
|
1591 |
+
"learning_rate": 3.567753733081231e-05,
|
1592 |
+
"loss": 0.0244,
|
1593 |
+
"mean_token_accuracy": 0.995596895092412,
|
1594 |
+
"step": 358
|
1595 |
+
},
|
1596 |
+
{
|
1597 |
+
"epoch": 7.057831325301205,
|
1598 |
+
"grad_norm": 0.294767605579224,
|
1599 |
+
"learning_rate": 3.542238408850914e-05,
|
1600 |
+
"loss": 0.0157,
|
1601 |
+
"mean_token_accuracy": 0.9961529076099396,
|
1602 |
+
"step": 360
|
1603 |
+
},
|
1604 |
+
{
|
1605 |
+
"epoch": 7.057831325301205,
|
1606 |
+
"eval_loss": 0.7102182507514954,
|
1607 |
+
"eval_mean_token_accuracy": 0.8853897235103857,
|
1608 |
+
"eval_runtime": 69.5836,
|
1609 |
+
"eval_samples_per_second": 12.259,
|
1610 |
+
"eval_steps_per_second": 1.538,
|
1611 |
+
"step": 360
|
1612 |
+
},
|
1613 |
+
{
|
1614 |
+
"epoch": 7.096385542168675,
|
1615 |
+
"grad_norm": 0.3268950521648773,
|
1616 |
+
"learning_rate": 3.5166824707798406e-05,
|
1617 |
+
"loss": 0.0116,
|
1618 |
+
"mean_token_accuracy": 0.9966643266379833,
|
1619 |
+
"step": 362
|
1620 |
+
},
|
1621 |
+
{
|
1622 |
+
"epoch": 7.134939759036144,
|
1623 |
+
"grad_norm": 0.28509239805351405,
|
1624 |
+
"learning_rate": 3.4910878330164394e-05,
|
1625 |
+
"loss": 0.0112,
|
1626 |
+
"mean_token_accuracy": 0.9967989884316921,
|
1627 |
+
"step": 364
|
1628 |
+
},
|
1629 |
+
{
|
1630 |
+
"epoch": 7.1734939759036145,
|
1631 |
+
"grad_norm": 0.2809059258218904,
|
1632 |
+
"learning_rate": 3.465456412607762e-05,
|
1633 |
+
"loss": 0.0116,
|
1634 |
+
"mean_token_accuracy": 0.9965421967208385,
|
1635 |
+
"step": 366
|
1636 |
+
},
|
1637 |
+
{
|
1638 |
+
"epoch": 7.212048192771085,
|
1639 |
+
"grad_norm": 0.2971290168358078,
|
1640 |
+
"learning_rate": 3.4397901293558906e-05,
|
1641 |
+
"loss": 0.0121,
|
1642 |
+
"mean_token_accuracy": 0.9964811317622662,
|
1643 |
+
"step": 368
|
1644 |
+
},
|
1645 |
+
{
|
1646 |
+
"epoch": 7.250602409638554,
|
1647 |
+
"grad_norm": 0.2747014734396319,
|
1648 |
+
"learning_rate": 3.414090905674149e-05,
|
1649 |
+
"loss": 0.0128,
|
1650 |
+
"mean_token_accuracy": 0.9963132031261921,
|
1651 |
+
"step": 370
|
1652 |
+
},
|
1653 |
+
{
|
1654 |
+
"epoch": 7.289156626506024,
|
1655 |
+
"grad_norm": 0.27158019757971547,
|
1656 |
+
"learning_rate": 3.388360666443107e-05,
|
1657 |
+
"loss": 0.0123,
|
1658 |
+
"mean_token_accuracy": 0.9963666349649429,
|
1659 |
+
"step": 372
|
1660 |
+
},
|
1661 |
+
{
|
1662 |
+
"epoch": 7.327710843373494,
|
1663 |
+
"grad_norm": 0.24646137171200483,
|
1664 |
+
"learning_rate": 3.3626013388664105e-05,
|
1665 |
+
"loss": 0.0137,
|
1666 |
+
"mean_token_accuracy": 0.996061310172081,
|
1667 |
+
"step": 374
|
1668 |
+
},
|
1669 |
+
{
|
1670 |
+
"epoch": 7.366265060240964,
|
1671 |
+
"grad_norm": 0.23689198135324382,
|
1672 |
+
"learning_rate": 3.3368148523264335e-05,
|
1673 |
+
"loss": 0.0119,
|
1674 |
+
"mean_token_accuracy": 0.9967662692070007,
|
1675 |
+
"step": 376
|
1676 |
+
},
|
1677 |
+
{
|
1678 |
+
"epoch": 7.404819277108434,
|
1679 |
+
"grad_norm": 0.2635236417353691,
|
1680 |
+
"learning_rate": 3.3110031382397664e-05,
|
1681 |
+
"loss": 0.0107,
|
1682 |
+
"mean_token_accuracy": 0.9968704208731651,
|
1683 |
+
"step": 378
|
1684 |
+
},
|
1685 |
+
{
|
1686 |
+
"epoch": 7.443373493975904,
|
1687 |
+
"grad_norm": 0.28698588325229474,
|
1688 |
+
"learning_rate": 3.2851681299125474e-05,
|
1689 |
+
"loss": 0.0119,
|
1690 |
+
"mean_token_accuracy": 0.9962368719279766,
|
1691 |
+
"step": 380
|
1692 |
+
},
|
1693 |
+
{
|
1694 |
+
"epoch": 7.443373493975904,
|
1695 |
+
"eval_loss": 0.7539895176887512,
|
1696 |
+
"eval_mean_token_accuracy": 0.8854284091530559,
|
1697 |
+
"eval_runtime": 69.3359,
|
1698 |
+
"eval_samples_per_second": 12.302,
|
1699 |
+
"eval_steps_per_second": 1.543,
|
1700 |
+
"step": 380
|
1701 |
+
},
|
1702 |
+
{
|
1703 |
+
"epoch": 7.481927710843373,
|
1704 |
+
"grad_norm": 0.45965190863910016,
|
1705 |
+
"learning_rate": 3.259311762395667e-05,
|
1706 |
+
"loss": 0.0133,
|
1707 |
+
"mean_token_accuracy": 0.9960460439324379,
|
1708 |
+
"step": 382
|
1709 |
+
},
|
1710 |
+
{
|
1711 |
+
"epoch": 7.5204819277108435,
|
1712 |
+
"grad_norm": 0.37005500654226725,
|
1713 |
+
"learning_rate": 3.233435972339819e-05,
|
1714 |
+
"loss": 0.0128,
|
1715 |
+
"mean_token_accuracy": 0.9966417700052261,
|
1716 |
+
"step": 384
|
1717 |
+
},
|
1718 |
+
{
|
1719 |
+
"epoch": 7.559036144578314,
|
1720 |
+
"grad_norm": 0.2520013001616873,
|
1721 |
+
"learning_rate": 3.2075426978504596e-05,
|
1722 |
+
"loss": 0.012,
|
1723 |
+
"mean_token_accuracy": 0.9967646859586239,
|
1724 |
+
"step": 386
|
1725 |
+
},
|
1726 |
+
{
|
1727 |
+
"epoch": 7.597590361445783,
|
1728 |
+
"grad_norm": 0.23904449387388474,
|
1729 |
+
"learning_rate": 3.18163387834263e-05,
|
1730 |
+
"loss": 0.0119,
|
1731 |
+
"mean_token_accuracy": 0.9965754523873329,
|
1732 |
+
"step": 388
|
1733 |
+
},
|
1734 |
+
{
|
1735 |
+
"epoch": 7.636144578313253,
|
1736 |
+
"grad_norm": 0.2635604546362036,
|
1737 |
+
"learning_rate": 3.1557114543957e-05,
|
1738 |
+
"loss": 0.0111,
|
1739 |
+
"mean_token_accuracy": 0.9966490603983402,
|
1740 |
+
"step": 390
|
1741 |
+
},
|
1742 |
+
{
|
1743 |
+
"epoch": 7.674698795180722,
|
1744 |
+
"grad_norm": 0.2602914883802629,
|
1745 |
+
"learning_rate": 3.129777367608015e-05,
|
1746 |
+
"loss": 0.0131,
|
1747 |
+
"mean_token_accuracy": 0.9960994757711887,
|
1748 |
+
"step": 392
|
1749 |
+
},
|
1750 |
+
{
|
1751 |
+
"epoch": 7.713253012048193,
|
1752 |
+
"grad_norm": 0.28301518038355894,
|
1753 |
+
"learning_rate": 3.103833560451475e-05,
|
1754 |
+
"loss": 0.012,
|
1755 |
+
"mean_token_accuracy": 0.9964734986424446,
|
1756 |
+
"step": 394
|
1757 |
+
},
|
1758 |
+
{
|
1759 |
+
"epoch": 7.751807228915663,
|
1760 |
+
"grad_norm": 0.25207480811303823,
|
1761 |
+
"learning_rate": 3.077881976126035e-05,
|
1762 |
+
"loss": 0.013,
|
1763 |
+
"mean_token_accuracy": 0.996213972568512,
|
1764 |
+
"step": 396
|
1765 |
+
},
|
1766 |
+
{
|
1767 |
+
"epoch": 7.790361445783132,
|
1768 |
+
"grad_norm": 0.2514618756337283,
|
1769 |
+
"learning_rate": 3.0519245584141656e-05,
|
1770 |
+
"loss": 0.0121,
|
1771 |
+
"mean_token_accuracy": 0.9964200668036938,
|
1772 |
+
"step": 398
|
1773 |
+
},
|
1774 |
+
{
|
1775 |
+
"epoch": 7.828915662650602,
|
1776 |
+
"grad_norm": 0.26040743780115594,
|
1777 |
+
"learning_rate": 3.025963251535256e-05,
|
1778 |
+
"loss": 0.0116,
|
1779 |
+
"mean_token_accuracy": 0.9966032616794109,
|
1780 |
+
"step": 400
|
1781 |
+
},
|
1782 |
+
{
|
1783 |
+
"epoch": 7.828915662650602,
|
1784 |
+
"eval_loss": 0.75331050157547,
|
1785 |
+
"eval_mean_token_accuracy": 0.8853981912693131,
|
1786 |
+
"eval_runtime": 69.4599,
|
1787 |
+
"eval_samples_per_second": 12.28,
|
1788 |
+
"eval_steps_per_second": 1.54,
|
1789 |
+
"step": 400
|
1790 |
+
},
|
1791 |
+
{
|
1792 |
+
"epoch": 7.867469879518072,
|
1793 |
+
"grad_norm": 0.26248988546084573,
|
1794 |
+
"learning_rate": 3e-05,
|
1795 |
+
"loss": 0.012,
|
1796 |
+
"mean_token_accuracy": 0.9965727292001247,
|
1797 |
+
"step": 402
|
1798 |
+
},
|
1799 |
+
{
|
1800 |
+
"epoch": 7.906024096385542,
|
1801 |
+
"grad_norm": 22.364203930658036,
|
1802 |
+
"learning_rate": 2.974036748464744e-05,
|
1803 |
+
"loss": 0.0244,
|
1804 |
+
"mean_token_accuracy": 0.994572851806879,
|
1805 |
+
"step": 404
|
1806 |
+
},
|
1807 |
+
{
|
1808 |
+
"epoch": 7.944578313253012,
|
1809 |
+
"grad_norm": 0.2613601253288421,
|
1810 |
+
"learning_rate": 2.9480754415858362e-05,
|
1811 |
+
"loss": 0.012,
|
1812 |
+
"mean_token_accuracy": 0.9964658655226231,
|
1813 |
+
"step": 406
|
1814 |
+
},
|
1815 |
+
{
|
1816 |
+
"epoch": 7.983132530120482,
|
1817 |
+
"grad_norm": 0.26978140492430813,
|
1818 |
+
"learning_rate": 2.9221180238739657e-05,
|
1819 |
+
"loss": 0.0121,
|
1820 |
+
"mean_token_accuracy": 0.9964200668036938,
|
1821 |
+
"step": 408
|
1822 |
+
},
|
1823 |
+
{
|
1824 |
+
"epoch": 8.03855421686747,
|
1825 |
+
"grad_norm": 0.15830605174235476,
|
1826 |
+
"learning_rate": 2.8961664395485256e-05,
|
1827 |
+
"loss": 0.0124,
|
1828 |
+
"mean_token_accuracy": 0.9981359117909482,
|
1829 |
+
"step": 410
|
1830 |
+
},
|
1831 |
+
{
|
1832 |
+
"epoch": 8.07710843373494,
|
1833 |
+
"grad_norm": 0.1879125494974489,
|
1834 |
+
"learning_rate": 2.870222632391985e-05,
|
1835 |
+
"loss": 0.006,
|
1836 |
+
"mean_token_accuracy": 0.9983283467590809,
|
1837 |
+
"step": 412
|
1838 |
+
},
|
1839 |
+
{
|
1840 |
+
"epoch": 8.11566265060241,
|
1841 |
+
"grad_norm": 0.21501084480372112,
|
1842 |
+
"learning_rate": 2.8442885456043014e-05,
|
1843 |
+
"loss": 0.0065,
|
1844 |
+
"mean_token_accuracy": 0.9981756843626499,
|
1845 |
+
"step": 414
|
1846 |
+
},
|
1847 |
+
{
|
1848 |
+
"epoch": 8.154216867469879,
|
1849 |
+
"grad_norm": 0.2018501247928429,
|
1850 |
+
"learning_rate": 2.8183661216573706e-05,
|
1851 |
+
"loss": 0.0062,
|
1852 |
+
"mean_token_accuracy": 0.9983817785978317,
|
1853 |
+
"step": 416
|
1854 |
+
},
|
1855 |
+
{
|
1856 |
+
"epoch": 8.19277108433735,
|
1857 |
+
"grad_norm": 0.1919214437282262,
|
1858 |
+
"learning_rate": 2.7924573021495402e-05,
|
1859 |
+
"loss": 0.0059,
|
1860 |
+
"mean_token_accuracy": 0.9983512461185455,
|
1861 |
+
"step": 418
|
1862 |
+
},
|
1863 |
+
{
|
1864 |
+
"epoch": 8.23132530120482,
|
1865 |
+
"grad_norm": 0.21206736736635065,
|
1866 |
+
"learning_rate": 2.76656402766018e-05,
|
1867 |
+
"loss": 0.0058,
|
1868 |
+
"mean_token_accuracy": 0.9982672818005085,
|
1869 |
+
"step": 420
|
1870 |
+
},
|
1871 |
+
{
|
1872 |
+
"epoch": 8.23132530120482,
|
1873 |
+
"eval_loss": 0.8077970743179321,
|
1874 |
+
"eval_mean_token_accuracy": 0.8856883294114443,
|
1875 |
+
"eval_runtime": 69.4382,
|
1876 |
+
"eval_samples_per_second": 12.284,
|
1877 |
+
"eval_steps_per_second": 1.541,
|
1878 |
+
"step": 420
|
1879 |
+
},
|
1880 |
+
{
|
1881 |
+
"epoch": 8.269879518072289,
|
1882 |
+
"grad_norm": 0.23271209850137084,
|
1883 |
+
"learning_rate": 2.7406882376043344e-05,
|
1884 |
+
"loss": 0.0065,
|
1885 |
+
"mean_token_accuracy": 0.9983117282390594,
|
1886 |
+
"step": 422
|
1887 |
+
},
|
1888 |
+
{
|
1889 |
+
"epoch": 8.30843373493976,
|
1890 |
+
"grad_norm": 0.19538575173675904,
|
1891 |
+
"learning_rate": 2.7148318700874527e-05,
|
1892 |
+
"loss": 0.0059,
|
1893 |
+
"mean_token_accuracy": 0.9985344409942627,
|
1894 |
+
"step": 424
|
1895 |
+
},
|
1896 |
+
{
|
1897 |
+
"epoch": 8.346987951807229,
|
1898 |
+
"grad_norm": 0.22328484851599617,
|
1899 |
+
"learning_rate": 2.688996861760234e-05,
|
1900 |
+
"loss": 0.0064,
|
1901 |
+
"mean_token_accuracy": 0.9983225837349892,
|
1902 |
+
"step": 426
|
1903 |
+
},
|
1904 |
+
{
|
1905 |
+
"epoch": 8.385542168674698,
|
1906 |
+
"grad_norm": 0.19516697185141343,
|
1907 |
+
"learning_rate": 2.6631851476735663e-05,
|
1908 |
+
"loss": 0.0077,
|
1909 |
+
"mean_token_accuracy": 0.9978779926896095,
|
1910 |
+
"step": 428
|
1911 |
+
},
|
1912 |
+
{
|
1913 |
+
"epoch": 8.42409638554217,
|
1914 |
+
"grad_norm": 0.18659416768860523,
|
1915 |
+
"learning_rate": 2.6373986611335903e-05,
|
1916 |
+
"loss": 0.0052,
|
1917 |
+
"mean_token_accuracy": 0.9984886422753334,
|
1918 |
+
"step": 430
|
1919 |
+
},
|
1920 |
+
{
|
1921 |
+
"epoch": 8.462650602409639,
|
1922 |
+
"grad_norm": 0.20082308512633135,
|
1923 |
+
"learning_rate": 2.6116393335568938e-05,
|
1924 |
+
"loss": 0.006,
|
1925 |
+
"mean_token_accuracy": 0.9983588792383671,
|
1926 |
+
"step": 432
|
1927 |
+
},
|
1928 |
+
{
|
1929 |
+
"epoch": 8.501204819277108,
|
1930 |
+
"grad_norm": 0.20279324228038698,
|
1931 |
+
"learning_rate": 2.5859090943258513e-05,
|
1932 |
+
"loss": 0.0062,
|
1933 |
+
"mean_token_accuracy": 0.9983130805194378,
|
1934 |
+
"step": 434
|
1935 |
+
},
|
1936 |
+
{
|
1937 |
+
"epoch": 8.539759036144579,
|
1938 |
+
"grad_norm": 0.1750743562663046,
|
1939 |
+
"learning_rate": 2.560209870644109e-05,
|
1940 |
+
"loss": 0.0056,
|
1941 |
+
"mean_token_accuracy": 0.9984581097960472,
|
1942 |
+
"step": 436
|
1943 |
+
},
|
1944 |
+
{
|
1945 |
+
"epoch": 8.578313253012048,
|
1946 |
+
"grad_norm": 0.1755895995443044,
|
1947 |
+
"learning_rate": 2.5345435873922393e-05,
|
1948 |
+
"loss": 0.0063,
|
1949 |
+
"mean_token_accuracy": 0.9981527850031853,
|
1950 |
+
"step": 438
|
1951 |
+
},
|
1952 |
+
{
|
1953 |
+
"epoch": 8.616867469879518,
|
1954 |
+
"grad_norm": 0.2118846140765078,
|
1955 |
+
"learning_rate": 2.5089121669835614e-05,
|
1956 |
+
"loss": 0.0069,
|
1957 |
+
"mean_token_accuracy": 0.9980001226067543,
|
1958 |
+
"step": 440
|
1959 |
+
},
|
1960 |
+
{
|
1961 |
+
"epoch": 8.616867469879518,
|
1962 |
+
"eval_loss": 0.8199182152748108,
|
1963 |
+
"eval_mean_token_accuracy": 0.8858561499096523,
|
1964 |
+
"eval_runtime": 69.3511,
|
1965 |
+
"eval_samples_per_second": 12.3,
|
1966 |
+
"eval_steps_per_second": 1.543,
|
1967 |
+
"step": 440
|
1968 |
+
},
|
1969 |
+
{
|
1970 |
+
"epoch": 8.655421686746989,
|
1971 |
+
"grad_norm": 0.4135813676080103,
|
1972 |
+
"learning_rate": 2.4833175292201603e-05,
|
1973 |
+
"loss": 0.0079,
|
1974 |
+
"mean_token_accuracy": 0.9979237914085388,
|
1975 |
+
"step": 442
|
1976 |
+
},
|
1977 |
+
{
|
1978 |
+
"epoch": 8.693975903614458,
|
1979 |
+
"grad_norm": 0.20791105288984507,
|
1980 |
+
"learning_rate": 2.457761591149086e-05,
|
1981 |
+
"loss": 0.0063,
|
1982 |
+
"mean_token_accuracy": 0.9981083832681179,
|
1983 |
+
"step": 444
|
1984 |
+
},
|
1985 |
+
{
|
1986 |
+
"epoch": 8.732530120481927,
|
1987 |
+
"grad_norm": 0.20629484485924265,
|
1988 |
+
"learning_rate": 2.4322462669187706e-05,
|
1989 |
+
"loss": 0.0061,
|
1990 |
+
"mean_token_accuracy": 0.9982978142797947,
|
1991 |
+
"step": 446
|
1992 |
+
},
|
1993 |
+
{
|
1994 |
+
"epoch": 8.771084337349398,
|
1995 |
+
"grad_norm": 0.19188776573995286,
|
1996 |
+
"learning_rate": 2.406773467635651e-05,
|
1997 |
+
"loss": 0.0685,
|
1998 |
+
"mean_token_accuracy": 0.9924074709415436,
|
1999 |
+
"step": 448
|
2000 |
+
},
|
2001 |
+
{
|
2002 |
+
"epoch": 8.809638554216868,
|
2003 |
+
"grad_norm": 0.19107229397466804,
|
2004 |
+
"learning_rate": 2.381345101221036e-05,
|
2005 |
+
"loss": 0.0059,
|
2006 |
+
"mean_token_accuracy": 0.9982367493212223,
|
2007 |
+
"step": 450
|
2008 |
+
},
|
2009 |
+
{
|
2010 |
+
"epoch": 8.848192771084337,
|
2011 |
+
"grad_norm": 0.23889951775098972,
|
2012 |
+
"learning_rate": 2.3559630722681954e-05,
|
2013 |
+
"loss": 0.007,
|
2014 |
+
"mean_token_accuracy": 0.9981680512428284,
|
2015 |
+
"step": 452
|
2016 |
+
},
|
2017 |
+
{
|
2018 |
+
"epoch": 8.886746987951808,
|
2019 |
+
"grad_norm": 42.2029692813804,
|
2020 |
+
"learning_rate": 2.3306292818997087e-05,
|
2021 |
+
"loss": 0.0386,
|
2022 |
+
"mean_token_accuracy": 0.9919183924794197,
|
2023 |
+
"step": 454
|
2024 |
+
},
|
2025 |
+
{
|
2026 |
+
"epoch": 8.925301204819277,
|
2027 |
+
"grad_norm": 0.21850175531519617,
|
2028 |
+
"learning_rate": 2.3053456276250663e-05,
|
2029 |
+
"loss": 0.0061,
|
2030 |
+
"mean_token_accuracy": 0.9981656223535538,
|
2031 |
+
"step": 456
|
2032 |
+
},
|
2033 |
+
{
|
2034 |
+
"epoch": 8.963855421686747,
|
2035 |
+
"grad_norm": 0.1884420004377678,
|
2036 |
+
"learning_rate": 2.280114003198551e-05,
|
2037 |
+
"loss": 0.006,
|
2038 |
+
"mean_token_accuracy": 0.998259648680687,
|
2039 |
+
"step": 458
|
2040 |
+
},
|
2041 |
+
{
|
2042 |
+
"epoch": 9.019277108433736,
|
2043 |
+
"grad_norm": 0.309122496407327,
|
2044 |
+
"learning_rate": 2.2549362984773905e-05,
|
2045 |
+
"loss": 0.0065,
|
2046 |
+
"mean_token_accuracy": 0.9987853828229403,
|
2047 |
+
"step": 460
|
2048 |
+
},
|
2049 |
+
{
|
2050 |
+
"epoch": 9.019277108433736,
|
2051 |
+
"eval_loss": 0.8049155473709106,
|
2052 |
+
"eval_mean_token_accuracy": 0.88554618347471,
|
2053 |
+
"eval_runtime": 69.5882,
|
2054 |
+
"eval_samples_per_second": 12.258,
|
2055 |
+
"eval_steps_per_second": 1.538,
|
2056 |
+
"step": 460
|
2057 |
+
},
|
2058 |
+
{
|
2059 |
+
"epoch": 9.057831325301205,
|
2060 |
+
"grad_norm": 0.1786606737325342,
|
2061 |
+
"learning_rate": 2.2298143992802117e-05,
|
2062 |
+
"loss": 0.0032,
|
2063 |
+
"mean_token_accuracy": 0.9992595873773098,
|
2064 |
+
"step": 462
|
2065 |
+
},
|
2066 |
+
{
|
2067 |
+
"epoch": 9.096385542168674,
|
2068 |
+
"grad_norm": 0.18665264973791423,
|
2069 |
+
"learning_rate": 2.204750187245782e-05,
|
2070 |
+
"loss": 0.0032,
|
2071 |
+
"mean_token_accuracy": 0.9992137886583805,
|
2072 |
+
"step": 464
|
2073 |
+
},
|
2074 |
+
{
|
2075 |
+
"epoch": 9.134939759036145,
|
2076 |
+
"grad_norm": 1.9589732725477254,
|
2077 |
+
"learning_rate": 2.1797455396920875e-05,
|
2078 |
+
"loss": 0.0048,
|
2079 |
+
"mean_token_accuracy": 0.9988092333078384,
|
2080 |
+
"step": 466
|
2081 |
+
},
|
2082 |
+
{
|
2083 |
+
"epoch": 9.173493975903614,
|
2084 |
+
"grad_norm": 0.15777335644769483,
|
2085 |
+
"learning_rate": 2.154802329475711e-05,
|
2086 |
+
"loss": 0.0033,
|
2087 |
+
"mean_token_accuracy": 0.999137457460165,
|
2088 |
+
"step": 468
|
2089 |
+
},
|
2090 |
+
{
|
2091 |
+
"epoch": 9.212048192771084,
|
2092 |
+
"grad_norm": 0.17740831307622182,
|
2093 |
+
"learning_rate": 2.1299224248515597e-05,
|
2094 |
+
"loss": 0.0044,
|
2095 |
+
"mean_token_accuracy": 0.9988931976258755,
|
2096 |
+
"step": 470
|
2097 |
+
},
|
2098 |
+
{
|
2099 |
+
"epoch": 9.250602409638555,
|
2100 |
+
"grad_norm": 0.5247760818355152,
|
2101 |
+
"learning_rate": 2.1051076893329285e-05,
|
2102 |
+
"loss": 0.0046,
|
2103 |
+
"mean_token_accuracy": 0.9987252689898014,
|
2104 |
+
"step": 472
|
2105 |
+
},
|
2106 |
+
{
|
2107 |
+
"epoch": 9.289156626506024,
|
2108 |
+
"grad_norm": 2.9325011968809207,
|
2109 |
+
"learning_rate": 2.0803599815519255e-05,
|
2110 |
+
"loss": 0.0054,
|
2111 |
+
"mean_token_accuracy": 0.9986413046717644,
|
2112 |
+
"step": 474
|
2113 |
+
},
|
2114 |
+
{
|
2115 |
+
"epoch": 9.327710843373493,
|
2116 |
+
"grad_norm": 0.6343284005430022,
|
2117 |
+
"learning_rate": 2.055681155120258e-05,
|
2118 |
+
"loss": 0.0035,
|
2119 |
+
"mean_token_accuracy": 0.9990229606628418,
|
2120 |
+
"step": 476
|
2121 |
+
},
|
2122 |
+
{
|
2123 |
+
"epoch": 9.366265060240965,
|
2124 |
+
"grad_norm": 0.20991872318983149,
|
2125 |
+
"learning_rate": 2.0310730584903993e-05,
|
2126 |
+
"loss": 0.004,
|
2127 |
+
"mean_token_accuracy": 0.9989444799721241,
|
2128 |
+
"step": 478
|
2129 |
+
},
|
2130 |
+
{
|
2131 |
+
"epoch": 9.404819277108434,
|
2132 |
+
"grad_norm": 0.17676929600802058,
|
2133 |
+
"learning_rate": 2.0065375348171312e-05,
|
2134 |
+
"loss": 0.004,
|
2135 |
+
"mean_token_accuracy": 0.9987939670681953,
|
2136 |
+
"step": 480
|
2137 |
+
},
|
2138 |
+
{
|
2139 |
+
"epoch": 9.404819277108434,
|
2140 |
+
"eval_loss": 0.8617656826972961,
|
2141 |
+
"eval_mean_token_accuracy": 0.8854893195294888,
|
2142 |
+
"eval_runtime": 69.3609,
|
2143 |
+
"eval_samples_per_second": 12.298,
|
2144 |
+
"eval_steps_per_second": 1.543,
|
2145 |
+
"step": 480
|
2146 |
+
},
|
2147 |
+
{
|
2148 |
+
"epoch": 9.443373493975903,
|
2149 |
+
"grad_norm": 0.15741271862118592,
|
2150 |
+
"learning_rate": 1.982076421819501e-05,
|
2151 |
+
"loss": 0.0034,
|
2152 |
+
"mean_token_accuracy": 0.9989725835621357,
|
2153 |
+
"step": 482
|
2154 |
+
},
|
2155 |
+
{
|
2156 |
+
"epoch": 9.481927710843374,
|
2157 |
+
"grad_norm": 0.12128856010251869,
|
2158 |
+
"learning_rate": 1.9576915516431695e-05,
|
2159 |
+
"loss": 0.0033,
|
2160 |
+
"mean_token_accuracy": 0.9991450905799866,
|
2161 |
+
"step": 484
|
2162 |
+
},
|
2163 |
+
{
|
2164 |
+
"epoch": 9.520481927710843,
|
2165 |
+
"grad_norm": 0.1350351792184324,
|
2166 |
+
"learning_rate": 1.9333847507231863e-05,
|
2167 |
+
"loss": 0.0035,
|
2168 |
+
"mean_token_accuracy": 0.9989548921585083,
|
2169 |
+
"step": 486
|
2170 |
+
},
|
2171 |
+
{
|
2172 |
+
"epoch": 9.559036144578313,
|
2173 |
+
"grad_norm": 0.14241340431904073,
|
2174 |
+
"learning_rate": 1.9091578396471828e-05,
|
2175 |
+
"loss": 0.0034,
|
2176 |
+
"mean_token_accuracy": 0.9990153275430202,
|
2177 |
+
"step": 488
|
2178 |
+
},
|
2179 |
+
{
|
2180 |
+
"epoch": 9.597590361445784,
|
2181 |
+
"grad_norm": 1.529505371238827,
|
2182 |
+
"learning_rate": 1.885012633019018e-05,
|
2183 |
+
"loss": 0.0051,
|
2184 |
+
"mean_token_accuracy": 0.9988397657871246,
|
2185 |
+
"step": 490
|
2186 |
+
},
|
2187 |
+
{
|
2188 |
+
"epoch": 9.636144578313253,
|
2189 |
+
"grad_norm": 0.15744653269316328,
|
2190 |
+
"learning_rate": 1.8609509393228585e-05,
|
2191 |
+
"loss": 0.0033,
|
2192 |
+
"mean_token_accuracy": 0.9990305937826633,
|
2193 |
+
"step": 492
|
2194 |
+
},
|
2195 |
+
{
|
2196 |
+
"epoch": 9.674698795180722,
|
2197 |
+
"grad_norm": 0.18880658862049227,
|
2198 |
+
"learning_rate": 1.8369745607877248e-05,
|
2199 |
+
"loss": 0.0036,
|
2200 |
+
"mean_token_accuracy": 0.9991679899394512,
|
2201 |
+
"step": 494
|
2202 |
+
},
|
2203 |
+
{
|
2204 |
+
"epoch": 9.713253012048193,
|
2205 |
+
"grad_norm": 0.16462913886524327,
|
2206 |
+
"learning_rate": 1.8130852932525014e-05,
|
2207 |
+
"loss": 0.0037,
|
2208 |
+
"mean_token_accuracy": 0.9989932551980019,
|
2209 |
+
"step": 496
|
2210 |
+
},
|
2211 |
+
{
|
2212 |
+
"epoch": 9.751807228915663,
|
2213 |
+
"grad_norm": 0.33758275690868494,
|
2214 |
+
"learning_rate": 1.7892849260314306e-05,
|
2215 |
+
"loss": 0.0052,
|
2216 |
+
"mean_token_accuracy": 0.9987569116055965,
|
2217 |
+
"step": 498
|
2218 |
+
},
|
2219 |
+
{
|
2220 |
+
"epoch": 9.790361445783132,
|
2221 |
+
"grad_norm": 0.1974760552707555,
|
2222 |
+
"learning_rate": 1.7655752417800905e-05,
|
2223 |
+
"loss": 0.0034,
|
2224 |
+
"mean_token_accuracy": 0.9990458600223064,
|
2225 |
+
"step": 500
|
2226 |
+
},
|
2227 |
+
{
|
2228 |
+
"epoch": 9.790361445783132,
|
2229 |
+
"eval_loss": 0.8754935264587402,
|
2230 |
+
"eval_mean_token_accuracy": 0.885859943995966,
|
2231 |
+
"eval_runtime": 69.3143,
|
2232 |
+
"eval_samples_per_second": 12.306,
|
2233 |
+
"eval_steps_per_second": 1.544,
|
2234 |
+
"step": 500
|
2235 |
+
},
|
2236 |
+
{
|
2237 |
+
"epoch": 9.828915662650603,
|
2238 |
+
"grad_norm": 0.1532587568338562,
|
2239 |
+
"learning_rate": 1.7419580163618753e-05,
|
2240 |
+
"loss": 0.0037,
|
2241 |
+
"mean_token_accuracy": 0.9989313632249832,
|
2242 |
+
"step": 502
|
2243 |
+
},
|
2244 |
+
{
|
2245 |
+
"epoch": 9.867469879518072,
|
2246 |
+
"grad_norm": 0.35383816679395547,
|
2247 |
+
"learning_rate": 1.7184350187149786e-05,
|
2248 |
+
"loss": 0.0031,
|
2249 |
+
"mean_token_accuracy": 0.9991894327104092,
|
2250 |
+
"step": 504
|
2251 |
+
},
|
2252 |
+
{
|
2253 |
+
"epoch": 9.906024096385542,
|
2254 |
+
"grad_norm": 0.1561054970110093,
|
2255 |
+
"learning_rate": 1.695008010719904e-05,
|
2256 |
+
"loss": 0.0028,
|
2257 |
+
"mean_token_accuracy": 0.9992103353142738,
|
2258 |
+
"step": 506
|
2259 |
+
},
|
2260 |
+
{
|
2261 |
+
"epoch": 9.944578313253013,
|
2262 |
+
"grad_norm": 0.18408690008074102,
|
2263 |
+
"learning_rate": 1.671678747067497e-05,
|
2264 |
+
"loss": 0.0038,
|
2265 |
+
"mean_token_accuracy": 0.9988931976258755,
|
2266 |
+
"step": 508
|
2267 |
+
},
|
2268 |
+
{
|
2269 |
+
"epoch": 9.983132530120482,
|
2270 |
+
"grad_norm": 0.20048396437108135,
|
2271 |
+
"learning_rate": 1.64844897512752e-05,
|
2272 |
+
"loss": 0.0039,
|
2273 |
+
"mean_token_accuracy": 0.9988550320267677,
|
2274 |
+
"step": 510
|
2275 |
+
},
|
2276 |
+
{
|
2277 |
+
"epoch": 10.03855421686747,
|
2278 |
+
"grad_norm": 3.4513643360551365,
|
2279 |
+
"learning_rate": 1.6253204348177687e-05,
|
2280 |
+
"loss": 0.0064,
|
2281 |
+
"mean_token_accuracy": 0.9989136865264491,
|
2282 |
+
"step": 512
|
2283 |
+
},
|
2284 |
+
{
|
2285 |
+
"epoch": 10.07710843373494,
|
2286 |
+
"grad_norm": 0.13989334153800637,
|
2287 |
+
"learning_rate": 1.6022948584737598e-05,
|
2288 |
+
"loss": 0.0019,
|
2289 |
+
"mean_token_accuracy": 0.9994351491332054,
|
2290 |
+
"step": 514
|
2291 |
+
},
|
2292 |
+
{
|
2293 |
+
"epoch": 10.11566265060241,
|
2294 |
+
"grad_norm": 0.1074045297083226,
|
2295 |
+
"learning_rate": 1.579373970718971e-05,
|
2296 |
+
"loss": 0.0021,
|
2297 |
+
"mean_token_accuracy": 0.9994351491332054,
|
2298 |
+
"step": 516
|
2299 |
+
},
|
2300 |
+
{
|
2301 |
+
"epoch": 10.154216867469879,
|
2302 |
+
"grad_norm": 0.11600427030369441,
|
2303 |
+
"learning_rate": 1.556559488335672e-05,
|
2304 |
+
"loss": 0.0021,
|
2305 |
+
"mean_token_accuracy": 0.9993969835340977,
|
2306 |
+
"step": 518
|
2307 |
+
},
|
2308 |
+
{
|
2309 |
+
"epoch": 10.19277108433735,
|
2310 |
+
"grad_norm": 0.13085553223660323,
|
2311 |
+
"learning_rate": 1.5338531201363293e-05,
|
2312 |
+
"loss": 0.0022,
|
2313 |
+
"mean_token_accuracy": 0.9993969835340977,
|
2314 |
+
"step": 520
|
2315 |
+
},
|
2316 |
+
{
|
2317 |
+
"epoch": 10.19277108433735,
|
2318 |
+
"eval_loss": 0.8904346823692322,
|
2319 |
+
"eval_mean_token_accuracy": 0.8856022764589185,
|
2320 |
+
"eval_runtime": 69.539,
|
2321 |
+
"eval_samples_per_second": 12.266,
|
2322 |
+
"eval_steps_per_second": 1.539,
|
2323 |
+
"step": 520
|
2324 |
+
},
|
2325 |
+
{
|
2326 |
+
"epoch": 10.23132530120482,
|
2327 |
+
"grad_norm": 0.14190982118015144,
|
2328 |
+
"learning_rate": 1.511256566835625e-05,
|
2329 |
+
"loss": 0.0019,
|
2330 |
+
"mean_token_accuracy": 0.9995309263467789,
|
2331 |
+
"step": 522
|
2332 |
+
},
|
2333 |
+
{
|
2334 |
+
"epoch": 10.269879518072289,
|
2335 |
+
"grad_norm": 0.1341585509156664,
|
2336 |
+
"learning_rate": 1.488771520923067e-05,
|
2337 |
+
"loss": 0.0024,
|
2338 |
+
"mean_token_accuracy": 0.9992672204971313,
|
2339 |
+
"step": 524
|
2340 |
+
},
|
2341 |
+
{
|
2342 |
+
"epoch": 10.30843373493976,
|
2343 |
+
"grad_norm": 0.16502930673696362,
|
2344 |
+
"learning_rate": 1.4663996665362211e-05,
|
2345 |
+
"loss": 0.0021,
|
2346 |
+
"mean_token_accuracy": 0.9993752129375935,
|
2347 |
+
"step": 526
|
2348 |
+
},
|
2349 |
+
{
|
2350 |
+
"epoch": 10.346987951807229,
|
2351 |
+
"grad_norm": 0.13084629155976216,
|
2352 |
+
"learning_rate": 1.4441426793345683e-05,
|
2353 |
+
"loss": 0.002,
|
2354 |
+
"mean_token_accuracy": 0.9994122497737408,
|
2355 |
+
"step": 528
|
2356 |
+
},
|
2357 |
+
{
|
2358 |
+
"epoch": 10.385542168674698,
|
2359 |
+
"grad_norm": 0.11038300146743789,
|
2360 |
+
"learning_rate": 1.4220022263740011e-05,
|
2361 |
+
"loss": 0.0027,
|
2362 |
+
"mean_token_accuracy": 0.9993052184581757,
|
2363 |
+
"step": 530
|
2364 |
+
},
|
2365 |
+
{
|
2366 |
+
"epoch": 10.42409638554217,
|
2367 |
+
"grad_norm": 0.12294561296036827,
|
2368 |
+
"learning_rate": 1.3999799659819562e-05,
|
2369 |
+
"loss": 0.033,
|
2370 |
+
"mean_token_accuracy": 0.993626344949007,
|
2371 |
+
"step": 532
|
2372 |
+
},
|
2373 |
+
{
|
2374 |
+
"epoch": 10.462650602409639,
|
2375 |
+
"grad_norm": 0.10846986979952782,
|
2376 |
+
"learning_rate": 1.3780775476332083e-05,
|
2377 |
+
"loss": 0.0018,
|
2378 |
+
"mean_token_accuracy": 0.9993899054825306,
|
2379 |
+
"step": 534
|
2380 |
+
},
|
2381 |
+
{
|
2382 |
+
"epoch": 10.501204819277108,
|
2383 |
+
"grad_norm": 0.14225689722831972,
|
2384 |
+
"learning_rate": 1.3562966118263193e-05,
|
2385 |
+
"loss": 0.0019,
|
2386 |
+
"mean_token_accuracy": 0.9993664510548115,
|
2387 |
+
"step": 536
|
2388 |
+
},
|
2389 |
+
{
|
2390 |
+
"epoch": 10.539759036144579,
|
2391 |
+
"grad_norm": 0.10969405652880397,
|
2392 |
+
"learning_rate": 1.3346387899607707e-05,
|
2393 |
+
"loss": 0.0021,
|
2394 |
+
"mean_token_accuracy": 0.9993282854557037,
|
2395 |
+
"step": 538
|
2396 |
+
},
|
2397 |
+
{
|
2398 |
+
"epoch": 10.578313253012048,
|
2399 |
+
"grad_norm": 0.12332374063084073,
|
2400 |
+
"learning_rate": 1.3131057042147668e-05,
|
2401 |
+
"loss": 0.002,
|
2402 |
+
"mean_token_accuracy": 0.9993817172944546,
|
2403 |
+
"step": 540
|
2404 |
+
},
|
2405 |
+
{
|
2406 |
+
"epoch": 10.578313253012048,
|
2407 |
+
"eval_loss": 0.9242389798164368,
|
2408 |
+
"eval_mean_token_accuracy": 0.8855681163128292,
|
2409 |
+
"eval_runtime": 69.3277,
|
2410 |
+
"eval_samples_per_second": 12.304,
|
2411 |
+
"eval_steps_per_second": 1.543,
|
2412 |
+
"step": 540
|
2413 |
+
},
|
2414 |
+
{
|
2415 |
+
"epoch": 10.616867469879518,
|
2416 |
+
"grad_norm": 0.13695317144302582,
|
2417 |
+
"learning_rate": 1.2916989674237338e-05,
|
2418 |
+
"loss": 0.0022,
|
2419 |
+
"mean_token_accuracy": 0.9993282854557037,
|
2420 |
+
"step": 542
|
2421 |
+
},
|
2422 |
+
{
|
2423 |
+
"epoch": 10.655421686746989,
|
2424 |
+
"grad_norm": 0.12870435821718612,
|
2425 |
+
"learning_rate": 1.2704201829595197e-05,
|
2426 |
+
"loss": 0.0022,
|
2427 |
+
"mean_token_accuracy": 0.9994039945304394,
|
2428 |
+
"step": 544
|
2429 |
+
},
|
2430 |
+
{
|
2431 |
+
"epoch": 10.693975903614458,
|
2432 |
+
"grad_norm": 0.6208725073443113,
|
2433 |
+
"learning_rate": 1.2492709446102981e-05,
|
2434 |
+
"loss": 0.0042,
|
2435 |
+
"mean_token_accuracy": 0.9990916587412357,
|
2436 |
+
"step": 546
|
2437 |
+
},
|
2438 |
+
{
|
2439 |
+
"epoch": 10.732530120481927,
|
2440 |
+
"grad_norm": 0.12320342463115627,
|
2441 |
+
"learning_rate": 1.2282528364611962e-05,
|
2442 |
+
"loss": 0.0018,
|
2443 |
+
"mean_token_accuracy": 0.9993969835340977,
|
2444 |
+
"step": 548
|
2445 |
+
},
|
2446 |
+
{
|
2447 |
+
"epoch": 10.771084337349398,
|
2448 |
+
"grad_norm": 0.15008259040562927,
|
2449 |
+
"learning_rate": 1.2073674327756443e-05,
|
2450 |
+
"loss": 0.0031,
|
2451 |
+
"mean_token_accuracy": 0.9991450905799866,
|
2452 |
+
"step": 550
|
2453 |
+
},
|
2454 |
+
{
|
2455 |
+
"epoch": 10.809638554216868,
|
2456 |
+
"grad_norm": 0.15429428974419876,
|
2457 |
+
"learning_rate": 1.1866162978774612e-05,
|
2458 |
+
"loss": 0.0021,
|
2459 |
+
"mean_token_accuracy": 0.9993833713233471,
|
2460 |
+
"step": 552
|
2461 |
+
},
|
2462 |
+
{
|
2463 |
+
"epoch": 10.848192771084337,
|
2464 |
+
"grad_norm": 0.10621815475739295,
|
2465 |
+
"learning_rate": 1.1660009860336912e-05,
|
2466 |
+
"loss": 0.0018,
|
2467 |
+
"mean_token_accuracy": 0.9994275160133839,
|
2468 |
+
"step": 554
|
2469 |
+
},
|
2470 |
+
{
|
2471 |
+
"epoch": 10.886746987951808,
|
2472 |
+
"grad_norm": 0.11039364973964869,
|
2473 |
+
"learning_rate": 1.1455230413381842e-05,
|
2474 |
+
"loss": 0.002,
|
2475 |
+
"mean_token_accuracy": 0.9994198828935623,
|
2476 |
+
"step": 556
|
2477 |
+
},
|
2478 |
+
{
|
2479 |
+
"epoch": 10.925301204819277,
|
2480 |
+
"grad_norm": 0.11697088411711683,
|
2481 |
+
"learning_rate": 1.1251839975959452e-05,
|
2482 |
+
"loss": 0.0021,
|
2483 |
+
"mean_token_accuracy": 0.9993686564266682,
|
2484 |
+
"step": 558
|
2485 |
+
},
|
2486 |
+
{
|
2487 |
+
"epoch": 10.963855421686747,
|
2488 |
+
"grad_norm": 0.11358688244054382,
|
2489 |
+
"learning_rate": 1.1049853782082475e-05,
|
2490 |
+
"loss": 0.0022,
|
2491 |
+
"mean_token_accuracy": 0.9994046166539192,
|
2492 |
+
"step": 560
|
2493 |
+
},
|
2494 |
+
{
|
2495 |
+
"epoch": 10.963855421686747,
|
2496 |
+
"eval_loss": 0.9417920708656311,
|
2497 |
+
"eval_mean_token_accuracy": 0.8855189898303736,
|
2498 |
+
"eval_runtime": 69.3249,
|
2499 |
+
"eval_samples_per_second": 12.304,
|
2500 |
+
"eval_steps_per_second": 1.543,
|
2501 |
+
"step": 560
|
2502 |
+
},
|
2503 |
+
{
|
2504 |
+
"epoch": 11.019277108433736,
|
2505 |
+
"grad_norm": 0.17305539820556307,
|
2506 |
+
"learning_rate": 1.0849286960585366e-05,
|
2507 |
+
"loss": 0.0035,
|
2508 |
+
"mean_token_accuracy": 0.9992672204971313,
|
2509 |
+
"step": 562
|
2510 |
+
},
|
2511 |
+
{
|
2512 |
+
"epoch": 11.057831325301205,
|
2513 |
+
"grad_norm": 0.0906759313831292,
|
2514 |
+
"learning_rate": 1.0650154533991084e-05,
|
2515 |
+
"loss": 0.0015,
|
2516 |
+
"mean_token_accuracy": 0.9996336102485657,
|
2517 |
+
"step": 564
|
2518 |
+
},
|
2519 |
+
{
|
2520 |
+
"epoch": 11.096385542168674,
|
2521 |
+
"grad_norm": 0.11931089359310906,
|
2522 |
+
"learning_rate": 1.045247141738594e-05,
|
2523 |
+
"loss": 0.0014,
|
2524 |
+
"mean_token_accuracy": 0.999516811221838,
|
2525 |
+
"step": 566
|
2526 |
+
},
|
2527 |
+
{
|
2528 |
+
"epoch": 11.134939759036145,
|
2529 |
+
"grad_norm": 0.09291767153675214,
|
2530 |
+
"learning_rate": 1.0256252417302407e-05,
|
2531 |
+
"loss": 0.0017,
|
2532 |
+
"mean_token_accuracy": 0.9994809478521347,
|
2533 |
+
"step": 568
|
2534 |
+
},
|
2535 |
+
{
|
2536 |
+
"epoch": 11.173493975903614,
|
2537 |
+
"grad_norm": 1.0033676481832277,
|
2538 |
+
"learning_rate": 1.006151223061016e-05,
|
2539 |
+
"loss": 0.0069,
|
2540 |
+
"mean_token_accuracy": 0.9987023696303368,
|
2541 |
+
"step": 570
|
2542 |
+
},
|
2543 |
+
{
|
2544 |
+
"epoch": 11.212048192771084,
|
2545 |
+
"grad_norm": 0.10446383850799652,
|
2546 |
+
"learning_rate": 9.86826544341524e-06,
|
2547 |
+
"loss": 0.0015,
|
2548 |
+
"mean_token_accuracy": 0.9994880817830563,
|
2549 |
+
"step": 572
|
2550 |
+
},
|
2551 |
+
{
|
2552 |
+
"epoch": 11.250602409638555,
|
2553 |
+
"grad_norm": 0.1025544534836012,
|
2554 |
+
"learning_rate": 9.676526529967574e-06,
|
2555 |
+
"loss": 0.0026,
|
2556 |
+
"mean_token_accuracy": 0.9994580484926701,
|
2557 |
+
"step": 574
|
2558 |
+
},
|
2559 |
+
{
|
2560 |
+
"epoch": 11.289156626506024,
|
2561 |
+
"grad_norm": 0.15583526889102658,
|
2562 |
+
"learning_rate": 9.486309851576792e-06,
|
2563 |
+
"loss": 0.0016,
|
2564 |
+
"mean_token_accuracy": 0.9994726926088333,
|
2565 |
+
"step": 576
|
2566 |
+
},
|
2567 |
+
{
|
2568 |
+
"epoch": 11.327710843373493,
|
2569 |
+
"grad_norm": 0.12222578929385594,
|
2570 |
+
"learning_rate": 9.297629655536646e-06,
|
2571 |
+
"loss": 0.0015,
|
2572 |
+
"mean_token_accuracy": 0.9995191134512424,
|
2573 |
+
"step": 578
|
2574 |
+
},
|
2575 |
+
{
|
2576 |
+
"epoch": 11.366265060240965,
|
2577 |
+
"grad_norm": 0.11197490987962304,
|
2578 |
+
"learning_rate": 9.110500074057819e-06,
|
2579 |
+
"loss": 0.0017,
|
2580 |
+
"mean_token_accuracy": 0.9994733147323132,
|
2581 |
+
"step": 580
|
2582 |
+
},
|
2583 |
+
{
|
2584 |
+
"epoch": 11.366265060240965,
|
2585 |
+
"eval_loss": 0.9544482827186584,
|
2586 |
+
"eval_mean_token_accuracy": 0.8854990807649131,
|
2587 |
+
"eval_runtime": 69.3969,
|
2588 |
+
"eval_samples_per_second": 12.292,
|
2589 |
+
"eval_steps_per_second": 1.542,
|
2590 |
+
"step": 580
|
2591 |
+
},
|
2592 |
+
{
|
2593 |
+
"epoch": 11.404819277108434,
|
2594 |
+
"grad_norm": 0.11335826027199154,
|
2595 |
+
"learning_rate": 8.92493512320944e-06,
|
2596 |
+
"loss": 0.0016,
|
2597 |
+
"mean_token_accuracy": 0.9994962140917778,
|
2598 |
+
"step": 582
|
2599 |
+
},
|
2600 |
+
{
|
2601 |
+
"epoch": 11.443373493975903,
|
2602 |
+
"grad_norm": 0.10733379829091633,
|
2603 |
+
"learning_rate": 8.740948701869277e-06,
|
2604 |
+
"loss": 0.0016,
|
2605 |
+
"mean_token_accuracy": 0.9994504153728485,
|
2606 |
+
"step": 584
|
2607 |
+
},
|
2608 |
+
{
|
2609 |
+
"epoch": 11.481927710843374,
|
2610 |
+
"grad_norm": 0.10081806344544539,
|
2611 |
+
"learning_rate": 8.558554590682697e-06,
|
2612 |
+
"loss": 0.0014,
|
2613 |
+
"mean_token_accuracy": 0.9995367042720318,
|
2614 |
+
"step": 586
|
2615 |
+
},
|
2616 |
+
{
|
2617 |
+
"epoch": 11.520481927710843,
|
2618 |
+
"grad_norm": 0.1196540536055791,
|
2619 |
+
"learning_rate": 8.377766451030499e-06,
|
2620 |
+
"loss": 0.002,
|
2621 |
+
"mean_token_accuracy": 0.9994733147323132,
|
2622 |
+
"step": 588
|
2623 |
+
},
|
2624 |
+
{
|
2625 |
+
"epoch": 11.559036144578313,
|
2626 |
+
"grad_norm": 0.11356619126334871,
|
2627 |
+
"learning_rate": 8.198597824005679e-06,
|
2628 |
+
"loss": 0.0017,
|
2629 |
+
"mean_token_accuracy": 0.9994809478521347,
|
2630 |
+
"step": 590
|
2631 |
+
},
|
2632 |
+
{
|
2633 |
+
"epoch": 11.597590361445784,
|
2634 |
+
"grad_norm": 0.10331218579457416,
|
2635 |
+
"learning_rate": 8.021062129399154e-06,
|
2636 |
+
"loss": 0.0015,
|
2637 |
+
"mean_token_accuracy": 0.999526746571064,
|
2638 |
+
"step": 592
|
2639 |
+
},
|
2640 |
+
{
|
2641 |
+
"epoch": 11.636144578313253,
|
2642 |
+
"grad_norm": 0.12174233097842206,
|
2643 |
+
"learning_rate": 7.845172664694688e-06,
|
2644 |
+
"loss": 0.0017,
|
2645 |
+
"mean_token_accuracy": 0.9994339644908905,
|
2646 |
+
"step": 594
|
2647 |
+
},
|
2648 |
+
{
|
2649 |
+
"epoch": 11.674698795180722,
|
2650 |
+
"grad_norm": 0.1048083019753585,
|
2651 |
+
"learning_rate": 7.670942604072847e-06,
|
2652 |
+
"loss": 0.0017,
|
2653 |
+
"mean_token_accuracy": 0.9994885809719563,
|
2654 |
+
"step": 596
|
2655 |
+
},
|
2656 |
+
{
|
2657 |
+
"epoch": 11.713253012048193,
|
2658 |
+
"grad_norm": 0.14893430096921834,
|
2659 |
+
"learning_rate": 7.4983849974242845e-06,
|
2660 |
+
"loss": 0.0018,
|
2661 |
+
"mean_token_accuracy": 0.999433733522892,
|
2662 |
+
"step": 598
|
2663 |
+
},
|
2664 |
+
{
|
2665 |
+
"epoch": 11.751807228915663,
|
2666 |
+
"grad_norm": 0.13675411372001317,
|
2667 |
+
"learning_rate": 7.3275127693722555e-06,
|
2668 |
+
"loss": 0.0017,
|
2669 |
+
"mean_token_accuracy": 0.9994351491332054,
|
2670 |
+
"step": 600
|
2671 |
+
},
|
2672 |
+
{
|
2673 |
+
"epoch": 11.751807228915663,
|
2674 |
+
"eval_loss": 0.969817578792572,
|
2675 |
+
"eval_mean_token_accuracy": 0.8854909840031205,
|
2676 |
+
"eval_runtime": 69.2767,
|
2677 |
+
"eval_samples_per_second": 12.313,
|
2678 |
+
"eval_steps_per_second": 1.545,
|
2679 |
+
"step": 600
|
2680 |
+
},
|
2681 |
+
{
|
2682 |
+
"epoch": 11.790361445783132,
|
2683 |
+
"grad_norm": 0.12080578212454941,
|
2684 |
+
"learning_rate": 7.1583387183046055e-06,
|
2685 |
+
"loss": 0.0016,
|
2686 |
+
"mean_token_accuracy": 0.9994351491332054,
|
2687 |
+
"step": 602
|
2688 |
+
},
|
2689 |
+
{
|
2690 |
+
"epoch": 11.828915662650603,
|
2691 |
+
"grad_norm": 0.09355811487825055,
|
2692 |
+
"learning_rate": 6.9908755154151525e-06,
|
2693 |
+
"loss": 0.0016,
|
2694 |
+
"mean_token_accuracy": 0.9994733147323132,
|
2695 |
+
"step": 604
|
2696 |
+
},
|
2697 |
+
{
|
2698 |
+
"epoch": 11.867469879518072,
|
2699 |
+
"grad_norm": 0.1224252310829274,
|
2700 |
+
"learning_rate": 6.825135703754604e-06,
|
2701 |
+
"loss": 0.0018,
|
2702 |
+
"mean_token_accuracy": 0.9994275160133839,
|
2703 |
+
"step": 606
|
2704 |
+
},
|
2705 |
+
{
|
2706 |
+
"epoch": 11.906024096385542,
|
2707 |
+
"grad_norm": 0.21861785634644101,
|
2708 |
+
"learning_rate": 6.661131697291059e-06,
|
2709 |
+
"loss": 0.0026,
|
2710 |
+
"mean_token_accuracy": 0.9993282854557037,
|
2711 |
+
"step": 608
|
2712 |
+
},
|
2713 |
+
{
|
2714 |
+
"epoch": 11.944578313253013,
|
2715 |
+
"grad_norm": 0.10430055767813079,
|
2716 |
+
"learning_rate": 6.498875779980243e-06,
|
2717 |
+
"loss": 0.0018,
|
2718 |
+
"mean_token_accuracy": 0.9994656816124916,
|
2719 |
+
"step": 610
|
2720 |
+
},
|
2721 |
+
{
|
2722 |
+
"epoch": 11.983132530120482,
|
2723 |
+
"grad_norm": 0.1191659336374284,
|
2724 |
+
"learning_rate": 6.338380104845397e-06,
|
2725 |
+
"loss": 0.0017,
|
2726 |
+
"mean_token_accuracy": 0.9994122497737408,
|
2727 |
+
"step": 612
|
2728 |
+
},
|
2729 |
+
{
|
2730 |
+
"epoch": 12.03855421686747,
|
2731 |
+
"grad_norm": 0.11508451095498799,
|
2732 |
+
"learning_rate": 6.1796566930670476e-06,
|
2733 |
+
"loss": 0.002,
|
2734 |
+
"mean_token_accuracy": 0.9995629034544292,
|
2735 |
+
"step": 614
|
2736 |
+
},
|
2737 |
+
{
|
2738 |
+
"epoch": 12.07710843373494,
|
2739 |
+
"grad_norm": 0.0950350680757556,
|
2740 |
+
"learning_rate": 6.022717433082552e-06,
|
2741 |
+
"loss": 0.0013,
|
2742 |
+
"mean_token_accuracy": 0.9996259771287441,
|
2743 |
+
"step": 616
|
2744 |
+
},
|
2745 |
+
{
|
2746 |
+
"epoch": 12.11566265060241,
|
2747 |
+
"grad_norm": 0.13300027554181304,
|
2748 |
+
"learning_rate": 5.867574079695734e-06,
|
2749 |
+
"loss": 0.0013,
|
2750 |
+
"mean_token_accuracy": 0.9995725452899933,
|
2751 |
+
"step": 618
|
2752 |
+
},
|
2753 |
+
{
|
2754 |
+
"epoch": 12.154216867469879,
|
2755 |
+
"grad_norm": 0.10052046295652498,
|
2756 |
+
"learning_rate": 5.714238253196389e-06,
|
2757 |
+
"loss": 0.0357,
|
2758 |
+
"mean_token_accuracy": 0.9919894672930241,
|
2759 |
+
"step": 620
|
2760 |
+
},
|
2761 |
+
{
|
2762 |
+
"epoch": 12.154216867469879,
|
2763 |
+
"eval_loss": 0.9818074703216553,
|
2764 |
+
"eval_mean_token_accuracy": 0.8854417923454926,
|
2765 |
+
"eval_runtime": 69.6206,
|
2766 |
+
"eval_samples_per_second": 12.252,
|
2767 |
+
"eval_steps_per_second": 1.537,
|
2768 |
+
"step": 620
|
2769 |
+
},
|
2770 |
+
{
|
2771 |
+
"epoch": 12.19277108433735,
|
2772 |
+
"grad_norm": 0.1037152483574447,
|
2773 |
+
"learning_rate": 5.562721438489928e-06,
|
2774 |
+
"loss": 0.0014,
|
2775 |
+
"mean_token_accuracy": 0.9994885809719563,
|
2776 |
+
"step": 622
|
2777 |
+
},
|
2778 |
+
{
|
2779 |
+
"epoch": 12.23132530120482,
|
2780 |
+
"grad_norm": 0.10827605801786266,
|
2781 |
+
"learning_rate": 5.413034984237181e-06,
|
2782 |
+
"loss": 0.0013,
|
2783 |
+
"mean_token_accuracy": 0.9995649121701717,
|
2784 |
+
"step": 624
|
2785 |
+
},
|
2786 |
+
{
|
2787 |
+
"epoch": 12.269879518072289,
|
2788 |
+
"grad_norm": 0.12011769938846284,
|
2789 |
+
"learning_rate": 5.265190102004335e-06,
|
2790 |
+
"loss": 0.0015,
|
2791 |
+
"mean_token_accuracy": 0.9995649121701717,
|
2792 |
+
"step": 626
|
2793 |
+
},
|
2794 |
+
{
|
2795 |
+
"epoch": 12.30843373493976,
|
2796 |
+
"grad_norm": 0.10453987820429272,
|
2797 |
+
"learning_rate": 5.119197865423229e-06,
|
2798 |
+
"loss": 0.0016,
|
2799 |
+
"mean_token_accuracy": 0.9995420128107071,
|
2800 |
+
"step": 628
|
2801 |
+
},
|
2802 |
+
{
|
2803 |
+
"epoch": 12.346987951807229,
|
2804 |
+
"grad_norm": 0.10456835958595356,
|
2805 |
+
"learning_rate": 4.975069209361906e-06,
|
2806 |
+
"loss": 0.0013,
|
2807 |
+
"mean_token_accuracy": 0.9995405711233616,
|
2808 |
+
"step": 630
|
2809 |
+
},
|
2810 |
+
{
|
2811 |
+
"epoch": 12.385542168674698,
|
2812 |
+
"grad_norm": 0.11452539491834104,
|
2813 |
+
"learning_rate": 4.832814929105588e-06,
|
2814 |
+
"loss": 0.0014,
|
2815 |
+
"mean_token_accuracy": 0.999526746571064,
|
2816 |
+
"step": 632
|
2817 |
+
},
|
2818 |
+
{
|
2819 |
+
"epoch": 12.42409638554217,
|
2820 |
+
"grad_norm": 0.09571585143522116,
|
2821 |
+
"learning_rate": 4.692445679548123e-06,
|
2822 |
+
"loss": 0.0014,
|
2823 |
+
"mean_token_accuracy": 0.9995420128107071,
|
2824 |
+
"step": 634
|
2825 |
+
},
|
2826 |
+
{
|
2827 |
+
"epoch": 12.462650602409639,
|
2828 |
+
"grad_norm": 0.12833024252684958,
|
2829 |
+
"learning_rate": 4.553971974393919e-06,
|
2830 |
+
"loss": 0.0014,
|
2831 |
+
"mean_token_accuracy": 0.9995191134512424,
|
2832 |
+
"step": 636
|
2833 |
+
},
|
2834 |
+
{
|
2835 |
+
"epoch": 12.501204819277108,
|
2836 |
+
"grad_norm": 0.11292528405649,
|
2837 |
+
"learning_rate": 4.417404185370469e-06,
|
2838 |
+
"loss": 0.0015,
|
2839 |
+
"mean_token_accuracy": 0.9995114803314209,
|
2840 |
+
"step": 638
|
2841 |
+
},
|
2842 |
+
{
|
2843 |
+
"epoch": 12.539759036144579,
|
2844 |
+
"grad_norm": 0.12831556871732822,
|
2845 |
+
"learning_rate": 4.282752541451489e-06,
|
2846 |
+
"loss": 0.0013,
|
2847 |
+
"mean_token_accuracy": 0.999526746571064,
|
2848 |
+
"step": 640
|
2849 |
+
},
|
2850 |
+
{
|
2851 |
+
"epoch": 12.539759036144579,
|
2852 |
+
"eval_loss": 0.991666853427887,
|
2853 |
+
"eval_mean_token_accuracy": 0.8853799277376906,
|
2854 |
+
"eval_runtime": 69.3869,
|
2855 |
+
"eval_samples_per_second": 12.293,
|
2856 |
+
"eval_steps_per_second": 1.542,
|
2857 |
+
"step": 640
|
2858 |
+
},
|
2859 |
+
{
|
2860 |
+
"epoch": 12.578313253012048,
|
2861 |
+
"grad_norm": 0.12436227744705454,
|
2862 |
+
"learning_rate": 4.1500271280907835e-06,
|
2863 |
+
"loss": 0.0017,
|
2864 |
+
"mean_token_accuracy": 0.9994809478521347,
|
2865 |
+
"step": 642
|
2866 |
+
},
|
2867 |
+
{
|
2868 |
+
"epoch": 12.616867469879518,
|
2869 |
+
"grad_norm": 0.17261943340443744,
|
2870 |
+
"learning_rate": 4.019237886466839e-06,
|
2871 |
+
"loss": 0.0016,
|
2872 |
+
"mean_token_accuracy": 0.9994580484926701,
|
2873 |
+
"step": 644
|
2874 |
+
},
|
2875 |
+
{
|
2876 |
+
"epoch": 12.655421686746989,
|
2877 |
+
"grad_norm": 0.10058604035427425,
|
2878 |
+
"learning_rate": 3.890394612738227e-06,
|
2879 |
+
"loss": 0.0014,
|
2880 |
+
"mean_token_accuracy": 0.9995114803314209,
|
2881 |
+
"step": 646
|
2882 |
+
},
|
2883 |
+
{
|
2884 |
+
"epoch": 12.693975903614458,
|
2885 |
+
"grad_norm": 0.11695808542802424,
|
2886 |
+
"learning_rate": 3.76350695730984e-06,
|
2887 |
+
"loss": 0.0015,
|
2888 |
+
"mean_token_accuracy": 0.9995450414717197,
|
2889 |
+
"step": 648
|
2890 |
+
},
|
2891 |
+
{
|
2892 |
+
"epoch": 12.732530120481927,
|
2893 |
+
"grad_norm": 0.10621245905708254,
|
2894 |
+
"learning_rate": 3.6385844241101185e-06,
|
2895 |
+
"loss": 0.0014,
|
2896 |
+
"mean_token_accuracy": 0.9995114803314209,
|
2897 |
+
"step": 650
|
2898 |
+
},
|
2899 |
+
{
|
2900 |
+
"epoch": 12.771084337349398,
|
2901 |
+
"grad_norm": 0.16504270528888113,
|
2902 |
+
"learning_rate": 3.5156363698791715e-06,
|
2903 |
+
"loss": 0.002,
|
2904 |
+
"mean_token_accuracy": 0.9994298405945301,
|
2905 |
+
"step": 652
|
2906 |
+
},
|
2907 |
+
{
|
2908 |
+
"epoch": 12.809638554216868,
|
2909 |
+
"grad_norm": 0.1331096001191443,
|
2910 |
+
"learning_rate": 3.3946720034679777e-06,
|
2911 |
+
"loss": 0.0021,
|
2912 |
+
"mean_token_accuracy": 0.9994504153728485,
|
2913 |
+
"step": 654
|
2914 |
+
},
|
2915 |
+
{
|
2916 |
+
"epoch": 12.848192771084337,
|
2917 |
+
"grad_norm": 0.1019875409973128,
|
2918 |
+
"learning_rate": 3.2757003851486e-06,
|
2919 |
+
"loss": 0.0014,
|
2920 |
+
"mean_token_accuracy": 0.9995572790503502,
|
2921 |
+
"step": 656
|
2922 |
+
},
|
2923 |
+
{
|
2924 |
+
"epoch": 12.886746987951808,
|
2925 |
+
"grad_norm": 0.11076935341045883,
|
2926 |
+
"learning_rate": 3.158730425935611e-06,
|
2927 |
+
"loss": 0.0015,
|
2928 |
+
"mean_token_accuracy": 0.999442782253027,
|
2929 |
+
"step": 658
|
2930 |
+
},
|
2931 |
+
{
|
2932 |
+
"epoch": 12.925301204819277,
|
2933 |
+
"grad_norm": 0.14608416850344932,
|
2934 |
+
"learning_rate": 3.0437708869186344e-06,
|
2935 |
+
"loss": 0.0015,
|
2936 |
+
"mean_token_accuracy": 0.999440137296915,
|
2937 |
+
"step": 660
|
2938 |
+
},
|
2939 |
+
{
|
2940 |
+
"epoch": 12.925301204819277,
|
2941 |
+
"eval_loss": 0.9993261098861694,
|
2942 |
+
"eval_mean_token_accuracy": 0.8853809326608605,
|
2943 |
+
"eval_runtime": 69.3391,
|
2944 |
+
"eval_samples_per_second": 12.302,
|
2945 |
+
"eval_steps_per_second": 1.543,
|
2946 |
+
"step": 660
|
2947 |
+
},
|
2948 |
+
{
|
2949 |
+
"epoch": 12.963855421686747,
|
2950 |
+
"grad_norm": 0.09245271040605461,
|
2951 |
+
"learning_rate": 2.930830378606143e-06,
|
2952 |
+
"loss": 0.0015,
|
2953 |
+
"mean_token_accuracy": 0.9995038472115993,
|
2954 |
+
"step": 662
|
2955 |
+
},
|
2956 |
+
{
|
2957 |
+
"epoch": 13.019277108433736,
|
2958 |
+
"grad_norm": 0.2141536047773108,
|
2959 |
+
"learning_rate": 2.819917360280515e-06,
|
2960 |
+
"loss": 0.002,
|
2961 |
+
"mean_token_accuracy": 0.9995436197833011,
|
2962 |
+
"step": 664
|
2963 |
+
},
|
2964 |
+
{
|
2965 |
+
"epoch": 13.057831325301205,
|
2966 |
+
"grad_norm": 0.09350801754258221,
|
2967 |
+
"learning_rate": 2.711040139364447e-06,
|
2968 |
+
"loss": 0.0012,
|
2969 |
+
"mean_token_accuracy": 0.9996412433683872,
|
2970 |
+
"step": 666
|
2971 |
+
},
|
2972 |
+
{
|
2973 |
+
"epoch": 13.096385542168674,
|
2974 |
+
"grad_norm": 0.36829671417560017,
|
2975 |
+
"learning_rate": 2.604206870798721e-06,
|
2976 |
+
"loss": 0.0051,
|
2977 |
+
"mean_token_accuracy": 0.9988485015928745,
|
2978 |
+
"step": 668
|
2979 |
+
},
|
2980 |
+
{
|
2981 |
+
"epoch": 13.134939759036145,
|
2982 |
+
"grad_norm": 0.12298017906768886,
|
2983 |
+
"learning_rate": 2.499425556431392e-06,
|
2984 |
+
"loss": 0.0013,
|
2985 |
+
"mean_token_accuracy": 0.9995496459305286,
|
2986 |
+
"step": 670
|
2987 |
+
},
|
2988 |
+
{
|
2989 |
+
"epoch": 13.173493975903614,
|
2990 |
+
"grad_norm": 0.11348242540867796,
|
2991 |
+
"learning_rate": 2.396704044418444e-06,
|
2992 |
+
"loss": 0.002,
|
2993 |
+
"mean_token_accuracy": 0.9994962140917778,
|
2994 |
+
"step": 672
|
2995 |
+
},
|
2996 |
+
{
|
2997 |
+
"epoch": 13.212048192771084,
|
2998 |
+
"grad_norm": 0.1102909386969301,
|
2999 |
+
"learning_rate": 2.2960500286359743e-06,
|
3000 |
+
"loss": 0.0013,
|
3001 |
+
"mean_token_accuracy": 0.9995384737849236,
|
3002 |
+
"step": 674
|
3003 |
+
},
|
3004 |
+
{
|
3005 |
+
"epoch": 13.250602409638555,
|
3006 |
+
"grad_norm": 0.10546278464445576,
|
3007 |
+
"learning_rate": 2.1974710481039108e-06,
|
3008 |
+
"loss": 0.0015,
|
3009 |
+
"mean_token_accuracy": 0.9995343796908855,
|
3010 |
+
"step": 676
|
3011 |
+
},
|
3012 |
+
{
|
3013 |
+
"epoch": 13.289156626506024,
|
3014 |
+
"grad_norm": 0.11337762452983983,
|
3015 |
+
"learning_rate": 2.1009744864213352e-06,
|
3016 |
+
"loss": 0.0013,
|
3017 |
+
"mean_token_accuracy": 0.9995725452899933,
|
3018 |
+
"step": 678
|
3019 |
+
},
|
3020 |
+
{
|
3021 |
+
"epoch": 13.327710843373493,
|
3022 |
+
"grad_norm": 0.14767839429897353,
|
3023 |
+
"learning_rate": 2.00656757121344e-06,
|
3024 |
+
"loss": 0.0013,
|
3025 |
+
"mean_token_accuracy": 0.9995801784098148,
|
3026 |
+
"step": 680
|
3027 |
+
},
|
3028 |
+
{
|
3029 |
+
"epoch": 13.327710843373493,
|
3030 |
+
"eval_loss": 1.0032727718353271,
|
3031 |
+
"eval_mean_token_accuracy": 0.8853370770115718,
|
3032 |
+
"eval_runtime": 69.3469,
|
3033 |
+
"eval_samples_per_second": 12.3,
|
3034 |
+
"eval_steps_per_second": 1.543,
|
3035 |
+
"step": 680
|
3036 |
+
},
|
3037 |
+
{
|
3038 |
+
"epoch": 13.366265060240965,
|
3039 |
+
"grad_norm": 0.13721848380464344,
|
3040 |
+
"learning_rate": 1.914257373590209e-06,
|
3041 |
+
"loss": 0.0015,
|
3042 |
+
"mean_token_accuracy": 0.999526746571064,
|
3043 |
+
"step": 682
|
3044 |
+
},
|
3045 |
+
{
|
3046 |
+
"epoch": 13.404819277108434,
|
3047 |
+
"grad_norm": 0.1311621970905313,
|
3048 |
+
"learning_rate": 1.8240508076167528e-06,
|
3049 |
+
"loss": 0.0015,
|
3050 |
+
"mean_token_accuracy": 0.9995725452899933,
|
3051 |
+
"step": 684
|
3052 |
+
},
|
3053 |
+
{
|
3054 |
+
"epoch": 13.443373493975903,
|
3055 |
+
"grad_norm": 0.10388591574641104,
|
3056 |
+
"learning_rate": 1.7359546297954688e-06,
|
3057 |
+
"loss": 0.0013,
|
3058 |
+
"mean_token_accuracy": 0.999610710889101,
|
3059 |
+
"step": 686
|
3060 |
+
},
|
3061 |
+
{
|
3062 |
+
"epoch": 13.481927710843374,
|
3063 |
+
"grad_norm": 0.10648821327271897,
|
3064 |
+
"learning_rate": 1.6499754385599463e-06,
|
3065 |
+
"loss": 0.0014,
|
3066 |
+
"mean_token_accuracy": 0.9995058849453926,
|
3067 |
+
"step": 688
|
3068 |
+
},
|
3069 |
+
{
|
3070 |
+
"epoch": 13.520481927710843,
|
3071 |
+
"grad_norm": 0.08872002930308646,
|
3072 |
+
"learning_rate": 1.5661196737807859e-06,
|
3073 |
+
"loss": 0.0014,
|
3074 |
+
"mean_token_accuracy": 0.9995420128107071,
|
3075 |
+
"step": 690
|
3076 |
+
},
|
3077 |
+
{
|
3078 |
+
"epoch": 13.559036144578313,
|
3079 |
+
"grad_norm": 0.09347980960553842,
|
3080 |
+
"learning_rate": 1.4843936162832072e-06,
|
3081 |
+
"loss": 0.0015,
|
3082 |
+
"mean_token_accuracy": 0.9994733147323132,
|
3083 |
+
"step": 692
|
3084 |
+
},
|
3085 |
+
{
|
3086 |
+
"epoch": 13.597590361445784,
|
3087 |
+
"grad_norm": 0.12361516911263896,
|
3088 |
+
"learning_rate": 1.4048033873766463e-06,
|
3089 |
+
"loss": 0.0015,
|
3090 |
+
"mean_token_accuracy": 0.9995572790503502,
|
3091 |
+
"step": 694
|
3092 |
+
},
|
3093 |
+
{
|
3094 |
+
"epoch": 13.636144578313253,
|
3095 |
+
"grad_norm": 0.12107654956377063,
|
3096 |
+
"learning_rate": 1.3273549483962355e-06,
|
3097 |
+
"loss": 0.0014,
|
3098 |
+
"mean_token_accuracy": 0.9994864575564861,
|
3099 |
+
"step": 696
|
3100 |
+
},
|
3101 |
+
{
|
3102 |
+
"epoch": 13.674698795180722,
|
3103 |
+
"grad_norm": 0.10092411840523163,
|
3104 |
+
"learning_rate": 1.2520541002563367e-06,
|
3105 |
+
"loss": 0.0011,
|
3106 |
+
"mean_token_accuracy": 0.9996412433683872,
|
3107 |
+
"step": 698
|
3108 |
+
},
|
3109 |
+
{
|
3110 |
+
"epoch": 13.713253012048193,
|
3111 |
+
"grad_norm": 0.11231592007453403,
|
3112 |
+
"learning_rate": 1.1789064830160135e-06,
|
3113 |
+
"loss": 0.0012,
|
3114 |
+
"mean_token_accuracy": 0.9995343796908855,
|
3115 |
+
"step": 700
|
3116 |
+
},
|
3117 |
+
{
|
3118 |
+
"epoch": 13.713253012048193,
|
3119 |
+
"eval_loss": 1.006074070930481,
|
3120 |
+
"eval_mean_token_accuracy": 0.8853545851796587,
|
3121 |
+
"eval_runtime": 69.3632,
|
3122 |
+
"eval_samples_per_second": 12.298,
|
3123 |
+
"eval_steps_per_second": 1.543,
|
3124 |
+
"step": 700
|
3125 |
+
},
|
3126 |
+
{
|
3127 |
+
"epoch": 13.751807228915663,
|
3128 |
+
"grad_norm": 0.12189315581983552,
|
3129 |
+
"learning_rate": 1.1079175754566106e-06,
|
3130 |
+
"loss": 0.0016,
|
3131 |
+
"mean_token_accuracy": 0.9995114803314209,
|
3132 |
+
"step": 702
|
3133 |
+
},
|
3134 |
+
{
|
3135 |
+
"epoch": 13.790361445783132,
|
3136 |
+
"grad_norm": 0.12382096947597966,
|
3137 |
+
"learning_rate": 1.0390926946713874e-06,
|
3138 |
+
"loss": 0.0013,
|
3139 |
+
"mean_token_accuracy": 0.9995801784098148,
|
3140 |
+
"step": 704
|
3141 |
+
},
|
3142 |
+
{
|
3143 |
+
"epoch": 13.828915662650603,
|
3144 |
+
"grad_norm": 0.11568709703961172,
|
3145 |
+
"learning_rate": 9.724369956672551e-07,
|
3146 |
+
"loss": 0.0018,
|
3147 |
+
"mean_token_accuracy": 0.9995037615299225,
|
3148 |
+
"step": 706
|
3149 |
+
},
|
3150 |
+
{
|
3151 |
+
"epoch": 13.867469879518072,
|
3152 |
+
"grad_norm": 0.1165383652245498,
|
3153 |
+
"learning_rate": 9.079554709786864e-07,
|
3154 |
+
"loss": 0.0013,
|
3155 |
+
"mean_token_accuracy": 0.9995496459305286,
|
3156 |
+
"step": 708
|
3157 |
+
},
|
3158 |
+
{
|
3159 |
+
"epoch": 13.906024096385542,
|
3160 |
+
"grad_norm": 0.11205030884377394,
|
3161 |
+
"learning_rate": 8.456529502937504e-07,
|
3162 |
+
"loss": 0.0012,
|
3163 |
+
"mean_token_accuracy": 0.9995725452899933,
|
3164 |
+
"step": 710
|
3165 |
+
},
|
3166 |
+
{
|
3167 |
+
"epoch": 13.944578313253013,
|
3168 |
+
"grad_norm": 0.11456802074059572,
|
3169 |
+
"learning_rate": 7.855341000923766e-07,
|
3170 |
+
"loss": 0.0016,
|
3171 |
+
"mean_token_accuracy": 0.9994656816124916,
|
3172 |
+
"step": 712
|
3173 |
+
},
|
3174 |
+
{
|
3175 |
+
"epoch": 13.983132530120482,
|
3176 |
+
"grad_norm": 0.11695236633196396,
|
3177 |
+
"learning_rate": 7.276034232968432e-07,
|
3178 |
+
"loss": 0.0013,
|
3179 |
+
"mean_token_accuracy": 0.9995191134512424,
|
3180 |
+
"step": 714
|
3181 |
+
},
|
3182 |
+
{
|
3183 |
+
"epoch": 14.03855421686747,
|
3184 |
+
"grad_norm": 0.0920328425193028,
|
3185 |
+
"learning_rate": 6.71865258934491e-07,
|
3186 |
+
"loss": 0.002,
|
3187 |
+
"mean_token_accuracy": 0.9995629034544292,
|
3188 |
+
"step": 716
|
3189 |
+
},
|
3190 |
+
{
|
3191 |
+
"epoch": 14.07710843373494,
|
3192 |
+
"grad_norm": 0.12109216397122943,
|
3193 |
+
"learning_rate": 6.18323781812743e-07,
|
3194 |
+
"loss": 0.0013,
|
3195 |
+
"mean_token_accuracy": 0.9995725452899933,
|
3196 |
+
"step": 718
|
3197 |
+
},
|
3198 |
+
{
|
3199 |
+
"epoch": 14.11566265060241,
|
3200 |
+
"grad_norm": 0.13601845285094027,
|
3201 |
+
"learning_rate": 5.669830022063883e-07,
|
3202 |
+
"loss": 0.0014,
|
3203 |
+
"mean_token_accuracy": 0.9996259771287441,
|
3204 |
+
"step": 720
|
3205 |
+
},
|
3206 |
+
{
|
3207 |
+
"epoch": 14.11566265060241,
|
3208 |
+
"eval_loss": 1.008071780204773,
|
3209 |
+
"eval_mean_token_accuracy": 0.8852501450297988,
|
3210 |
+
"eval_runtime": 69.5899,
|
3211 |
+
"eval_samples_per_second": 12.258,
|
3212 |
+
"eval_steps_per_second": 1.538,
|
3213 |
+
"step": 720
|
3214 |
+
},
|
3215 |
+
{
|
3216 |
+
"epoch": 14.154216867469879,
|
3217 |
+
"grad_norm": 0.07361085391354506,
|
3218 |
+
"learning_rate": 5.178467655572417e-07,
|
3219 |
+
"loss": 0.0013,
|
3220 |
+
"mean_token_accuracy": 0.999610710889101,
|
3221 |
+
"step": 722
|
3222 |
+
},
|
3223 |
+
{
|
3224 |
+
"epoch": 14.19277108433735,
|
3225 |
+
"grad_norm": 0.13110789138181567,
|
3226 |
+
"learning_rate": 4.7091875218609135e-07,
|
3227 |
+
"loss": 0.0013,
|
3228 |
+
"mean_token_accuracy": 0.9995413981378078,
|
3229 |
+
"step": 724
|
3230 |
+
},
|
3231 |
+
{
|
3232 |
+
"epoch": 14.23132530120482,
|
3233 |
+
"grad_norm": 0.13427894721533884,
|
3234 |
+
"learning_rate": 4.262024770170625e-07,
|
3235 |
+
"loss": 0.0014,
|
3236 |
+
"mean_token_accuracy": 0.9995191134512424,
|
3237 |
+
"step": 726
|
3238 |
+
},
|
3239 |
+
{
|
3240 |
+
"epoch": 14.269879518072289,
|
3241 |
+
"grad_norm": 0.11780039568540966,
|
3242 |
+
"learning_rate": 3.8370128931432767e-07,
|
3243 |
+
"loss": 0.0014,
|
3244 |
+
"mean_token_accuracy": 0.9995191134512424,
|
3245 |
+
"step": 728
|
3246 |
+
},
|
3247 |
+
{
|
3248 |
+
"epoch": 14.30843373493976,
|
3249 |
+
"grad_norm": 0.10723204604717335,
|
3250 |
+
"learning_rate": 3.4341837243126784e-07,
|
3251 |
+
"loss": 0.0011,
|
3252 |
+
"mean_token_accuracy": 0.9995954446494579,
|
3253 |
+
"step": 730
|
3254 |
+
},
|
3255 |
+
{
|
3256 |
+
"epoch": 14.346987951807229,
|
3257 |
+
"grad_norm": 0.12499794214768714,
|
3258 |
+
"learning_rate": 3.053567435720195e-07,
|
3259 |
+
"loss": 0.0013,
|
3260 |
+
"mean_token_accuracy": 0.9995965473353863,
|
3261 |
+
"step": 732
|
3262 |
+
},
|
3263 |
+
{
|
3264 |
+
"epoch": 14.385542168674698,
|
3265 |
+
"grad_norm": 0.10656431757764143,
|
3266 |
+
"learning_rate": 2.6951925356549554e-07,
|
3267 |
+
"loss": 0.0014,
|
3268 |
+
"mean_token_accuracy": 0.9995496459305286,
|
3269 |
+
"step": 734
|
3270 |
+
},
|
3271 |
+
{
|
3272 |
+
"epoch": 14.42409638554217,
|
3273 |
+
"grad_norm": 0.11531561120886899,
|
3274 |
+
"learning_rate": 2.359085866518562e-07,
|
3275 |
+
"loss": 0.0013,
|
3276 |
+
"mean_token_accuracy": 0.9995420128107071,
|
3277 |
+
"step": 736
|
3278 |
+
},
|
3279 |
+
{
|
3280 |
+
"epoch": 14.462650602409639,
|
3281 |
+
"grad_norm": 0.10344106361490216,
|
3282 |
+
"learning_rate": 2.0452726028144963e-07,
|
3283 |
+
"loss": 0.0014,
|
3284 |
+
"mean_token_accuracy": 0.9995138049125671,
|
3285 |
+
"step": 738
|
3286 |
+
},
|
3287 |
+
{
|
3288 |
+
"epoch": 14.501204819277108,
|
3289 |
+
"grad_norm": 0.10683466554674165,
|
3290 |
+
"learning_rate": 1.7537762492626953e-07,
|
3291 |
+
"loss": 0.0013,
|
3292 |
+
"mean_token_accuracy": 0.9995725452899933,
|
3293 |
+
"step": 740
|
3294 |
+
},
|
3295 |
+
{
|
3296 |
+
"epoch": 14.501204819277108,
|
3297 |
+
"eval_loss": 1.00869619846344,
|
3298 |
+
"eval_mean_token_accuracy": 0.8853217357787017,
|
3299 |
+
"eval_runtime": 69.3589,
|
3300 |
+
"eval_samples_per_second": 12.298,
|
3301 |
+
"eval_steps_per_second": 1.543,
|
3302 |
+
"step": 740
|
3303 |
+
},
|
3304 |
+
{
|
3305 |
+
"epoch": 14.539759036144579,
|
3306 |
+
"grad_norm": 0.13500845194083458,
|
3307 |
+
"learning_rate": 1.484618639038926e-07,
|
3308 |
+
"loss": 0.0013,
|
3309 |
+
"mean_token_accuracy": 0.9995496459305286,
|
3310 |
+
"step": 742
|
3311 |
+
},
|
3312 |
+
{
|
3313 |
+
"epoch": 14.578313253012048,
|
3314 |
+
"grad_norm": 0.10277444758015324,
|
3315 |
+
"learning_rate": 1.2378199321394945e-07,
|
3316 |
+
"loss": 0.0011,
|
3317 |
+
"mean_token_accuracy": 0.9996412433683872,
|
3318 |
+
"step": 744
|
3319 |
+
},
|
3320 |
+
{
|
3321 |
+
"epoch": 14.616867469879518,
|
3322 |
+
"grad_norm": 0.13757719889150138,
|
3323 |
+
"learning_rate": 1.0133986138712192e-07,
|
3324 |
+
"loss": 0.0014,
|
3325 |
+
"mean_token_accuracy": 0.9994969069957733,
|
3326 |
+
"step": 746
|
3327 |
+
},
|
3328 |
+
{
|
3329 |
+
"epoch": 14.655421686746989,
|
3330 |
+
"grad_norm": 0.10671677663082194,
|
3331 |
+
"learning_rate": 8.11371493467039e-08,
|
3332 |
+
"loss": 0.0019,
|
3333 |
+
"mean_token_accuracy": 0.9994580484926701,
|
3334 |
+
"step": 748
|
3335 |
+
},
|
3336 |
+
{
|
3337 |
+
"epoch": 14.693975903614458,
|
3338 |
+
"grad_norm": 0.11699985233599694,
|
3339 |
+
"learning_rate": 6.31753702826754e-08,
|
3340 |
+
"loss": 0.0016,
|
3341 |
+
"mean_token_accuracy": 0.9996336102485657,
|
3342 |
+
"step": 750
|
3343 |
+
},
|
3344 |
+
{
|
3345 |
+
"epoch": 14.732530120481927,
|
3346 |
+
"grad_norm": 0.11852201973617134,
|
3347 |
+
"learning_rate": 4.745586953837977e-08,
|
3348 |
+
"loss": 0.0014,
|
3349 |
+
"mean_token_accuracy": 0.9995475225150585,
|
3350 |
+
"step": 752
|
3351 |
+
},
|
3352 |
+
{
|
3353 |
+
"epoch": 14.771084337349398,
|
3354 |
+
"grad_norm": 0.1334526665028109,
|
3355 |
+
"learning_rate": 3.397982450976112e-08,
|
3356 |
+
"loss": 0.0015,
|
3357 |
+
"mean_token_accuracy": 0.9995114803314209,
|
3358 |
+
"step": 754
|
3359 |
+
},
|
3360 |
+
{
|
3361 |
+
"epoch": 14.809638554216868,
|
3362 |
+
"grad_norm": 0.13895005076813235,
|
3363 |
+
"learning_rate": 2.274824455715807e-08,
|
3364 |
+
"loss": 0.0014,
|
3365 |
+
"mean_token_accuracy": 0.9995496459305286,
|
3366 |
+
"step": 756
|
3367 |
+
},
|
3368 |
+
{
|
3369 |
+
"epoch": 14.848192771084337,
|
3370 |
+
"grad_norm": 0.11401752929884874,
|
3371 |
+
"learning_rate": 1.376197092972098e-08,
|
3372 |
+
"loss": 0.0013,
|
3373 |
+
"mean_token_accuracy": 0.9995725452899933,
|
3374 |
+
"step": 758
|
3375 |
+
},
|
3376 |
+
{
|
3377 |
+
"epoch": 14.886746987951808,
|
3378 |
+
"grad_norm": 0.1133344451356705,
|
3379 |
+
"learning_rate": 7.0216767023889575e-09,
|
3380 |
+
"loss": 0.0012,
|
3381 |
+
"mean_token_accuracy": 0.9996488764882088,
|
3382 |
+
"step": 760
|
3383 |
+
},
|
3384 |
+
{
|
3385 |
+
"epoch": 14.886746987951808,
|
3386 |
+
"eval_loss": 1.0088684558868408,
|
3387 |
+
"eval_mean_token_accuracy": 0.8853153948471925,
|
3388 |
+
"eval_runtime": 69.333,
|
3389 |
+
"eval_samples_per_second": 12.303,
|
3390 |
+
"eval_steps_per_second": 1.543,
|
3391 |
+
"step": 760
|
3392 |
+
},
|
3393 |
+
{
|
3394 |
+
"epoch": 14.925301204819277,
|
3395 |
+
"grad_norm": 0.09678481987597229,
|
3396 |
+
"learning_rate": 2.527866725493544e-09,
|
3397 |
+
"loss": 0.0014,
|
3398 |
+
"mean_token_accuracy": 0.9995649121701717,
|
3399 |
+
"step": 762
|
3400 |
+
},
|
3401 |
+
{
|
3402 |
+
"epoch": 14.963855421686747,
|
3403 |
+
"grad_norm": 0.430926247169553,
|
3404 |
+
"learning_rate": 2.808775869189706e-10,
|
3405 |
+
"loss": 0.0036,
|
3406 |
+
"mean_token_accuracy": 0.9991543292999268,
|
3407 |
+
"step": 764
|
3408 |
+
},
|
3409 |
+
{
|
3410 |
+
"epoch": 14.983132530120482,
|
3411 |
+
"step": 765,
|
3412 |
+
"total_flos": 73182014865408.0,
|
3413 |
+
"train_loss": 0.0,
|
3414 |
+
"train_runtime": 4.0071,
|
3415 |
+
"train_samples_per_second": 6210.29,
|
3416 |
+
"train_steps_per_second": 190.913
|
3417 |
+
}
|
3418 |
+
],
|
3419 |
+
"logging_steps": 2,
|
3420 |
+
"max_steps": 765,
|
3421 |
+
"num_input_tokens_seen": 0,
|
3422 |
+
"num_train_epochs": 15,
|
3423 |
+
"save_steps": 3.0,
|
3424 |
+
"stateful_callbacks": {
|
3425 |
+
"TrainerControl": {
|
3426 |
+
"args": {
|
3427 |
+
"should_epoch_stop": false,
|
3428 |
+
"should_evaluate": false,
|
3429 |
+
"should_log": false,
|
3430 |
+
"should_save": true,
|
3431 |
+
"should_training_stop": true
|
3432 |
+
},
|
3433 |
+
"attributes": {}
|
3434 |
+
}
|
3435 |
+
},
|
3436 |
+
"total_flos": 73182014865408.0,
|
3437 |
+
"train_batch_size": 4,
|
3438 |
+
"trial_name": null,
|
3439 |
+
"trial_params": null
|
3440 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1162c39e39e5cf5ae4306c2f10a421ba80c1d368272f171bc4d433328c59e183
|
3 |
+
size 7288
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|