End of training
Browse files
README.md
ADDED
@@ -0,0 +1,241 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
base_model: answerdotai/ModernBERT-large
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
model-index:
|
8 |
+
- name: modernbert-flowlm-tulu
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# modernbert-flowlm-tulu
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [answerdotai/ModernBERT-large](https://huggingface.co/answerdotai/ModernBERT-large) on an unknown dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 1.6810
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Intended uses & limitations
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training and evaluation data
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
### Training hyperparameters
|
36 |
+
|
37 |
+
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 5e-05
|
39 |
+
- train_batch_size: 32
|
40 |
+
- eval_batch_size: 32
|
41 |
+
- seed: 42
|
42 |
+
- distributed_type: multi-GPU
|
43 |
+
- num_devices: 4
|
44 |
+
- total_train_batch_size: 128
|
45 |
+
- total_eval_batch_size: 128
|
46 |
+
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
47 |
+
- lr_scheduler_type: cosine
|
48 |
+
- num_epochs: 6
|
49 |
+
|
50 |
+
### Training results
|
51 |
+
|
52 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
53 |
+
|:-------------:|:------:|:-----:|:---------------:|
|
54 |
+
| No log | 0.0332 | 200 | 1.9389 |
|
55 |
+
| No log | 0.0664 | 400 | 1.8775 |
|
56 |
+
| 1.9745 | 0.0997 | 600 | 1.8439 |
|
57 |
+
| 1.9745 | 0.1329 | 800 | 1.8225 |
|
58 |
+
| 1.8208 | 0.1661 | 1000 | 1.8054 |
|
59 |
+
| 1.8208 | 0.1993 | 1200 | 1.7931 |
|
60 |
+
| 1.8208 | 0.2326 | 1400 | 1.7823 |
|
61 |
+
| 1.7755 | 0.2658 | 1600 | 1.7738 |
|
62 |
+
| 1.7755 | 0.2990 | 1800 | 1.7662 |
|
63 |
+
| 1.754 | 0.3322 | 2000 | 1.7595 |
|
64 |
+
| 1.754 | 0.3654 | 2200 | 1.7548 |
|
65 |
+
| 1.754 | 0.3987 | 2400 | 1.7496 |
|
66 |
+
| 1.748 | 0.4319 | 2600 | 1.7454 |
|
67 |
+
| 1.748 | 0.4651 | 2800 | 1.7418 |
|
68 |
+
| 1.7386 | 0.4983 | 3000 | 1.7375 |
|
69 |
+
| 1.7386 | 0.5316 | 3200 | 1.7339 |
|
70 |
+
| 1.7386 | 0.5648 | 3400 | 1.7309 |
|
71 |
+
| 1.7238 | 0.5980 | 3600 | 1.7283 |
|
72 |
+
| 1.7238 | 0.6312 | 3800 | 1.7255 |
|
73 |
+
| 1.7212 | 0.6645 | 4000 | 1.7230 |
|
74 |
+
| 1.7212 | 0.6977 | 4200 | 1.7210 |
|
75 |
+
| 1.7212 | 0.7309 | 4400 | 1.7186 |
|
76 |
+
| 1.7097 | 0.7641 | 4600 | 1.7161 |
|
77 |
+
| 1.7097 | 0.7973 | 4800 | 1.7144 |
|
78 |
+
| 1.6998 | 0.8306 | 5000 | 1.7128 |
|
79 |
+
| 1.6998 | 0.8638 | 5200 | 1.7110 |
|
80 |
+
| 1.6998 | 0.8970 | 5400 | 1.7095 |
|
81 |
+
| 1.7027 | 0.9302 | 5600 | 1.7085 |
|
82 |
+
| 1.7027 | 0.9635 | 5800 | 1.7069 |
|
83 |
+
| 1.7137 | 0.9967 | 6000 | 1.7053 |
|
84 |
+
| 1.7137 | 1.0299 | 6200 | 1.7043 |
|
85 |
+
| 1.7137 | 1.0631 | 6400 | 1.7031 |
|
86 |
+
| 1.7008 | 1.0963 | 6600 | 1.7021 |
|
87 |
+
| 1.7008 | 1.1296 | 6800 | 1.7009 |
|
88 |
+
| 1.6911 | 1.1628 | 7000 | 1.7000 |
|
89 |
+
| 1.6911 | 1.1960 | 7200 | 1.6990 |
|
90 |
+
| 1.6911 | 1.2292 | 7400 | 1.6979 |
|
91 |
+
| 1.6869 | 1.2625 | 7600 | 1.6971 |
|
92 |
+
| 1.6869 | 1.2957 | 7800 | 1.6963 |
|
93 |
+
| 1.6845 | 1.3289 | 8000 | 1.6959 |
|
94 |
+
| 1.6845 | 1.3621 | 8200 | 1.6952 |
|
95 |
+
| 1.6845 | 1.3953 | 8400 | 1.6943 |
|
96 |
+
| 1.6849 | 1.4286 | 8600 | 1.6936 |
|
97 |
+
| 1.6849 | 1.4618 | 8800 | 1.6931 |
|
98 |
+
| 1.6774 | 1.4950 | 9000 | 1.6924 |
|
99 |
+
| 1.6774 | 1.5282 | 9200 | 1.6919 |
|
100 |
+
| 1.6774 | 1.5615 | 9400 | 1.6915 |
|
101 |
+
| 1.6595 | 1.5947 | 9600 | 1.6908 |
|
102 |
+
| 1.6595 | 1.6279 | 9800 | 1.6905 |
|
103 |
+
| 1.6812 | 1.6611 | 10000 | 1.6901 |
|
104 |
+
| 1.6812 | 1.6944 | 10200 | 1.6893 |
|
105 |
+
| 1.6812 | 1.7276 | 10400 | 1.6892 |
|
106 |
+
| 1.681 | 1.7608 | 10600 | 1.6889 |
|
107 |
+
| 1.681 | 1.7940 | 10800 | 1.6882 |
|
108 |
+
| 1.6775 | 1.8272 | 11000 | 1.6877 |
|
109 |
+
| 1.6775 | 1.8605 | 11200 | 1.6875 |
|
110 |
+
| 1.6775 | 1.8937 | 11400 | 1.6874 |
|
111 |
+
| 1.6709 | 1.9269 | 11600 | 1.6868 |
|
112 |
+
| 1.6709 | 1.9601 | 11800 | 1.6865 |
|
113 |
+
| 1.6713 | 1.9934 | 12000 | 1.6864 |
|
114 |
+
| 1.6713 | 2.0266 | 12200 | 1.6861 |
|
115 |
+
| 1.6713 | 2.0598 | 12400 | 1.6859 |
|
116 |
+
| 1.6751 | 2.0930 | 12600 | 1.6857 |
|
117 |
+
| 1.6751 | 2.1262 | 12800 | 1.6856 |
|
118 |
+
| 1.6711 | 2.1595 | 13000 | 1.6852 |
|
119 |
+
| 1.6711 | 2.1927 | 13200 | 1.6851 |
|
120 |
+
| 1.6711 | 2.2259 | 13400 | 1.6847 |
|
121 |
+
| 1.6688 | 2.2591 | 13600 | 1.6845 |
|
122 |
+
| 1.6688 | 2.2924 | 13800 | 1.6845 |
|
123 |
+
| 1.6772 | 2.3256 | 14000 | 1.6843 |
|
124 |
+
| 1.6772 | 2.3588 | 14200 | 1.6840 |
|
125 |
+
| 1.6772 | 2.3920 | 14400 | 1.6838 |
|
126 |
+
| 1.6736 | 2.4252 | 14600 | 1.6838 |
|
127 |
+
| 1.6736 | 2.4585 | 14800 | 1.6835 |
|
128 |
+
| 1.6706 | 2.4917 | 15000 | 1.6834 |
|
129 |
+
| 1.6706 | 2.5249 | 15200 | 1.6833 |
|
130 |
+
| 1.6706 | 2.5581 | 15400 | 1.6832 |
|
131 |
+
| 1.6875 | 2.5914 | 15600 | 1.6831 |
|
132 |
+
| 1.6875 | 2.6246 | 15800 | 1.6830 |
|
133 |
+
| 1.6768 | 2.6578 | 16000 | 1.6830 |
|
134 |
+
| 1.6768 | 2.6910 | 16200 | 1.6828 |
|
135 |
+
| 1.6768 | 2.7243 | 16400 | 1.6827 |
|
136 |
+
| 1.6687 | 2.7575 | 16600 | 1.6825 |
|
137 |
+
| 1.6687 | 2.7907 | 16800 | 1.6824 |
|
138 |
+
| 1.6825 | 2.8239 | 17000 | 1.6824 |
|
139 |
+
| 1.6825 | 2.8571 | 17200 | 1.6823 |
|
140 |
+
| 1.6825 | 2.8904 | 17400 | 1.6823 |
|
141 |
+
| 1.659 | 2.9236 | 17600 | 1.6821 |
|
142 |
+
| 1.659 | 2.9568 | 17800 | 1.6821 |
|
143 |
+
| 1.6602 | 2.9900 | 18000 | 1.6821 |
|
144 |
+
| 1.6602 | 3.0233 | 18200 | 1.6820 |
|
145 |
+
| 1.6602 | 3.0565 | 18400 | 1.6819 |
|
146 |
+
| 1.6733 | 3.0897 | 18600 | 1.6818 |
|
147 |
+
| 1.6733 | 3.1229 | 18800 | 1.6818 |
|
148 |
+
| 1.6549 | 3.1561 | 19000 | 1.6818 |
|
149 |
+
| 1.6549 | 3.1894 | 19200 | 1.6818 |
|
150 |
+
| 1.6549 | 3.2226 | 19400 | 1.6817 |
|
151 |
+
| 1.6702 | 3.2558 | 19600 | 1.6817 |
|
152 |
+
| 1.6702 | 3.2890 | 19800 | 1.6816 |
|
153 |
+
| 1.6834 | 3.3223 | 20000 | 1.6816 |
|
154 |
+
| 1.6834 | 3.3555 | 20200 | 1.6816 |
|
155 |
+
| 1.6834 | 3.3887 | 20400 | 1.6816 |
|
156 |
+
| 1.6614 | 3.4219 | 20600 | 1.6814 |
|
157 |
+
| 1.6614 | 3.4551 | 20800 | 1.6815 |
|
158 |
+
| 1.6807 | 3.4884 | 21000 | 1.6814 |
|
159 |
+
| 1.6807 | 3.5216 | 21200 | 1.6814 |
|
160 |
+
| 1.6807 | 3.5548 | 21400 | 1.6814 |
|
161 |
+
| 1.6731 | 3.5880 | 21600 | 1.6813 |
|
162 |
+
| 1.6731 | 3.6213 | 21800 | 1.6813 |
|
163 |
+
| 1.6742 | 3.6545 | 22000 | 1.6813 |
|
164 |
+
| 1.6742 | 3.6877 | 22200 | 1.6812 |
|
165 |
+
| 1.6742 | 3.7209 | 22400 | 1.6812 |
|
166 |
+
| 1.6676 | 3.7542 | 22600 | 1.6812 |
|
167 |
+
| 1.6676 | 3.7874 | 22800 | 1.6812 |
|
168 |
+
| 1.6521 | 3.8206 | 23000 | 1.6812 |
|
169 |
+
| 1.6521 | 3.8538 | 23200 | 1.6812 |
|
170 |
+
| 1.6521 | 3.8870 | 23400 | 1.6812 |
|
171 |
+
| 1.6715 | 3.9203 | 23600 | 1.6812 |
|
172 |
+
| 1.6715 | 3.9535 | 23800 | 1.6812 |
|
173 |
+
| 1.6681 | 3.9867 | 24000 | 1.6811 |
|
174 |
+
| 1.6681 | 4.0199 | 24200 | 1.6811 |
|
175 |
+
| 1.6681 | 4.0532 | 24400 | 1.6811 |
|
176 |
+
| 1.6582 | 4.0864 | 24600 | 1.6811 |
|
177 |
+
| 1.6582 | 4.1196 | 24800 | 1.6811 |
|
178 |
+
| 1.6742 | 4.1528 | 25000 | 1.6810 |
|
179 |
+
| 1.6742 | 4.1860 | 25200 | 1.6810 |
|
180 |
+
| 1.6742 | 4.2193 | 25400 | 1.6810 |
|
181 |
+
| 1.6789 | 4.2525 | 25600 | 1.6811 |
|
182 |
+
| 1.6789 | 4.2857 | 25800 | 1.6810 |
|
183 |
+
| 1.6629 | 4.3189 | 26000 | 1.6810 |
|
184 |
+
| 1.6629 | 4.3522 | 26200 | 1.6811 |
|
185 |
+
| 1.6629 | 4.3854 | 26400 | 1.6810 |
|
186 |
+
| 1.6597 | 4.4186 | 26600 | 1.6810 |
|
187 |
+
| 1.6597 | 4.4518 | 26800 | 1.6810 |
|
188 |
+
| 1.6652 | 4.4850 | 27000 | 1.6810 |
|
189 |
+
| 1.6652 | 4.5183 | 27200 | 1.6810 |
|
190 |
+
| 1.6652 | 4.5515 | 27400 | 1.6810 |
|
191 |
+
| 1.6695 | 4.5847 | 27600 | 1.6810 |
|
192 |
+
| 1.6695 | 4.6179 | 27800 | 1.6810 |
|
193 |
+
| 1.6708 | 4.6512 | 28000 | 1.6810 |
|
194 |
+
| 1.6708 | 4.6844 | 28200 | 1.6810 |
|
195 |
+
| 1.6708 | 4.7176 | 28400 | 1.6810 |
|
196 |
+
| 1.6652 | 4.7508 | 28600 | 1.6810 |
|
197 |
+
| 1.6652 | 4.7841 | 28800 | 1.6810 |
|
198 |
+
| 1.6595 | 4.8173 | 29000 | 1.6810 |
|
199 |
+
| 1.6595 | 4.8505 | 29200 | 1.6810 |
|
200 |
+
| 1.6595 | 4.8837 | 29400 | 1.6810 |
|
201 |
+
| 1.6703 | 4.9169 | 29600 | 1.6810 |
|
202 |
+
| 1.6703 | 4.9502 | 29800 | 1.6810 |
|
203 |
+
| 1.6695 | 4.9834 | 30000 | 1.6810 |
|
204 |
+
| 1.6695 | 5.0166 | 30200 | 1.6810 |
|
205 |
+
| 1.6695 | 5.0498 | 30400 | 1.6810 |
|
206 |
+
| 1.6569 | 5.0831 | 30600 | 1.6810 |
|
207 |
+
| 1.6569 | 5.1163 | 30800 | 1.6810 |
|
208 |
+
| 1.6733 | 5.1495 | 31000 | 1.6810 |
|
209 |
+
| 1.6733 | 5.1827 | 31200 | 1.6810 |
|
210 |
+
| 1.6733 | 5.2159 | 31400 | 1.6810 |
|
211 |
+
| 1.6808 | 5.2492 | 31600 | 1.6810 |
|
212 |
+
| 1.6808 | 5.2824 | 31800 | 1.6810 |
|
213 |
+
| 1.6678 | 5.3156 | 32000 | 1.6810 |
|
214 |
+
| 1.6678 | 5.3488 | 32200 | 1.6810 |
|
215 |
+
| 1.6678 | 5.3821 | 32400 | 1.6810 |
|
216 |
+
| 1.6737 | 5.4153 | 32600 | 1.6810 |
|
217 |
+
| 1.6737 | 5.4485 | 32800 | 1.6810 |
|
218 |
+
| 1.6751 | 5.4817 | 33000 | 1.6810 |
|
219 |
+
| 1.6751 | 5.5150 | 33200 | 1.6810 |
|
220 |
+
| 1.6751 | 5.5482 | 33400 | 1.6810 |
|
221 |
+
| 1.6709 | 5.5814 | 33600 | 1.6810 |
|
222 |
+
| 1.6709 | 5.6146 | 33800 | 1.6810 |
|
223 |
+
| 1.657 | 5.6478 | 34000 | 1.6810 |
|
224 |
+
| 1.657 | 5.6811 | 34200 | 1.6810 |
|
225 |
+
| 1.657 | 5.7143 | 34400 | 1.6810 |
|
226 |
+
| 1.6678 | 5.7475 | 34600 | 1.6810 |
|
227 |
+
| 1.6678 | 5.7807 | 34800 | 1.6810 |
|
228 |
+
| 1.6635 | 5.8140 | 35000 | 1.6810 |
|
229 |
+
| 1.6635 | 5.8472 | 35200 | 1.6810 |
|
230 |
+
| 1.6635 | 5.8804 | 35400 | 1.6810 |
|
231 |
+
| 1.6781 | 5.9136 | 35600 | 1.6810 |
|
232 |
+
| 1.6781 | 5.9468 | 35800 | 1.6810 |
|
233 |
+
| 1.6722 | 5.9801 | 36000 | 1.6810 |
|
234 |
+
|
235 |
+
|
236 |
+
### Framework versions
|
237 |
+
|
238 |
+
- Transformers 4.53.0
|
239 |
+
- Pytorch 2.7.1+cu126
|
240 |
+
- Datasets 3.6.0
|
241 |
+
- Tokenizers 0.21.2
|