Upload RavenForCausalLM
Browse files- config.json +0 -3
- generation_config.json +0 -4
- raven_modeling_minimal.py +489 -36
config.json
CHANGED
|
@@ -11,9 +11,7 @@
|
|
| 11 |
"bias": false,
|
| 12 |
"block_class_name": "SandwichBlock",
|
| 13 |
"block_size": 4096,
|
| 14 |
-
"bos_token_id": 65504,
|
| 15 |
"effective_expected_depth": 132,
|
| 16 |
-
"eos_token_id": 65505,
|
| 17 |
"head_dim": 96,
|
| 18 |
"init_orthogonal": false,
|
| 19 |
"init_strategy": "takase",
|
|
@@ -39,7 +37,6 @@
|
|
| 39 |
"norm_class_name": "RMSNorm_llama",
|
| 40 |
"norm_eps": 1e-06,
|
| 41 |
"num_key_value_heads": 55,
|
| 42 |
-
"pad_token_id": 65509,
|
| 43 |
"padded_vocab_size": 65536,
|
| 44 |
"padding_multiple": 4096,
|
| 45 |
"qk_bias": true,
|
|
|
|
| 11 |
"bias": false,
|
| 12 |
"block_class_name": "SandwichBlock",
|
| 13 |
"block_size": 4096,
|
|
|
|
| 14 |
"effective_expected_depth": 132,
|
|
|
|
| 15 |
"head_dim": 96,
|
| 16 |
"init_orthogonal": false,
|
| 17 |
"init_strategy": "takase",
|
|
|
|
| 37 |
"norm_class_name": "RMSNorm_llama",
|
| 38 |
"norm_eps": 1e-06,
|
| 39 |
"num_key_value_heads": 55,
|
|
|
|
| 40 |
"padded_vocab_size": 65536,
|
| 41 |
"padding_multiple": 4096,
|
| 42 |
"qk_bias": true,
|
generation_config.json
CHANGED
|
@@ -1,8 +1,4 @@
|
|
| 1 |
{
|
| 2 |
"_from_model_config": true,
|
| 3 |
-
"bos_token_id": 65504,
|
| 4 |
-
"eos_token_id": 65505,
|
| 5 |
-
"pad_token_id": 65509,
|
| 6 |
-
"use_cache": true,
|
| 7 |
"transformers_version": "4.44.2"
|
| 8 |
}
|
|
|
|
| 1 |
{
|
| 2 |
"_from_model_config": true,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
"transformers_version": "4.44.2"
|
| 4 |
}
|
raven_modeling_minimal.py
CHANGED
|
@@ -1,11 +1,11 @@
|
|
| 1 |
-
"""Minimal modeling.py file for HF compatibility and funny zero-shot experiments.
|
| 2 |
|
| 3 |
import torch
|
| 4 |
import math
|
| 5 |
|
| 6 |
from torch import Tensor
|
| 7 |
from dataclasses import dataclass
|
| 8 |
-
from typing import Optional, Union
|
| 9 |
|
| 10 |
from .raven_config_minimal import RavenConfig
|
| 11 |
from transformers.cache_utils import Cache, DynamicCache
|
|
@@ -13,6 +13,10 @@ from transformers.cache_utils import Cache, DynamicCache
|
|
| 13 |
###################### Huggingface Glue code I ##################################################################
|
| 14 |
from transformers import PreTrainedModel
|
| 15 |
from transformers.utils import ModelOutput
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
|
| 18 |
class RavenPreTrainedModel(PreTrainedModel):
|
|
@@ -39,7 +43,7 @@ class CausalLMOutputRecurrentLatents(ModelOutput):
|
|
| 39 |
past_key_values: Optional[Cache] = None
|
| 40 |
latent_states: Optional[torch.Tensor] = None
|
| 41 |
hidden_states: Optional[torch.Tensor] = None
|
| 42 |
-
attention_maps: Optional[
|
| 43 |
stats: Optional[dict] = None
|
| 44 |
|
| 45 |
|
|
@@ -66,7 +70,7 @@ class RMSNorm(torch.nn.Module):
|
|
| 66 |
|
| 67 |
|
| 68 |
class HuginnDynamicCache(DynamicCache):
|
| 69 |
-
def __init__(self) -> None:
|
| 70 |
super().__init__()
|
| 71 |
self._seen_tokens = 0
|
| 72 |
self.key_cache: dict[int, dict[int, torch.Tensor]] = {}
|
|
@@ -75,14 +79,24 @@ class HuginnDynamicCache(DynamicCache):
|
|
| 75 |
# the cache is held uncoalesced because certain recurrent steps may be missing for some sequence ids if using
|
| 76 |
# per-token adaptive compute. In those cases, the "lookup_strategy" determines how to proceed
|
| 77 |
# Also, It is critical that the head indices do not overlap with the recurrent iteration indices
|
|
|
|
| 78 |
|
| 79 |
def update(
|
| 80 |
self,
|
| 81 |
key_states: torch.Tensor,
|
| 82 |
value_states: torch.Tensor,
|
| 83 |
step_idx: int,
|
| 84 |
-
lookup_strategy: str =
|
| 85 |
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
# Init
|
| 87 |
if step_idx not in self.key_cache:
|
| 88 |
self.key_cache[step_idx] = {}
|
|
@@ -92,31 +106,49 @@ class HuginnDynamicCache(DynamicCache):
|
|
| 92 |
self._seen_tokens += key_states.shape[-2]
|
| 93 |
# Add entries to cache
|
| 94 |
for idx, entry in enumerate(key_states.unbind(dim=-2)):
|
| 95 |
-
|
|
|
|
|
|
|
| 96 |
self.key_cache[step_idx][self._seen_tokens - key_states.shape[-2] + idx] = entry
|
| 97 |
for idx, entry in enumerate(value_states.unbind(dim=-2)):
|
| 98 |
self.value_cache[step_idx][self._seen_tokens - value_states.shape[-2] + idx] = entry
|
| 99 |
|
| 100 |
# Materialize past state based on lookup strategy:
|
| 101 |
-
if len(self.key_cache[step_idx]) == self._seen_tokens:
|
| 102 |
# All entries are present, materialize cache as normal
|
| 103 |
return (
|
| 104 |
torch.stack(list(self.key_cache[step_idx].values()), dim=-2),
|
| 105 |
torch.stack(list(self.value_cache[step_idx].values()), dim=-2),
|
| 106 |
)
|
| 107 |
else: # some entries where not previously computed
|
| 108 |
-
if lookup_strategy
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
latest_keys = []
|
| 110 |
latest_values = []
|
| 111 |
for token_pos in range(self._seen_tokens):
|
| 112 |
-
#
|
| 113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
if max_step is None:
|
| 115 |
raise ValueError(f"No cache entry found for token position {token_pos}")
|
| 116 |
latest_keys.append(self.key_cache[max_step][token_pos])
|
| 117 |
latest_values.append(self.value_cache[max_step][token_pos])
|
| 118 |
return torch.stack(latest_keys, dim=-2), torch.stack(latest_values, dim=-2)
|
| 119 |
-
elif lookup_strategy
|
| 120 |
existing_keys = []
|
| 121 |
existing_values = []
|
| 122 |
for token_pos in range(self._seen_tokens):
|
|
@@ -124,15 +156,22 @@ class HuginnDynamicCache(DynamicCache):
|
|
| 124 |
existing_keys.append(self.key_cache[step_idx][token_pos])
|
| 125 |
existing_values.append(self.value_cache[step_idx][token_pos])
|
| 126 |
return torch.stack(existing_keys, dim=-2), torch.stack(existing_values, dim=-2)
|
| 127 |
-
elif lookup_strategy
|
| 128 |
rand_keys = []
|
| 129 |
rand_values = []
|
| 130 |
for token_pos in range(self._seen_tokens):
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
return torch.stack(rand_keys, dim=-2), torch.stack(rand_values, dim=-2)
|
| 137 |
else:
|
| 138 |
raise ValueError(f"Unknown lookup strategy: {lookup_strategy}")
|
|
@@ -146,6 +185,18 @@ class HuginnDynamicCache(DynamicCache):
|
|
| 146 |
def get_seq_length(self, step_idx: int = 0) -> int:
|
| 147 |
return self._seen_tokens
|
| 148 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
|
| 150 |
class CausalSelfAttention(torch.nn.Module):
|
| 151 |
def __init__(self, config: RavenConfig) -> None:
|
|
@@ -169,7 +220,8 @@ class CausalSelfAttention(torch.nn.Module):
|
|
| 169 |
step_idx: int,
|
| 170 |
mask: Optional[Tensor] = None,
|
| 171 |
past_key_values: Optional[Cache] = None,
|
| 172 |
-
|
|
|
|
| 173 |
B, S, E = x.shape # batch size, sequence length, embedding dimensionality (n_embd)
|
| 174 |
q, k, v = self.Wqkv(x).split(self.chunks, dim=2)
|
| 175 |
q = q.view(B, S, self.n_head, self.head_dim)
|
|
@@ -189,11 +241,28 @@ class CausalSelfAttention(torch.nn.Module):
|
|
| 189 |
if past_key_values is not None:
|
| 190 |
k, v = past_key_values.update(k, v, step_idx)
|
| 191 |
|
| 192 |
-
|
| 193 |
-
q, k, v, attn_mask=mask
|
| 194 |
-
|
|
|
|
|
|
|
|
|
|
| 195 |
y = y.transpose(1, 2).reshape(B, S, E).contiguous() # reshape is a view if possible (it mostly is)
|
| 196 |
-
return self.proj(y)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 197 |
|
| 198 |
|
| 199 |
class GatedMLP(torch.nn.Module):
|
|
@@ -232,10 +301,12 @@ class SandwichBlock(torch.nn.Module):
|
|
| 232 |
step_idx: int,
|
| 233 |
mask: Optional[Tensor] = None,
|
| 234 |
past_key_values: Optional[Cache] = None,
|
| 235 |
-
|
| 236 |
-
|
|
|
|
|
|
|
| 237 |
x = self.norm_4(self.mlp(self.norm_3(x)) + x)
|
| 238 |
-
return x
|
| 239 |
|
| 240 |
|
| 241 |
class RavenForCausalLM(RavenPreTrainedModel):
|
|
@@ -318,13 +389,18 @@ class RavenForCausalLM(RavenPreTrainedModel):
|
|
| 318 |
|
| 319 |
if use_cache and past_key_values is None:
|
| 320 |
past_key_values = HuginnDynamicCache()
|
|
|
|
|
|
|
| 321 |
|
| 322 |
# Non-recurrent prelude
|
| 323 |
for block_idx, block in enumerate(self.transformer.prelude):
|
| 324 |
-
input_embeds = block(
|
|
|
|
|
|
|
|
|
|
| 325 |
|
| 326 |
# Main recurrence
|
| 327 |
-
x, num_steps_no_grad, num_steps_with_grad, xk = self.iterate_forward(
|
| 328 |
input_embeds, # type: ignore
|
| 329 |
input_states,
|
| 330 |
freqs_cis,
|
|
@@ -332,12 +408,14 @@ class RavenForCausalLM(RavenPreTrainedModel):
|
|
| 332 |
attention_mask,
|
| 333 |
past_key_values,
|
| 334 |
num_steps,
|
|
|
|
| 335 |
)
|
| 336 |
latent_states = x.clone().detach()
|
| 337 |
|
| 338 |
# Coda layers
|
| 339 |
for block_idx, block in enumerate(self.transformer.coda, start=1):
|
| 340 |
-
x = block(x, freqs_cis, -block_idx, attention_mask, past_key_values)
|
|
|
|
| 341 |
x = self.transformer.ln_f(x)
|
| 342 |
|
| 343 |
# Prediction head, assuming labels really are labels and not equal to input_ids
|
|
@@ -356,7 +434,7 @@ class RavenForCausalLM(RavenPreTrainedModel):
|
|
| 356 |
past_key_values=past_key_values,
|
| 357 |
hidden_states=x if output_details["return_head"] else None,
|
| 358 |
latent_states=latent_states if output_details["return_latents"] else None,
|
| 359 |
-
attention_maps=
|
| 360 |
stats=self.get_stats(logits, x, latent_states, xk, input_embeds, num_steps_no_grad, num_steps_with_grad)
|
| 361 |
if output_details["return_stats"]
|
| 362 |
else None,
|
|
@@ -372,9 +450,9 @@ class RavenForCausalLM(RavenPreTrainedModel):
|
|
| 372 |
mask,
|
| 373 |
past_key_values: Optional[Cache] = None,
|
| 374 |
num_steps: Optional[torch.Tensor] = None,
|
|
|
|
| 375 |
):
|
| 376 |
x = xk = self.initialize_state(input_embeds) if input_states is None else input_states.clone()
|
| 377 |
-
|
| 378 |
if num_steps is None:
|
| 379 |
num_steps_no_grad, num_steps_with_grad = self.randomized_iteration_sampler() # type: ignore
|
| 380 |
elif hasattr(num_steps, "__len__") and len(num_steps) > 1:
|
|
@@ -389,20 +467,123 @@ class RavenForCausalLM(RavenPreTrainedModel):
|
|
| 389 |
# and all parameters are always used
|
| 390 |
for step in range(num_steps_no_grad):
|
| 391 |
xk = x
|
| 392 |
-
x, block_idx = self.core_block_forward(
|
|
|
|
|
|
|
| 393 |
|
| 394 |
for step in range(num_steps_with_grad):
|
| 395 |
xk = x
|
| 396 |
-
x, block_idx = self.core_block_forward(
|
| 397 |
-
|
|
|
|
|
|
|
| 398 |
|
| 399 |
def core_block_forward(
|
| 400 |
-
self,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 401 |
):
|
| 402 |
x = self.transformer.adapter(torch.cat([x, input_embeds], dim=-1))
|
| 403 |
for idx, block in enumerate(self.transformer.core_block, start=1):
|
| 404 |
-
x = block(x, freqs_cis, block_idx + idx, mask, past_key_values)
|
| 405 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 406 |
|
| 407 |
@torch._dynamo.disable(recursive=False) # type: ignore
|
| 408 |
def randomized_iteration_sampler(self) -> tuple[torch.Tensor, torch.Tensor]:
|
|
@@ -462,6 +643,278 @@ class RavenForCausalLM(RavenPreTrainedModel):
|
|
| 462 |
model_inputs[key] = value
|
| 463 |
return model_inputs
|
| 464 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 465 |
def get_stats(self, logits, x, latent_states, xk, input_embeds, num_steps_no_grad, num_steps_with_grad):
|
| 466 |
probs = torch.softmax(logits.float(), dim=-1)
|
| 467 |
prob_entropy = torch.where(probs > 0, -probs * probs.log(), 0).sum(dim=-1)
|
|
|
|
| 1 |
+
"""Minimal modeling.py file for HF compatibility and funny zero-shot experiments. Use only for inference."""
|
| 2 |
|
| 3 |
import torch
|
| 4 |
import math
|
| 5 |
|
| 6 |
from torch import Tensor
|
| 7 |
from dataclasses import dataclass
|
| 8 |
+
from typing import Optional, Union, Any
|
| 9 |
|
| 10 |
from .raven_config_minimal import RavenConfig
|
| 11 |
from transformers.cache_utils import Cache, DynamicCache
|
|
|
|
| 13 |
###################### Huggingface Glue code I ##################################################################
|
| 14 |
from transformers import PreTrainedModel
|
| 15 |
from transformers.utils import ModelOutput
|
| 16 |
+
from transformers.generation.utils import GenerateDecoderOnlyOutput
|
| 17 |
+
|
| 18 |
+
import torch.nn.functional as F
|
| 19 |
+
from transformers import GenerationConfig
|
| 20 |
|
| 21 |
|
| 22 |
class RavenPreTrainedModel(PreTrainedModel):
|
|
|
|
| 43 |
past_key_values: Optional[Cache] = None
|
| 44 |
latent_states: Optional[torch.Tensor] = None
|
| 45 |
hidden_states: Optional[torch.Tensor] = None
|
| 46 |
+
attention_maps: Optional[dict[int, torch.Tensor]] = None
|
| 47 |
stats: Optional[dict] = None
|
| 48 |
|
| 49 |
|
|
|
|
| 70 |
|
| 71 |
|
| 72 |
class HuginnDynamicCache(DynamicCache):
|
| 73 |
+
def __init__(self, lookup_strategy: str = "full") -> None:
|
| 74 |
super().__init__()
|
| 75 |
self._seen_tokens = 0
|
| 76 |
self.key_cache: dict[int, dict[int, torch.Tensor]] = {}
|
|
|
|
| 79 |
# the cache is held uncoalesced because certain recurrent steps may be missing for some sequence ids if using
|
| 80 |
# per-token adaptive compute. In those cases, the "lookup_strategy" determines how to proceed
|
| 81 |
# Also, It is critical that the head indices do not overlap with the recurrent iteration indices
|
| 82 |
+
self.lookup_strategy = lookup_strategy
|
| 83 |
|
| 84 |
def update(
|
| 85 |
self,
|
| 86 |
key_states: torch.Tensor,
|
| 87 |
value_states: torch.Tensor,
|
| 88 |
step_idx: int,
|
| 89 |
+
lookup_strategy: Optional[str] = None,
|
| 90 |
) -> tuple[torch.Tensor, torch.Tensor]:
|
| 91 |
+
lookup_strategy = self.lookup_strategy if lookup_strategy is None else lookup_strategy
|
| 92 |
+
if "compress-" in self.lookup_strategy and step_idx > 1: # hardcode for current model!
|
| 93 |
+
compression_stage = int(self.lookup_strategy.split("compress-")[1][1:])
|
| 94 |
+
if "compress-s" in self.lookup_strategy:
|
| 95 |
+
new_step_idx = (step_idx - 2) % compression_stage + 2
|
| 96 |
+
else:
|
| 97 |
+
new_step_idx = (step_idx - 2) // compression_stage + 2
|
| 98 |
+
# @ print(step_idx, new_step_idx, compression_stage)
|
| 99 |
+
step_idx = new_step_idx
|
| 100 |
# Init
|
| 101 |
if step_idx not in self.key_cache:
|
| 102 |
self.key_cache[step_idx] = {}
|
|
|
|
| 106 |
self._seen_tokens += key_states.shape[-2]
|
| 107 |
# Add entries to cache
|
| 108 |
for idx, entry in enumerate(key_states.unbind(dim=-2)):
|
| 109 |
+
if "compress-" not in self.lookup_strategy:
|
| 110 |
+
assert step_idx < 0 or self._seen_tokens - key_states.shape[-2] + idx not in self.key_cache[step_idx]
|
| 111 |
+
# print(f"Overwrote cache entry for step_idx {step_idx}") # likely the head
|
| 112 |
self.key_cache[step_idx][self._seen_tokens - key_states.shape[-2] + idx] = entry
|
| 113 |
for idx, entry in enumerate(value_states.unbind(dim=-2)):
|
| 114 |
self.value_cache[step_idx][self._seen_tokens - value_states.shape[-2] + idx] = entry
|
| 115 |
|
| 116 |
# Materialize past state based on lookup strategy:
|
| 117 |
+
if len(self.key_cache[step_idx]) == self._seen_tokens or self.lookup_strategy == "full":
|
| 118 |
# All entries are present, materialize cache as normal
|
| 119 |
return (
|
| 120 |
torch.stack(list(self.key_cache[step_idx].values()), dim=-2),
|
| 121 |
torch.stack(list(self.value_cache[step_idx].values()), dim=-2),
|
| 122 |
)
|
| 123 |
else: # some entries where not previously computed
|
| 124 |
+
# if lookup_strategy.startswith("latest"):
|
| 125 |
+
# latest_keys = []
|
| 126 |
+
# latest_values = []
|
| 127 |
+
# for token_pos in range(self._seen_tokens):
|
| 128 |
+
# # Find the latest step that has this token position
|
| 129 |
+
# max_step = max((s for s in range(step_idx + 1) if token_pos in self.key_cache[s]), default=None)
|
| 130 |
+
# if max_step is None:
|
| 131 |
+
# raise ValueError(f"No cache entry found for token position {token_pos}")
|
| 132 |
+
# latest_keys.append(self.key_cache[max_step][token_pos])
|
| 133 |
+
# latest_values.append(self.value_cache[max_step][token_pos])
|
| 134 |
+
# return torch.stack(latest_keys, dim=-2), torch.stack(latest_values, dim=-2)
|
| 135 |
+
if lookup_strategy.startswith("latest-m4"):
|
| 136 |
latest_keys = []
|
| 137 |
latest_values = []
|
| 138 |
for token_pos in range(self._seen_tokens):
|
| 139 |
+
# For steps >= 2, use modulo 4
|
| 140 |
+
if step_idx >= 2:
|
| 141 |
+
# Find valid steps for this token position
|
| 142 |
+
valid_steps = [s for s in range(step_idx + 1) if token_pos in self.key_cache[s]]
|
| 143 |
+
max_step = max([s for s in valid_steps if s >= 2 and s % 4 == step_idx % 4])
|
| 144 |
+
else:
|
| 145 |
+
max_step = step_idx if token_pos in self.key_cache[step_idx] else 0
|
| 146 |
if max_step is None:
|
| 147 |
raise ValueError(f"No cache entry found for token position {token_pos}")
|
| 148 |
latest_keys.append(self.key_cache[max_step][token_pos])
|
| 149 |
latest_values.append(self.value_cache[max_step][token_pos])
|
| 150 |
return torch.stack(latest_keys, dim=-2), torch.stack(latest_values, dim=-2)
|
| 151 |
+
elif lookup_strategy.startswith("skip"):
|
| 152 |
existing_keys = []
|
| 153 |
existing_values = []
|
| 154 |
for token_pos in range(self._seen_tokens):
|
|
|
|
| 156 |
existing_keys.append(self.key_cache[step_idx][token_pos])
|
| 157 |
existing_values.append(self.value_cache[step_idx][token_pos])
|
| 158 |
return torch.stack(existing_keys, dim=-2), torch.stack(existing_values, dim=-2)
|
| 159 |
+
elif lookup_strategy.startswith("randomized"): # sanity check
|
| 160 |
rand_keys = []
|
| 161 |
rand_values = []
|
| 162 |
for token_pos in range(self._seen_tokens):
|
| 163 |
+
if step_idx < 2: # For prelude steps
|
| 164 |
+
max_step = step_idx if token_pos in self.key_cache[step_idx] else 0
|
| 165 |
+
else: # Get all steps from same block position
|
| 166 |
+
curr_modulo = (step_idx - 2) % 4 + 2
|
| 167 |
+
valid_steps = [
|
| 168 |
+
s
|
| 169 |
+
for s in range(2, step_idx + 1)
|
| 170 |
+
if (s - 2) % 4 + 2 == curr_modulo and token_pos in self.key_cache[s]
|
| 171 |
+
]
|
| 172 |
+
max_step = valid_steps[torch.randint(len(valid_steps), (1,))]
|
| 173 |
+
rand_keys.append(self.key_cache[max_step][token_pos])
|
| 174 |
+
rand_values.append(self.value_cache[max_step][token_pos])
|
| 175 |
return torch.stack(rand_keys, dim=-2), torch.stack(rand_values, dim=-2)
|
| 176 |
else:
|
| 177 |
raise ValueError(f"Unknown lookup strategy: {lookup_strategy}")
|
|
|
|
| 185 |
def get_seq_length(self, step_idx: int = 0) -> int:
|
| 186 |
return self._seen_tokens
|
| 187 |
|
| 188 |
+
def get_memory_usage(self) -> float:
|
| 189 |
+
total_bytes = 0
|
| 190 |
+
# For each recurrent step/layer index
|
| 191 |
+
for step_idx in self.key_cache:
|
| 192 |
+
# Get the sequence cache for this step
|
| 193 |
+
key_seq_cache = self.key_cache[step_idx]
|
| 194 |
+
for seq_idx in key_seq_cache:
|
| 195 |
+
key_tensor = key_seq_cache[seq_idx]
|
| 196 |
+
# Add memory for of key tensors, assuming value is the same
|
| 197 |
+
total_bytes += key_tensor.nelement() * key_tensor.element_size()
|
| 198 |
+
return total_bytes * 2 / (1024 * 1024)
|
| 199 |
+
|
| 200 |
|
| 201 |
class CausalSelfAttention(torch.nn.Module):
|
| 202 |
def __init__(self, config: RavenConfig) -> None:
|
|
|
|
| 220 |
step_idx: int,
|
| 221 |
mask: Optional[Tensor] = None,
|
| 222 |
past_key_values: Optional[Cache] = None,
|
| 223 |
+
return_attn: bool = False,
|
| 224 |
+
) -> tuple[Tensor, Optional[Tensor]]:
|
| 225 |
B, S, E = x.shape # batch size, sequence length, embedding dimensionality (n_embd)
|
| 226 |
q, k, v = self.Wqkv(x).split(self.chunks, dim=2)
|
| 227 |
q = q.view(B, S, self.n_head, self.head_dim)
|
|
|
|
| 241 |
if past_key_values is not None:
|
| 242 |
k, v = past_key_values.update(k, v, step_idx)
|
| 243 |
|
| 244 |
+
if return_attn:
|
| 245 |
+
y, attention_map = self.compute_eager_sdpa(q, k, v, attn_mask=mask)
|
| 246 |
+
else:
|
| 247 |
+
y = torch.nn.functional.scaled_dot_product_attention(
|
| 248 |
+
q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=q.shape[2] > 1
|
| 249 |
+
)
|
| 250 |
y = y.transpose(1, 2).reshape(B, S, E).contiguous() # reshape is a view if possible (it mostly is)
|
| 251 |
+
return self.proj(y), attention_map if return_attn else None
|
| 252 |
+
|
| 253 |
+
def compute_eager_sdpa(self, q, k, v, attn_mask):
|
| 254 |
+
scale = 1.0 / math.sqrt(self.head_dim)
|
| 255 |
+
scores = torch.matmul(q, k.transpose(-2, -1)) * scale
|
| 256 |
+
|
| 257 |
+
if attn_mask is not None:
|
| 258 |
+
scores = scores + attn_mask
|
| 259 |
+
if q.shape[2] > 1:
|
| 260 |
+
causal_mask = torch.triu(torch.ones(q.shape[2], q.shape[2]), diagonal=1).bool()
|
| 261 |
+
scores.masked_fill_(causal_mask.to(scores.device), float("-inf"))
|
| 262 |
+
|
| 263 |
+
attention_weights = torch.nn.functional.softmax(scores, dim=-1)
|
| 264 |
+
y = torch.matmul(attention_weights, v)
|
| 265 |
+
return y, attention_weights.max(dim=1)[0]
|
| 266 |
|
| 267 |
|
| 268 |
class GatedMLP(torch.nn.Module):
|
|
|
|
| 301 |
step_idx: int,
|
| 302 |
mask: Optional[Tensor] = None,
|
| 303 |
past_key_values: Optional[Cache] = None,
|
| 304 |
+
return_attn: bool = False,
|
| 305 |
+
) -> tuple[Tensor, Optional[Tensor]]:
|
| 306 |
+
attn_out, attn_map = self.attn(self.norm_1(x), freqs_cis, step_idx, mask, past_key_values, return_attn)
|
| 307 |
+
x = self.norm_2(attn_out + x)
|
| 308 |
x = self.norm_4(self.mlp(self.norm_3(x)) + x)
|
| 309 |
+
return x, attn_map
|
| 310 |
|
| 311 |
|
| 312 |
class RavenForCausalLM(RavenPreTrainedModel):
|
|
|
|
| 389 |
|
| 390 |
if use_cache and past_key_values is None:
|
| 391 |
past_key_values = HuginnDynamicCache()
|
| 392 |
+
attn_maps = {}
|
| 393 |
+
return_attn = output_details["return_attention"]
|
| 394 |
|
| 395 |
# Non-recurrent prelude
|
| 396 |
for block_idx, block in enumerate(self.transformer.prelude):
|
| 397 |
+
input_embeds, attn_map = block(
|
| 398 |
+
input_embeds, freqs_cis, block_idx, attention_mask, past_key_values, return_attn
|
| 399 |
+
)
|
| 400 |
+
attn_maps[block_idx] = attn_map
|
| 401 |
|
| 402 |
# Main recurrence
|
| 403 |
+
x, num_steps_no_grad, num_steps_with_grad, xk, block_idx, attn_maps = self.iterate_forward(
|
| 404 |
input_embeds, # type: ignore
|
| 405 |
input_states,
|
| 406 |
freqs_cis,
|
|
|
|
| 408 |
attention_mask,
|
| 409 |
past_key_values,
|
| 410 |
num_steps,
|
| 411 |
+
attn_maps,
|
| 412 |
)
|
| 413 |
latent_states = x.clone().detach()
|
| 414 |
|
| 415 |
# Coda layers
|
| 416 |
for block_idx, block in enumerate(self.transformer.coda, start=1):
|
| 417 |
+
x, attn_map = block(x, freqs_cis, -block_idx, attention_mask, past_key_values, return_attn)
|
| 418 |
+
attn_maps[-block_idx] = attn_map
|
| 419 |
x = self.transformer.ln_f(x)
|
| 420 |
|
| 421 |
# Prediction head, assuming labels really are labels and not equal to input_ids
|
|
|
|
| 434 |
past_key_values=past_key_values,
|
| 435 |
hidden_states=x if output_details["return_head"] else None,
|
| 436 |
latent_states=latent_states if output_details["return_latents"] else None,
|
| 437 |
+
attention_maps=attn_maps if output_details["return_attention"] else None, # type: ignore
|
| 438 |
stats=self.get_stats(logits, x, latent_states, xk, input_embeds, num_steps_no_grad, num_steps_with_grad)
|
| 439 |
if output_details["return_stats"]
|
| 440 |
else None,
|
|
|
|
| 450 |
mask,
|
| 451 |
past_key_values: Optional[Cache] = None,
|
| 452 |
num_steps: Optional[torch.Tensor] = None,
|
| 453 |
+
attn_maps: dict = {},
|
| 454 |
):
|
| 455 |
x = xk = self.initialize_state(input_embeds) if input_states is None else input_states.clone()
|
|
|
|
| 456 |
if num_steps is None:
|
| 457 |
num_steps_no_grad, num_steps_with_grad = self.randomized_iteration_sampler() # type: ignore
|
| 458 |
elif hasattr(num_steps, "__len__") and len(num_steps) > 1:
|
|
|
|
| 467 |
# and all parameters are always used
|
| 468 |
for step in range(num_steps_no_grad):
|
| 469 |
xk = x
|
| 470 |
+
x, block_idx, attn_maps = self.core_block_forward(
|
| 471 |
+
xk, input_embeds, freqs_cis, mask, past_key_values, block_idx, attn_maps
|
| 472 |
+
)
|
| 473 |
|
| 474 |
for step in range(num_steps_with_grad):
|
| 475 |
xk = x
|
| 476 |
+
x, block_idx, attn_maps = self.core_block_forward(
|
| 477 |
+
xk, input_embeds, freqs_cis, mask, past_key_values, block_idx, attn_maps
|
| 478 |
+
)
|
| 479 |
+
return self.transformer.ln_f(x), num_steps_no_grad, num_steps_with_grad, xk.detach(), block_idx, attn_maps
|
| 480 |
|
| 481 |
def core_block_forward(
|
| 482 |
+
self,
|
| 483 |
+
x,
|
| 484 |
+
input_embeds,
|
| 485 |
+
freqs_cis,
|
| 486 |
+
mask,
|
| 487 |
+
past_key_values,
|
| 488 |
+
block_idx: Union[torch.Tensor, int],
|
| 489 |
+
attn_maps: dict = {},
|
| 490 |
):
|
| 491 |
x = self.transformer.adapter(torch.cat([x, input_embeds], dim=-1))
|
| 492 |
for idx, block in enumerate(self.transformer.core_block, start=1):
|
| 493 |
+
x, attn_map = block(x, freqs_cis, block_idx + idx, mask, past_key_values, return_attn=len(attn_maps) > 0)
|
| 494 |
+
attn_maps[block_idx + idx] = attn_map
|
| 495 |
+
return x, block_idx + idx, attn_maps
|
| 496 |
+
|
| 497 |
+
@torch.no_grad()
|
| 498 |
+
def iterate_one_step(
|
| 499 |
+
self,
|
| 500 |
+
input_embeds,
|
| 501 |
+
input_states,
|
| 502 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 503 |
+
cache_position: Optional[torch.Tensor] = None,
|
| 504 |
+
block_idx: Union[torch.Tensor, int] = 0,
|
| 505 |
+
attention_mask: Optional[Tensor] = None,
|
| 506 |
+
past_key_values: Optional[Cache] = None,
|
| 507 |
+
attn_maps: dict = {},
|
| 508 |
+
):
|
| 509 |
+
if position_ids is None and cache_position is None:
|
| 510 |
+
freqs_cis = self.freqs_cis[:, : input_embeds.shape[1]]
|
| 511 |
+
elif position_ids is not None:
|
| 512 |
+
freqs_cis = self.freqs_cis.index_select(1, position_ids.squeeze())
|
| 513 |
+
elif cache_position is not None:
|
| 514 |
+
freqs_cis = self.freqs_cis[:, cache_position]
|
| 515 |
+
x, block_idx, attn_maps = self.core_block_forward(
|
| 516 |
+
input_states, input_embeds, freqs_cis, attention_mask, past_key_values, block_idx, attn_maps
|
| 517 |
+
)
|
| 518 |
+
return x, block_idx, attn_maps
|
| 519 |
+
|
| 520 |
+
def predict_from_latents(
|
| 521 |
+
self,
|
| 522 |
+
latents,
|
| 523 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 524 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 525 |
+
cache_position: Optional[torch.Tensor] = None,
|
| 526 |
+
past_key_values: Optional[Cache] = None,
|
| 527 |
+
return_attn: bool = False,
|
| 528 |
+
attn_maps: dict = {},
|
| 529 |
+
):
|
| 530 |
+
if position_ids is None and cache_position is None:
|
| 531 |
+
freqs_cis = self.freqs_cis[:, : latents.shape[1]]
|
| 532 |
+
elif position_ids is not None:
|
| 533 |
+
freqs_cis = self.freqs_cis.index_select(1, position_ids.squeeze())
|
| 534 |
+
elif cache_position is not None:
|
| 535 |
+
freqs_cis = self.freqs_cis[:, cache_position]
|
| 536 |
+
x = self.transformer.ln_f(latents)
|
| 537 |
+
# Coda layers
|
| 538 |
+
for block_idx, block in enumerate(self.transformer.coda, start=1):
|
| 539 |
+
x, attn_map = block(x, freqs_cis, -block_idx, attention_mask, past_key_values)
|
| 540 |
+
attn_maps[block_idx] = attn_map
|
| 541 |
+
x = self.transformer.ln_f(x)
|
| 542 |
+
|
| 543 |
+
logits = self.lm_head(x).float()
|
| 544 |
+
|
| 545 |
+
return CausalLMOutputRecurrentLatents(
|
| 546 |
+
loss=torch.as_tensor(0.0),
|
| 547 |
+
log_ppl=torch.as_tensor(0.0),
|
| 548 |
+
logits=logits,
|
| 549 |
+
past_key_values=past_key_values,
|
| 550 |
+
attention_maps=attn_maps if len(attn_maps) > 0 else None,
|
| 551 |
+
)
|
| 552 |
+
|
| 553 |
+
def embed_inputs(
|
| 554 |
+
self,
|
| 555 |
+
input_ids: torch.Tensor,
|
| 556 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 557 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 558 |
+
past_key_values: Optional[Cache] = None,
|
| 559 |
+
use_cache: bool = False,
|
| 560 |
+
cache_position: Optional[torch.Tensor] = None,
|
| 561 |
+
return_attn: bool = False,
|
| 562 |
+
**kwargs,
|
| 563 |
+
) -> tuple[torch.Tensor, int, dict[int, Tensor]]:
|
| 564 |
+
# Support multiple position formats:
|
| 565 |
+
if position_ids is None and cache_position is None:
|
| 566 |
+
freqs_cis = self.freqs_cis[:, : input_ids.shape[1]]
|
| 567 |
+
elif position_ids is not None:
|
| 568 |
+
freqs_cis = self.freqs_cis.index_select(1, position_ids.squeeze())
|
| 569 |
+
elif cache_position is not None:
|
| 570 |
+
freqs_cis = self.freqs_cis[:, cache_position]
|
| 571 |
+
|
| 572 |
+
input_embeds = self.transformer.wte(input_ids)
|
| 573 |
+
|
| 574 |
+
if self.emb_scale != 1:
|
| 575 |
+
input_embeds = input_embeds * self.emb_scale # type: ignore
|
| 576 |
+
|
| 577 |
+
if use_cache and past_key_values is None:
|
| 578 |
+
past_key_values = HuginnDynamicCache()
|
| 579 |
+
|
| 580 |
+
# Non-recurrent prelude
|
| 581 |
+
attn_maps = {}
|
| 582 |
+
for block_idx, block in enumerate(self.transformer.prelude):
|
| 583 |
+
input_embeds, attn_maps = block(
|
| 584 |
+
input_embeds, freqs_cis, block_idx, attention_mask, past_key_values, return_attn
|
| 585 |
+
)
|
| 586 |
+
return input_embeds, block_idx, attn_maps
|
| 587 |
|
| 588 |
@torch._dynamo.disable(recursive=False) # type: ignore
|
| 589 |
def randomized_iteration_sampler(self) -> tuple[torch.Tensor, torch.Tensor]:
|
|
|
|
| 643 |
model_inputs[key] = value
|
| 644 |
return model_inputs
|
| 645 |
|
| 646 |
+
@torch.no_grad()
|
| 647 |
+
def generate_minimal(
|
| 648 |
+
self,
|
| 649 |
+
input_ids: torch.LongTensor,
|
| 650 |
+
generation_config: Optional[GenerationConfig] = None, # type: ignore
|
| 651 |
+
tokenizer=None,
|
| 652 |
+
streamer=None,
|
| 653 |
+
continuous_compute=False, # warm-start state / continuous CoT
|
| 654 |
+
cache_kwargs: dict = {},
|
| 655 |
+
**model_kwargs,
|
| 656 |
+
) -> Union[torch.Tensor, dict[str, Any]]:
|
| 657 |
+
"""Minimal single-sequence generation. Template for more complicated generate tasks"""
|
| 658 |
+
# Setup
|
| 659 |
+
if generation_config is None:
|
| 660 |
+
generation_config: GenerationConfig = self.generation_config # type: ignore
|
| 661 |
+
model_kwargs["past_key_values"] = HuginnDynamicCache(**cache_kwargs)
|
| 662 |
+
model_kwargs["use_cache"] = True
|
| 663 |
+
model_kwargs = self._get_initial_cache_position(input_ids, model_kwargs)
|
| 664 |
+
stop_tokens = self._get_stops(generation_config, tokenizer).to(input_ids.device)
|
| 665 |
+
if continuous_compute:
|
| 666 |
+
embedded_inputs, _, _ = self.embed_inputs(input_ids)
|
| 667 |
+
model_kwargs["input_states"] = self.initialize_state(embedded_inputs)
|
| 668 |
+
# Generate tokens
|
| 669 |
+
for _ in range(generation_config.max_length - input_ids.shape[1]):
|
| 670 |
+
# Forward pass
|
| 671 |
+
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
|
| 672 |
+
outputs = self(**model_inputs)
|
| 673 |
+
next_token_logits = outputs.logits[0, -1, :]
|
| 674 |
+
if continuous_compute:
|
| 675 |
+
current_last_latent = outputs.latent_states[:, -1:, :]
|
| 676 |
+
|
| 677 |
+
# Sample or select next token
|
| 678 |
+
if generation_config.do_sample:
|
| 679 |
+
if generation_config.temperature:
|
| 680 |
+
next_token_logits = next_token_logits / generation_config.temperature
|
| 681 |
+
|
| 682 |
+
probs = F.softmax(next_token_logits, dim=-1)
|
| 683 |
+
|
| 684 |
+
# Apply top_k
|
| 685 |
+
if generation_config.top_k:
|
| 686 |
+
top_k_probs, _ = torch.topk(probs, generation_config.top_k)
|
| 687 |
+
probs[probs < top_k_probs[-1]] = 0
|
| 688 |
+
# Apply top_p
|
| 689 |
+
if generation_config.top_p:
|
| 690 |
+
sorted_probs = torch.sort(probs, descending=True)[0]
|
| 691 |
+
cumsum = torch.cumsum(sorted_probs, dim=-1)
|
| 692 |
+
probs[cumsum > generation_config.top_p] = 0
|
| 693 |
+
# Apply min_p
|
| 694 |
+
if generation_config.min_p:
|
| 695 |
+
probs[probs < generation_config.min_p * probs.max()] = 0
|
| 696 |
+
|
| 697 |
+
probs = probs / probs.sum()
|
| 698 |
+
next_token = torch.multinomial(probs, num_samples=1)
|
| 699 |
+
else:
|
| 700 |
+
next_token = torch.argmax(next_token_logits, dim=-1, keepdim=True)
|
| 701 |
+
|
| 702 |
+
input_ids = torch.cat([input_ids, next_token[None, :]], dim=-1) # type: ignore
|
| 703 |
+
|
| 704 |
+
if streamer:
|
| 705 |
+
streamer.put(next_token.cpu())
|
| 706 |
+
|
| 707 |
+
# Update model kwargs
|
| 708 |
+
model_kwargs = self._update_model_kwargs_for_generation(outputs, model_kwargs)
|
| 709 |
+
if continuous_compute:
|
| 710 |
+
model_kwargs["input_states"] = current_last_latent
|
| 711 |
+
|
| 712 |
+
# Check if we hit a stop token
|
| 713 |
+
if stop_tokens is not None and next_token in stop_tokens:
|
| 714 |
+
break
|
| 715 |
+
|
| 716 |
+
if streamer:
|
| 717 |
+
streamer.end()
|
| 718 |
+
|
| 719 |
+
if generation_config.return_dict_in_generate:
|
| 720 |
+
return GenerateDecoderOnlyOutput(
|
| 721 |
+
sequences=input_ids,
|
| 722 |
+
scores=None,
|
| 723 |
+
logits=None,
|
| 724 |
+
attentions=None,
|
| 725 |
+
hidden_states=None,
|
| 726 |
+
past_key_values=model_kwargs.get("past_key_values"),
|
| 727 |
+
)
|
| 728 |
+
return input_ids
|
| 729 |
+
|
| 730 |
+
@torch.no_grad()
|
| 731 |
+
def generate_with_adaptive_compute(
|
| 732 |
+
self,
|
| 733 |
+
input_ids: torch.LongTensor,
|
| 734 |
+
generation_config: Optional[GenerationConfig] = None, # type: ignore
|
| 735 |
+
tokenizer=None,
|
| 736 |
+
streamer=None,
|
| 737 |
+
continuous_compute=False, # warm-start state / continuous CoT
|
| 738 |
+
latent_dampening=False,
|
| 739 |
+
criterion="entropy-diff",
|
| 740 |
+
exit_threshold: Union[str, float, int] = "auto",
|
| 741 |
+
cache_kwargs: dict = {},
|
| 742 |
+
**model_kwargs,
|
| 743 |
+
) -> Union[torch.Tensor, GenerateDecoderOnlyOutput]:
|
| 744 |
+
"""Minimal single-sequence generation. Template for more complicated generate tasks"""
|
| 745 |
+
# Setup
|
| 746 |
+
if generation_config is None:
|
| 747 |
+
generation_config: GenerationConfig = self.generation_config # type: ignore
|
| 748 |
+
model_kwargs["past_key_values"] = HuginnDynamicCache(**cache_kwargs)
|
| 749 |
+
model_kwargs["use_cache"] = True
|
| 750 |
+
model_kwargs = self._get_initial_cache_position(input_ids, model_kwargs)
|
| 751 |
+
stop_tokens = self._get_stops(generation_config, tokenizer).to(input_ids.device)
|
| 752 |
+
if continuous_compute:
|
| 753 |
+
embedded_inputs, _, _ = self.embed_inputs(input_ids)
|
| 754 |
+
current_last_latent = self.initialize_state(embedded_inputs)
|
| 755 |
+
compute_steps = []
|
| 756 |
+
|
| 757 |
+
# Generate tokens
|
| 758 |
+
for step in range(generation_config.max_length - input_ids.shape[1]):
|
| 759 |
+
# Adaptive compute forward
|
| 760 |
+
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
|
| 761 |
+
aux_inputs = {
|
| 762 |
+
k: model_inputs[k] for k in ["cache_position", "past_key_values", "attention_mask"] if k in model_inputs
|
| 763 |
+
}
|
| 764 |
+
embedded_inputs, block_idx, _ = self.embed_inputs(model_inputs["input_ids"], **aux_inputs)
|
| 765 |
+
if not continuous_compute:
|
| 766 |
+
current_latents = self.initialize_state(embedded_inputs, deterministic=False)
|
| 767 |
+
else:
|
| 768 |
+
current_latents = current_last_latent
|
| 769 |
+
|
| 770 |
+
# Prep criterions:
|
| 771 |
+
if criterion == "entropy-diff":
|
| 772 |
+
entropy = torch.tensor(100.0, device=input_ids.device)
|
| 773 |
+
exit_threshold = 1e-3 if exit_threshold == "auto" else float(exit_threshold)
|
| 774 |
+
elif criterion in ["latent-diff", "none"]:
|
| 775 |
+
exit_threshold = 0.03 if exit_threshold == "auto" else float(exit_threshold)
|
| 776 |
+
elif "kl" in criterion:
|
| 777 |
+
V = self.config.padded_vocab_size
|
| 778 |
+
log_probs = (1 / V * torch.ones(V, device=input_ids.device)).log()
|
| 779 |
+
if criterion == "minp-kl":
|
| 780 |
+
exit_threshold = 1e-6 if exit_threshold == "auto" else float(exit_threshold)
|
| 781 |
+
else:
|
| 782 |
+
exit_threshold = 5e-4 if exit_threshold == "auto" else float(exit_threshold)
|
| 783 |
+
elif criterion == "argmax-stability":
|
| 784 |
+
stable_for_n_steps = 0
|
| 785 |
+
current_argmax = torch.tensor(-1, dtype=torch.long, device=input_ids.device)
|
| 786 |
+
exit_threshold = 5 if exit_threshold == "auto" else int(exit_threshold)
|
| 787 |
+
else:
|
| 788 |
+
raise ValueError("Invalid adaptive compute strategy.")
|
| 789 |
+
|
| 790 |
+
all_latents = []
|
| 791 |
+
exit_values = []
|
| 792 |
+
for compute_step in range(model_inputs["num_steps"]):
|
| 793 |
+
prev_latents = current_latents.clone()
|
| 794 |
+
current_latents, block_idx, _ = self.iterate_one_step(
|
| 795 |
+
embedded_inputs, current_latents, block_idx=block_idx, **aux_inputs
|
| 796 |
+
)
|
| 797 |
+
all_latents.append(current_latents if latent_dampening else None)
|
| 798 |
+
if step > 0: # do not exit in prefill:
|
| 799 |
+
if criterion == "entropy-diff":
|
| 800 |
+
prev_entropy = entropy.clone()
|
| 801 |
+
outputs = self.predict_from_latents(current_latents, **aux_inputs)
|
| 802 |
+
probs = F.softmax(outputs.logits[:, -1, :], dim=-1) # type: ignore
|
| 803 |
+
entropy = -torch.sum(probs * torch.log(probs + 1e-10), dim=-1).mean()
|
| 804 |
+
entropy_diff = (entropy - prev_entropy).abs()
|
| 805 |
+
exit_values.append(entropy_diff.item())
|
| 806 |
+
if entropy_diff < exit_threshold:
|
| 807 |
+
break
|
| 808 |
+
elif criterion == "latent-diff":
|
| 809 |
+
norm_diff = (prev_latents - current_latents).norm() / current_latents.norm()
|
| 810 |
+
exit_values.append(norm_diff.item())
|
| 811 |
+
if norm_diff < exit_threshold:
|
| 812 |
+
break
|
| 813 |
+
elif criterion == "kl":
|
| 814 |
+
prev_log_probs = log_probs.clone()
|
| 815 |
+
outputs = self.predict_from_latents(current_latents, **aux_inputs)
|
| 816 |
+
log_probs = F.log_softmax(outputs.logits[:, -1, :], dim=-1) # type: ignore
|
| 817 |
+
kl = F.kl_div(log_probs, prev_log_probs, reduction="none", log_target=True).sum(dim=-1)
|
| 818 |
+
exit_values.append(kl.item())
|
| 819 |
+
if kl < exit_threshold:
|
| 820 |
+
break
|
| 821 |
+
elif criterion == "minp-kl":
|
| 822 |
+
prev_log_probs = log_probs.clone()
|
| 823 |
+
outputs = self.predict_from_latents(current_latents, **aux_inputs)
|
| 824 |
+
probs = F.softmax(outputs.logits[:, -1, :], dim=-1) # type: ignore
|
| 825 |
+
probs[probs < 0.1 * probs.max()] = 1 / V
|
| 826 |
+
probs = probs / probs.sum()
|
| 827 |
+
log_probs = probs.log()
|
| 828 |
+
kl = F.kl_div(log_probs, prev_log_probs, reduction="none", log_target=True).sum(dim=-1)
|
| 829 |
+
exit_values.append(kl.item())
|
| 830 |
+
if kl < exit_threshold:
|
| 831 |
+
break
|
| 832 |
+
elif criterion == "argmax-stability":
|
| 833 |
+
prev_argmax = current_argmax.clone()
|
| 834 |
+
outputs = self.predict_from_latents(current_latents, **aux_inputs)
|
| 835 |
+
current_argmax = outputs.logits[0, -1, :].argmax(dim=-1) # type: ignore
|
| 836 |
+
if current_argmax == prev_argmax:
|
| 837 |
+
stable_for_n_steps += 1
|
| 838 |
+
else:
|
| 839 |
+
stable_for_n_steps = 0
|
| 840 |
+
exit_values.append(stable_for_n_steps)
|
| 841 |
+
if stable_for_n_steps >= exit_threshold:
|
| 842 |
+
break
|
| 843 |
+
elif criterion == "none":
|
| 844 |
+
pass
|
| 845 |
+
|
| 846 |
+
else:
|
| 847 |
+
if not latent_dampening:
|
| 848 |
+
outputs = self.predict_from_latents(current_latents, **aux_inputs)
|
| 849 |
+
else:
|
| 850 |
+
dampened_latents = torch.sum(torch.cat(all_latents, dim=0), dim=0, keepdim=True)
|
| 851 |
+
outputs = self.predict_from_latents(dampened_latents, **aux_inputs)
|
| 852 |
+
compute_steps.append([compute_step + 1, exit_values])
|
| 853 |
+
|
| 854 |
+
next_token_logits = outputs.logits[0, -1, :] # type: ignore
|
| 855 |
+
if continuous_compute: # Save last latent
|
| 856 |
+
current_last_latent = current_latents[:, -1:, :]
|
| 857 |
+
|
| 858 |
+
# Sample or select next token
|
| 859 |
+
if generation_config.do_sample:
|
| 860 |
+
if generation_config.temperature:
|
| 861 |
+
next_token_logits = next_token_logits / generation_config.temperature
|
| 862 |
+
|
| 863 |
+
probs = F.softmax(next_token_logits, dim=-1)
|
| 864 |
+
# Apply top_k
|
| 865 |
+
if generation_config.top_k:
|
| 866 |
+
top_k_probs, _ = torch.topk(probs, generation_config.top_k)
|
| 867 |
+
probs[probs < top_k_probs[-1]] = 0
|
| 868 |
+
# Apply top_p
|
| 869 |
+
if generation_config.top_p:
|
| 870 |
+
sorted_probs = torch.sort(probs, descending=True)[0]
|
| 871 |
+
cumsum = torch.cumsum(sorted_probs, dim=-1)
|
| 872 |
+
probs[cumsum > generation_config.top_p] = 0
|
| 873 |
+
# Apply min_p
|
| 874 |
+
if generation_config.min_p:
|
| 875 |
+
probs[probs < generation_config.min_p * probs.max()] = 0
|
| 876 |
+
|
| 877 |
+
probs = probs / probs.sum()
|
| 878 |
+
next_token = torch.multinomial(probs, num_samples=1)
|
| 879 |
+
else:
|
| 880 |
+
next_token = torch.argmax(next_token_logits, dim=-1, keepdim=True)
|
| 881 |
+
|
| 882 |
+
input_ids = torch.cat([input_ids, next_token[None, :]], dim=-1) # type: ignore
|
| 883 |
+
|
| 884 |
+
if streamer:
|
| 885 |
+
streamer.put(next_token.cpu())
|
| 886 |
+
|
| 887 |
+
# Update model kwargs
|
| 888 |
+
model_kwargs = self._update_model_kwargs_for_generation(outputs, model_kwargs)
|
| 889 |
+
|
| 890 |
+
# Check if we hit a stop token
|
| 891 |
+
if stop_tokens is not None and next_token in stop_tokens:
|
| 892 |
+
break
|
| 893 |
+
|
| 894 |
+
if streamer:
|
| 895 |
+
streamer.end()
|
| 896 |
+
|
| 897 |
+
if generation_config.return_dict_in_generate:
|
| 898 |
+
return GenerateDecoderOnlyOutput(
|
| 899 |
+
sequences=input_ids,
|
| 900 |
+
scores=compute_steps, # type: ignore
|
| 901 |
+
logits=None,
|
| 902 |
+
attentions=None,
|
| 903 |
+
hidden_states=None,
|
| 904 |
+
past_key_values=model_kwargs.get("past_key_values"),
|
| 905 |
+
)
|
| 906 |
+
return input_ids
|
| 907 |
+
|
| 908 |
+
def _get_stops(self, generation_config, tokenizer):
|
| 909 |
+
stop_tokens = set()
|
| 910 |
+
if generation_config.eos_token_id is not None:
|
| 911 |
+
stop_tokens.add(generation_config.eos_token_id)
|
| 912 |
+
if hasattr(generation_config, "stop_strings") and tokenizer and generation_config.stop_strings:
|
| 913 |
+
for s in generation_config.stop_strings:
|
| 914 |
+
token_id = tokenizer(s, add_special_tokens=False)["input_ids"][0]
|
| 915 |
+
stop_tokens.add(token_id)
|
| 916 |
+
return torch.tensor(list(stop_tokens))
|
| 917 |
+
|
| 918 |
def get_stats(self, logits, x, latent_states, xk, input_embeds, num_steps_no_grad, num_steps_with_grad):
|
| 919 |
probs = torch.softmax(logits.float(), dim=-1)
|
| 920 |
prob_entropy = torch.where(probs > 0, -probs * probs.log(), 0).sum(dim=-1)
|