Update raven_modeling_minimal.py
Browse files- raven_modeling_minimal.py +601 -302
raven_modeling_minimal.py
CHANGED
|
@@ -6,9 +6,10 @@ import math
|
|
| 6 |
from torch import Tensor
|
| 7 |
from torch.nn.attention.flex_attention import create_block_mask, BlockMask, flex_attention
|
| 8 |
from torch.nn.attention import bias as attn_bias
|
|
|
|
| 9 |
from dataclasses import dataclass
|
| 10 |
-
from typing import Union, Optional, Any
|
| 11 |
-
|
| 12 |
|
| 13 |
from .raven_config_minimal import RavenConfig
|
| 14 |
from transformers.cache_utils import Cache, DynamicCache, StaticCache
|
|
@@ -21,8 +22,6 @@ from transformers.generation.utils import GenerateDecoderOnlyOutput
|
|
| 21 |
import torch.nn.functional as F
|
| 22 |
from transformers import GenerationConfig
|
| 23 |
|
| 24 |
-
torch.backends.cuda.enable_math_sdp(False)
|
| 25 |
-
|
| 26 |
|
| 27 |
class RavenPreTrainedModel(PreTrainedModel):
|
| 28 |
config_class = RavenConfig
|
|
@@ -38,9 +37,77 @@ class RavenPreTrainedModel(PreTrainedModel):
|
|
| 38 |
_supports_static_cache = True
|
| 39 |
_tp_plan = {}
|
| 40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
def _init_weights(self, module):
|
| 42 |
-
|
| 43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
|
| 46 |
@dataclass
|
|
@@ -468,6 +535,9 @@ class SandwichBlock(torch.nn.Module):
|
|
| 468 |
return x
|
| 469 |
|
| 470 |
|
|
|
|
|
|
|
|
|
|
| 471 |
class RavenForCausalLM(RavenPreTrainedModel, GenerationMixin):
|
| 472 |
freqs_cis: torch.Tensor
|
| 473 |
|
|
@@ -498,13 +568,15 @@ class RavenForCausalLM(RavenPreTrainedModel, GenerationMixin):
|
|
| 498 |
ln_f=RMSNorm(config.n_embd, eps=config.norm_eps), # used twice :>
|
| 499 |
)
|
| 500 |
)
|
| 501 |
-
self.emb_scale = config.init_values["embed_scale"]
|
| 502 |
# Head
|
| 503 |
self.lm_head = torch.nn.Linear(config.n_embd, config.padded_vocab_size, bias=False)
|
| 504 |
if self.config.tie_embeddings:
|
| 505 |
self.tie_weights()
|
| 506 |
# rope
|
| 507 |
self.register_buffer("freqs_cis", self._precompute_freqs_cis(), persistent=True)
|
|
|
|
|
|
|
|
|
|
| 508 |
|
| 509 |
def get_input_embeddings(self):
|
| 510 |
return self.transformer.wte
|
|
@@ -513,11 +585,9 @@ class RavenForCausalLM(RavenPreTrainedModel, GenerationMixin):
|
|
| 513 |
return self.lm_head
|
| 514 |
|
| 515 |
def _precompute_freqs_cis(self):
|
| 516 |
-
|
| 517 |
-
freqs_cis = precompute_freqs_cis(
|
| 518 |
self.config.n_embd // self.config.num_attention_heads, self.config.block_size, self.config.rope_base, 1
|
| 519 |
)
|
| 520 |
-
return freqs_cis
|
| 521 |
|
| 522 |
def compile_mask(
|
| 523 |
self,
|
|
@@ -557,72 +627,7 @@ class RavenForCausalLM(RavenPreTrainedModel, GenerationMixin):
|
|
| 557 |
H=None,
|
| 558 |
Q_LEN=seq_len,
|
| 559 |
KV_LEN=kv_length,
|
| 560 |
-
device=input_ids.device,
|
| 561 |
-
)
|
| 562 |
-
|
| 563 |
-
# # Define mask_mod function
|
| 564 |
-
# def mask_mod(b, h, q_idx, kv_idx):
|
| 565 |
-
# # Always apply causal constraint
|
| 566 |
-
# is_causal = q_idx >= kv_idx
|
| 567 |
-
|
| 568 |
-
# # Handle cache vs current tokens
|
| 569 |
-
# is_cache = kv_idx < cache_len
|
| 570 |
-
# current_idx = kv_idx - cache_len
|
| 571 |
-
|
| 572 |
-
# # For cache: always valid; For current: check padding
|
| 573 |
-
# not_pad = input_ids[b, current_idx] != pad_token_id
|
| 574 |
-
# valid = is_cache | not_pad
|
| 575 |
-
|
| 576 |
-
# # Apply attention mask if provided
|
| 577 |
-
# if attention_mask is not None:
|
| 578 |
-
# q_idx_curr = q_idx - cache_len
|
| 579 |
-
# attn_valid = attention_mask[b, q_idx_curr, current_idx]
|
| 580 |
-
# valid = valid & (is_cache | attn_valid)
|
| 581 |
-
|
| 582 |
-
# return is_causal & valid
|
| 583 |
-
|
| 584 |
-
# def mask_mod(b, h, q_idx, kv_idx):
|
| 585 |
-
# is_causal = q_idx >= kv_idx
|
| 586 |
-
# is_current = (kv_idx >= cache_len) & (kv_idx < kv_length)
|
| 587 |
-
# current_idx = kv_idx - cache_len
|
| 588 |
-
|
| 589 |
-
# is_valid = (~is_current) | (
|
| 590 |
-
# (current_idx >= 0) & (current_idx < seq_len) & (input_ids != pad_token_id)[b, current_idx % seq_len]
|
| 591 |
-
# )
|
| 592 |
-
|
| 593 |
-
# return is_causal & is_valid
|
| 594 |
-
|
| 595 |
-
# # Define mask_mod function
|
| 596 |
-
# def mask_mod(b, h, q_idx, kv_idx):
|
| 597 |
-
# # Always apply causal constraint
|
| 598 |
-
# is_causal = q_idx >= kv_idx
|
| 599 |
-
|
| 600 |
-
# # Handle cache vs current tokens
|
| 601 |
-
# is_cache = kv_idx < cache_len
|
| 602 |
-
# current_idx = kv_idx - cache_len
|
| 603 |
-
# in_bounds = (current_idx >= 0) & (current_idx < seq_len)
|
| 604 |
-
|
| 605 |
-
# # For cache: always valid; For current: check padding
|
| 606 |
-
# not_pad = (input_ids[b, current_idx % seq_len] != pad_token_id) | ~in_bounds
|
| 607 |
-
# valid = is_cache | (not_pad & in_bounds)
|
| 608 |
-
|
| 609 |
-
# # Apply attention mask if provided
|
| 610 |
-
# if attention_mask is not None:
|
| 611 |
-
# q_idx_curr = q_idx - cache_len
|
| 612 |
-
# q_in_bounds = (q_idx_curr >= 0) & (q_idx_curr < seq_len)
|
| 613 |
-
# attn_valid = attention_mask[b, q_idx_curr % seq_len, current_idx % seq_len] | ~(in_bounds & q_in_bounds)
|
| 614 |
-
# valid = valid & (is_cache | attn_valid)
|
| 615 |
-
|
| 616 |
-
# return is_causal & valid
|
| 617 |
-
|
| 618 |
-
# Create block mask
|
| 619 |
-
block_mask = create_block_mask(
|
| 620 |
-
mask_mod,
|
| 621 |
-
B=batch_size,
|
| 622 |
-
H=None,
|
| 623 |
-
Q_LEN=seq_len,
|
| 624 |
-
KV_LEN=kv_length,
|
| 625 |
-
device=input_ids.device,
|
| 626 |
)
|
| 627 |
|
| 628 |
return block_mask
|
|
@@ -748,7 +753,7 @@ class RavenForCausalLM(RavenPreTrainedModel, GenerationMixin):
|
|
| 748 |
|
| 749 |
for grad_step in range(num_steps_with_grad):
|
| 750 |
xk = x
|
| 751 |
-
x, block_idx = self.
|
| 752 |
xk, input_embeds, freqs_cis, mask, past_key_values, block_idx, num_steps_no_grad + grad_step
|
| 753 |
)
|
| 754 |
return self.transformer.ln_f(x), num_steps_no_grad, num_steps_with_grad, xk.detach(), block_idx # type: ignore # types broken in 2.6+
|
|
@@ -763,13 +768,73 @@ class RavenForCausalLM(RavenPreTrainedModel, GenerationMixin):
|
|
| 763 |
block_idx: torch.Tensor,
|
| 764 |
current_step: int | Tensor,
|
| 765 |
):
|
|
|
|
| 766 |
x = self._maybe_inject_noise(x, current_step)
|
| 767 |
x = self.transformer.adapter(torch.cat([x, input_embeds.to(x.device)], dim=-1)) # type: ignore # types broken in 2.6+
|
| 768 |
for block in self.transformer.core_block: # type: ignore # types broken in 2.6+
|
| 769 |
block_idx += 1
|
| 770 |
x = block(x, freqs_cis, block_idx, mask, past_key_values)
|
|
|
|
| 771 |
return x, block_idx
|
| 772 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 773 |
@torch.no_grad()
|
| 774 |
def iterate_one_step(
|
| 775 |
self,
|
|
@@ -865,61 +930,135 @@ class RavenForCausalLM(RavenPreTrainedModel, GenerationMixin):
|
|
| 865 |
input_embeds = block(input_embeds, freqs_cis, block_idx, prepared_attn_mask, past_key_values)
|
| 866 |
return input_embeds, block_idx
|
| 867 |
|
| 868 |
-
@torch.
|
| 869 |
-
def
|
| 870 |
-
|
| 871 |
-
|
| 872 |
-
|
| 873 |
-
|
| 874 |
-
|
| 875 |
-
|
| 876 |
-
|
| 877 |
-
|
| 878 |
-
|
| 879 |
-
|
| 880 |
-
|
| 881 |
-
|
| 882 |
-
|
| 883 |
-
k = torch.as_tensor(torch.minimum(torch.as_tensor(s), p))
|
| 884 |
-
else:
|
| 885 |
-
n, k = torch.as_tensor(self.config.mean_recurrence), torch.as_tensor(0)
|
| 886 |
|
| 887 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 888 |
|
| 889 |
-
|
| 890 |
-
|
| 891 |
-
|
| 892 |
-
|
| 893 |
-
|
| 894 |
-
|
| 895 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 896 |
else:
|
| 897 |
-
|
| 898 |
-
return x
|
| 899 |
|
| 900 |
-
|
| 901 |
-
|
| 902 |
-
|
| 903 |
-
if
|
| 904 |
-
|
| 905 |
-
|
| 906 |
-
|
| 907 |
-
|
| 908 |
-
|
| 909 |
-
|
| 910 |
-
noise = max(n, (self.config.mean_recurrence - current_step) / self.config.mean_recurrence) # type: ignore
|
| 911 |
-
x = x * (1 - noise) + torch.randn_like(x) * noise
|
| 912 |
-
elif self.config.test_time_noise_type == "chi":
|
| 913 |
-
noise = 2 * torch.rand(1, device=x.device, dtype=x.dtype) * n
|
| 914 |
-
x = x * (1 - noise) + torch.randn_like(x) * noise
|
| 915 |
-
elif self.config.test_time_noise_type == "fixed":
|
| 916 |
-
x = x * (1 - n) + torch.randn_like(x) * n
|
| 917 |
-
else:
|
| 918 |
-
raise ValueError()
|
| 919 |
|
| 920 |
-
|
| 921 |
-
|
| 922 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 923 |
|
| 924 |
def prepare_inputs_for_generation(
|
| 925 |
self,
|
|
@@ -971,11 +1110,11 @@ class RavenForCausalLM(RavenPreTrainedModel, GenerationMixin):
|
|
| 971 |
def generate(self, *args, **kwargs):
|
| 972 |
"""Dispatcher - use HF generate in all normal cases."""
|
| 973 |
self.generation_config = args[1] if len(args) > 1 else self.generation_config
|
| 974 |
-
if any(k in kwargs for k in ("criterion", "exit_threshold")):
|
| 975 |
-
# print("Dispatching to custom generate_adaptive function call")
|
| 976 |
return self.generate_with_adaptive_compute(*args, **kwargs)
|
|
|
|
|
|
|
| 977 |
elif "continuous_compute" in kwargs:
|
| 978 |
-
# print("Dispatching to custom generate_minimal function call")
|
| 979 |
return self.generate_minimal(*args, **kwargs)
|
| 980 |
else:
|
| 981 |
return super().generate(*args, **kwargs)
|
|
@@ -1013,7 +1152,7 @@ class RavenForCausalLM(RavenPreTrainedModel, GenerationMixin):
|
|
| 1013 |
lookup_strategy=cache_lookup_strategy,
|
| 1014 |
)
|
| 1015 |
model_kwargs["use_cache"] = True
|
| 1016 |
-
model_kwargs = self._get_initial_cache_position(input_ids, model_kwargs)
|
| 1017 |
return model_kwargs, generation_config, max_new_tokens
|
| 1018 |
|
| 1019 |
@torch.no_grad()
|
|
@@ -1030,7 +1169,7 @@ class RavenForCausalLM(RavenPreTrainedModel, GenerationMixin):
|
|
| 1030 |
) -> Union[torch.Tensor, dict[str, Any]]:
|
| 1031 |
"""Minimal single-sequence generation. Template for more complicated generate tasks"""
|
| 1032 |
model_kwargs, generation_config, max_new_tokens = self._prep_generate_args(
|
| 1033 |
-
input_ids, generation_config, cache_lookup_strategy
|
| 1034 |
)
|
| 1035 |
stop_tokens = self._get_stops(generation_config, tokenizer, model_kwargs).to(input_ids.device)
|
| 1036 |
unfinished_sequences = torch.ones(input_ids.shape[0], dtype=torch.long, device=input_ids.device)
|
|
@@ -1093,15 +1232,25 @@ class RavenForCausalLM(RavenPreTrainedModel, GenerationMixin):
|
|
| 1093 |
tokenizer=None,
|
| 1094 |
streamer=None,
|
| 1095 |
continuous_compute=False, # warm-start state / continuous CoT
|
| 1096 |
-
criterion="none", # off by default, turn on by choosing an exit criterion
|
| 1097 |
exit_threshold: Union[str, float, int] = "auto",
|
| 1098 |
init_scale: float = 1.0,
|
| 1099 |
cache_lookup_strategy: str = "full",
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1100 |
**model_kwargs,
|
| 1101 |
) -> Union[torch.Tensor, GenerateDecoderOnlyOutput]:
|
| 1102 |
"""
|
| 1103 |
Generate tokens with adaptive compute. This is NOT the most efficient implementation.
|
| 1104 |
For batches, on each token, we iterate until the entire batch finishes.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1105 |
"""
|
| 1106 |
model_kwargs, generation_config, max_new_tokens = self._prep_generate_args(
|
| 1107 |
input_ids, generation_config, cache_lookup_strategy, model_kwargs
|
|
@@ -1120,8 +1269,11 @@ class RavenForCausalLM(RavenPreTrainedModel, GenerationMixin):
|
|
| 1120 |
# Track which sequences have finished (using unfinished_sequences to match generate_minimal)
|
| 1121 |
unfinished_sequences = torch.ones(batch_size, dtype=torch.long, device=input_ids.device)
|
| 1122 |
|
|
|
|
|
|
|
|
|
|
| 1123 |
# Generate tokens
|
| 1124 |
-
for
|
| 1125 |
# Adaptive compute forward
|
| 1126 |
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
|
| 1127 |
aux_inputs = {
|
|
@@ -1134,38 +1286,20 @@ class RavenForCausalLM(RavenPreTrainedModel, GenerationMixin):
|
|
| 1134 |
else model_kwargs["input_states"]
|
| 1135 |
)
|
| 1136 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1137 |
# Initialize criterion tracking for each sequence in batch
|
| 1138 |
exit_values_per_seq = [[] for _ in range(batch_size)]
|
| 1139 |
compute_steps_per_seq = [0] * batch_size
|
| 1140 |
exit_reached = torch.zeros(batch_size, dtype=torch.bool, device=input_ids.device)
|
| 1141 |
|
| 1142 |
-
|
| 1143 |
-
|
| 1144 |
-
entropy = torch.ones(batch_size, device=input_ids.device) * 100.0
|
| 1145 |
-
exit_threshold = 1e-3 if exit_threshold == "auto" else float(exit_threshold)
|
| 1146 |
-
elif criterion == "latent-diff":
|
| 1147 |
-
exit_threshold = 0.03 if exit_threshold == "auto" else float(exit_threshold)
|
| 1148 |
-
elif "kl" in criterion:
|
| 1149 |
-
V = self.config.padded_vocab_size
|
| 1150 |
-
log_probs = ((1 / V) * torch.ones(batch_size, V, dtype=torch.float, device=input_ids.device)).log()
|
| 1151 |
-
if criterion == "minp-kl":
|
| 1152 |
-
exit_threshold = 1e-6 if exit_threshold == "auto" else float(exit_threshold)
|
| 1153 |
-
else:
|
| 1154 |
-
exit_threshold = 5e-4 if exit_threshold == "auto" else float(exit_threshold)
|
| 1155 |
-
elif criterion == "argmax-stability":
|
| 1156 |
-
stable_for_n_steps = torch.zeros(batch_size, dtype=torch.long, device=input_ids.device)
|
| 1157 |
-
current_argmax = torch.ones(batch_size, dtype=torch.long, device=input_ids.device) * -1
|
| 1158 |
-
exit_threshold = 5 if exit_threshold == "auto" else int(exit_threshold)
|
| 1159 |
-
elif criterion == "none":
|
| 1160 |
-
exit_threshold = 1.0 if exit_threshold == "auto" else float(exit_threshold)
|
| 1161 |
-
else:
|
| 1162 |
-
raise ValueError("Invalid adaptive compute strategy.")
|
| 1163 |
-
|
| 1164 |
-
next_token_logits = None
|
| 1165 |
|
| 1166 |
# Iterate through compute steps
|
| 1167 |
for compute_step in range(max_steps):
|
| 1168 |
-
prev_latents = current_latents.clone()
|
| 1169 |
current_latents, block_idx, _ = self.iterate_one_step(
|
| 1170 |
embedded_inputs,
|
| 1171 |
current_latents,
|
|
@@ -1174,94 +1308,70 @@ class RavenForCausalLM(RavenPreTrainedModel, GenerationMixin):
|
|
| 1174 |
current_step=compute_step,
|
| 1175 |
)
|
| 1176 |
|
| 1177 |
-
if
|
| 1178 |
-
|
| 1179 |
-
|
| 1180 |
-
|
| 1181 |
-
|
| 1182 |
-
|
| 1183 |
-
|
| 1184 |
-
|
| 1185 |
-
|
| 1186 |
-
|
| 1187 |
-
|
| 1188 |
-
|
| 1189 |
-
|
| 1190 |
-
|
| 1191 |
-
|
| 1192 |
-
|
| 1193 |
-
|
| 1194 |
-
|
| 1195 |
-
|
| 1196 |
-
|
| 1197 |
-
|
| 1198 |
-
|
| 1199 |
-
|
| 1200 |
-
|
| 1201 |
-
else:
|
| 1202 |
-
log_probs = F.log_softmax(logits[:, -1, :].float(), dim=-1)
|
| 1203 |
-
exit_values = F.kl_div(log_probs, prev_log_probs, reduction="none", log_target=True).sum(dim=-1)
|
| 1204 |
-
elif criterion == "argmax-stability":
|
| 1205 |
-
prev_argmax = current_argmax
|
| 1206 |
outputs = self.predict_from_latents(current_latents, **aux_inputs)
|
| 1207 |
-
logits
|
| 1208 |
-
|
| 1209 |
-
|
| 1210 |
-
|
| 1211 |
-
|
| 1212 |
-
|
| 1213 |
-
|
| 1214 |
-
exit_values = torch.ones(batch_size, device=input_ids.device) * 2.0 * exit_threshold
|
| 1215 |
-
|
| 1216 |
-
# Record values and check exits for each sequence
|
| 1217 |
for i in range(batch_size):
|
| 1218 |
-
if
|
| 1219 |
-
|
| 1220 |
|
| 1221 |
-
#
|
| 1222 |
-
|
| 1223 |
-
|
| 1224 |
-
|
| 1225 |
-
|
| 1226 |
-
|
| 1227 |
-
|
| 1228 |
-
|
| 1229 |
-
|
| 1230 |
-
exit_reached = exit_reached | new_exits
|
| 1231 |
-
if criterion == "latent-diff":
|
| 1232 |
-
# Normally we don't compute the output for latent-diff, but when there is an exit,
|
| 1233 |
-
# we need to compute and save the output
|
| 1234 |
-
outputs = self.predict_from_latents(current_latents, **aux_inputs)
|
| 1235 |
-
logits: torch.Tensor = outputs.logits # type: ignore
|
| 1236 |
-
if next_token_logits is None:
|
| 1237 |
-
next_token_logits = logits[:, -1, :].to(**logit_type) # type: ignore
|
| 1238 |
-
else:
|
| 1239 |
-
for i in range(batch_size):
|
| 1240 |
-
if new_exits[i]:
|
| 1241 |
-
next_token_logits[i] = logits[i, -1, :].to(**logit_type) # type: ignore
|
| 1242 |
-
for i in range(batch_size):
|
| 1243 |
-
if new_exits[i]:
|
| 1244 |
-
compute_steps_per_seq[i] = compute_step + 1
|
| 1245 |
-
|
| 1246 |
-
# If all sequences have exited or finished, break early
|
| 1247 |
-
if (exit_reached | ~unfinished_sequences.bool()).all():
|
| 1248 |
-
break
|
| 1249 |
-
# This else is if the for loop finished without breaking
|
| 1250 |
else:
|
| 1251 |
-
outputs
|
|
|
|
| 1252 |
|
| 1253 |
# For sequences that didn't exit early, use the final logits
|
| 1254 |
if next_token_logits is None:
|
| 1255 |
next_token_logits = outputs.logits[:, -1, :].to(**logit_type) # type: ignore
|
|
|
|
|
|
|
| 1256 |
else:
|
| 1257 |
for i in range(batch_size):
|
| 1258 |
if not exit_reached[i] and unfinished_sequences[i].bool():
|
| 1259 |
next_token_logits[i] = outputs.logits[i, -1, :].to(**logit_type) # type: ignore
|
| 1260 |
compute_steps_per_seq[i] = max_steps
|
| 1261 |
-
|
| 1262 |
# Save latent states for continuous compute if enabled
|
| 1263 |
if continuous_compute:
|
| 1264 |
-
|
|
|
|
|
|
|
| 1265 |
|
| 1266 |
# Record compute steps for this token generation
|
| 1267 |
compute_steps.append([compute_steps_per_seq, exit_values_per_seq])
|
|
@@ -1276,7 +1386,7 @@ class RavenForCausalLM(RavenPreTrainedModel, GenerationMixin):
|
|
| 1276 |
streamer.put(next_token.cpu())
|
| 1277 |
|
| 1278 |
# Update model kwargs for next iteration
|
| 1279 |
-
model_kwargs = self._update_model_kwargs_for_generation(outputs, model_kwargs)
|
| 1280 |
|
| 1281 |
# Check for stop tokens and update unfinished sequences
|
| 1282 |
for i in range(batch_size):
|
|
@@ -1309,62 +1419,6 @@ class RavenForCausalLM(RavenPreTrainedModel, GenerationMixin):
|
|
| 1309 |
)
|
| 1310 |
return input_ids
|
| 1311 |
|
| 1312 |
-
def _get_stops(self, generation_config, tokenizer, model_kwargs):
|
| 1313 |
-
stop_tokens = {65504, 65505, 65508} # begin_text, end_text, end_turn
|
| 1314 |
-
if generation_config.eos_token_id is not None:
|
| 1315 |
-
stop_tokens.add(generation_config.eos_token_id)
|
| 1316 |
-
if "stopping_criteria" in model_kwargs and tokenizer is None:
|
| 1317 |
-
tokenizer = model_kwargs["stopping_criteria"][0].tokenizer
|
| 1318 |
-
if hasattr(generation_config, "stop_strings") and tokenizer and generation_config.stop_strings:
|
| 1319 |
-
for s in generation_config.stop_strings:
|
| 1320 |
-
token_id = tokenizer(s, add_special_tokens=False)["input_ids"][0]
|
| 1321 |
-
stop_tokens.add(token_id)
|
| 1322 |
-
return torch.tensor(list(stop_tokens))
|
| 1323 |
-
|
| 1324 |
-
def _sample_next_token(self, next_token_logits, generation_config):
|
| 1325 |
-
"""Helper function to sample the next token."""
|
| 1326 |
-
if generation_config.do_sample:
|
| 1327 |
-
if generation_config.temperature:
|
| 1328 |
-
next_token_logits = next_token_logits.float() / generation_config.temperature
|
| 1329 |
-
|
| 1330 |
-
probs = F.softmax(next_token_logits, dim=-1)
|
| 1331 |
-
|
| 1332 |
-
# Apply top_k
|
| 1333 |
-
if generation_config.top_k:
|
| 1334 |
-
top_k_values, _ = torch.topk(probs, generation_config.top_k, dim=-1)
|
| 1335 |
-
min_values = top_k_values[:, -1].unsqueeze(-1).expand_as(probs)
|
| 1336 |
-
probs = torch.where(probs < min_values, torch.zeros_like(probs), probs)
|
| 1337 |
-
|
| 1338 |
-
# Apply top_p (nucleus sampling)
|
| 1339 |
-
if generation_config.top_p:
|
| 1340 |
-
sorted_probs, sorted_indices = torch.sort(probs, descending=True, dim=-1)
|
| 1341 |
-
cumulative_probs = torch.cumsum(sorted_probs, dim=-1)
|
| 1342 |
-
|
| 1343 |
-
# Create mask for probs to keep
|
| 1344 |
-
remove_indices = cumulative_probs > generation_config.top_p
|
| 1345 |
-
remove_indices[:, 0] = False # Keep at least the top probability
|
| 1346 |
-
|
| 1347 |
-
# Convert sorted indices mask back to original indices mask
|
| 1348 |
-
mask = torch.zeros_like(probs, dtype=torch.bool)
|
| 1349 |
-
for i in range(probs.shape[0]):
|
| 1350 |
-
mask[i, sorted_indices[i, remove_indices[i]]] = True
|
| 1351 |
-
|
| 1352 |
-
probs = torch.where(mask, torch.zeros_like(probs), probs)
|
| 1353 |
-
|
| 1354 |
-
# Apply min_p
|
| 1355 |
-
if generation_config.min_p:
|
| 1356 |
-
max_probs = probs.max(dim=-1, keepdim=True)[0]
|
| 1357 |
-
min_p_threshold = generation_config.min_p * max_probs
|
| 1358 |
-
probs = torch.where(probs < min_p_threshold, torch.zeros_like(probs), probs)
|
| 1359 |
-
|
| 1360 |
-
# Renormalize probabilities
|
| 1361 |
-
probs = probs / probs.sum(dim=-1, keepdim=True).clamp(min=1e-10)
|
| 1362 |
-
|
| 1363 |
-
# Sample from the distribution
|
| 1364 |
-
return torch.multinomial(probs, num_samples=1)
|
| 1365 |
-
else:
|
| 1366 |
-
return torch.argmax(next_token_logits, dim=-1, keepdim=True)
|
| 1367 |
-
|
| 1368 |
@torch.no_grad()
|
| 1369 |
def generate_speculative(
|
| 1370 |
self,
|
|
@@ -1546,22 +1600,69 @@ class RavenForCausalLM(RavenPreTrainedModel, GenerationMixin):
|
|
| 1546 |
)
|
| 1547 |
return input_ids
|
| 1548 |
|
| 1549 |
-
def
|
| 1550 |
-
|
| 1551 |
-
|
| 1552 |
-
|
| 1553 |
-
|
| 1554 |
-
|
| 1555 |
-
|
| 1556 |
-
|
| 1557 |
-
"
|
| 1558 |
-
|
| 1559 |
-
|
| 1560 |
-
|
| 1561 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1562 |
|
| 1563 |
|
| 1564 |
-
#################################### Utils #######################################################################
|
| 1565 |
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0, condense_ratio: int = 1):
|
| 1566 |
with torch.autocast("cuda", enabled=False):
|
| 1567 |
inv_freqs = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
|
|
@@ -1587,6 +1688,204 @@ def apply_rotary_emb_complex_like(q: Tensor, k: Tensor, freqs_cis: Tensor) -> tu
|
|
| 1587 |
return torch.split(rotated_qk.type_as(q), q.shape[2], dim=2) # type: ignore
|
| 1588 |
|
| 1589 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1590 |
#################################### HF registration ############################################################
|
| 1591 |
|
| 1592 |
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
|
|
|
|
| 6 |
from torch import Tensor
|
| 7 |
from torch.nn.attention.flex_attention import create_block_mask, BlockMask, flex_attention
|
| 8 |
from torch.nn.attention import bias as attn_bias
|
| 9 |
+
from torch.utils.checkpoint import checkpoint
|
| 10 |
from dataclasses import dataclass
|
| 11 |
+
from typing import Union, Optional, Any, Tuple, Callable, List
|
| 12 |
+
from functools import cache, cached_property
|
| 13 |
|
| 14 |
from .raven_config_minimal import RavenConfig
|
| 15 |
from transformers.cache_utils import Cache, DynamicCache, StaticCache
|
|
|
|
| 22 |
import torch.nn.functional as F
|
| 23 |
from transformers import GenerationConfig
|
| 24 |
|
|
|
|
|
|
|
| 25 |
|
| 26 |
class RavenPreTrainedModel(PreTrainedModel):
|
| 27 |
config_class = RavenConfig
|
|
|
|
| 37 |
_supports_static_cache = True
|
| 38 |
_tp_plan = {}
|
| 39 |
|
| 40 |
+
@cache
|
| 41 |
+
def _init_func(self, dim, num_layers):
|
| 42 |
+
return {
|
| 43 |
+
"std": math.sqrt(2 / (5 * dim)),
|
| 44 |
+
"out_proj": math.sqrt(2 / (5 * dim)) / math.sqrt(2 * num_layers),
|
| 45 |
+
"embedding": math.sqrt(2 / (5 * dim)),
|
| 46 |
+
"embed_scale": math.sqrt(dim),
|
| 47 |
+
}
|
| 48 |
+
|
| 49 |
+
@property
|
| 50 |
+
def emb_scale(self):
|
| 51 |
+
return self._init_func(self.config.n_embd, self.config.effective_expected_depth)["embed_scale"]
|
| 52 |
+
|
| 53 |
+
def _normal_(self, tensor, std):
|
| 54 |
+
return torch.nn.init.trunc_normal_(tensor, mean=0.0, std=std, a=-3 * std, b=3 * std)
|
| 55 |
+
|
| 56 |
+
@torch.no_grad()
|
| 57 |
+
def init_qkv(self, qkv_tensor, init_fn, qk_std, v_std, dim, head_dim):
|
| 58 |
+
s = qkv_tensor.shape[0]
|
| 59 |
+
n_kv_heads = (s - dim) // (2 * head_dim)
|
| 60 |
+
shapes = [dim, n_kv_heads * head_dim, n_kv_heads * head_dim]
|
| 61 |
+
|
| 62 |
+
Q, K, V = (
|
| 63 |
+
qkv_tensor.new_empty([shapes[0], dim]),
|
| 64 |
+
qkv_tensor.new_empty([shapes[1], dim]),
|
| 65 |
+
qkv_tensor.new_empty([shapes[2], dim]),
|
| 66 |
+
)
|
| 67 |
+
init_fn(Q, qk_std)
|
| 68 |
+
init_fn(K, qk_std)
|
| 69 |
+
init_fn(V, v_std)
|
| 70 |
+
qkv_tensor.data.copy_(torch.cat([Q, K, V], dim=0).contiguous())
|
| 71 |
+
|
| 72 |
+
@torch.no_grad()
|
| 73 |
+
def init_glu(self, glu_tensor, init_fn, w1_std, w2_std):
|
| 74 |
+
g, h = glu_tensor.shape
|
| 75 |
+
W1, W2 = (
|
| 76 |
+
glu_tensor.new_empty([g // 2, h]),
|
| 77 |
+
glu_tensor.new_empty([g // 2, h]),
|
| 78 |
+
)
|
| 79 |
+
init_fn(W1, w1_std)
|
| 80 |
+
init_fn(W2, w2_std)
|
| 81 |
+
glu_tensor.data.copy_(torch.cat([W1, W2], dim=0).contiguous())
|
| 82 |
+
|
| 83 |
+
@cached_property
|
| 84 |
+
def _full_name_of_module_lookup(self):
|
| 85 |
+
return {id(m): n for n, m in self.named_modules()}
|
| 86 |
+
|
| 87 |
+
@torch.no_grad()
|
| 88 |
def _init_weights(self, module):
|
| 89 |
+
_init_values = self._init_func(self.config.n_embd, self.config.effective_expected_depth)
|
| 90 |
+
name = self._full_name_of_module_lookup[id(module)]
|
| 91 |
+
if isinstance(module, RMSNorm):
|
| 92 |
+
torch.nn.init.ones_(module.weight)
|
| 93 |
+
elif isinstance(module, torch.nn.Linear):
|
| 94 |
+
if "Wqkv" in name:
|
| 95 |
+
self.init_qkv(
|
| 96 |
+
module.weight,
|
| 97 |
+
self._normal_,
|
| 98 |
+
float(_init_values["std"]),
|
| 99 |
+
float(_init_values["std"]),
|
| 100 |
+
self.config.n_embd,
|
| 101 |
+
self.config.head_dim,
|
| 102 |
+
)
|
| 103 |
+
elif "fc" in name:
|
| 104 |
+
self.init_glu(module.weight, self._normal_, float(_init_values["std"]), float(_init_values["out_proj"]))
|
| 105 |
+
elif "mlp.proj" in name or "attn.proj" in name:
|
| 106 |
+
self._normal_(module.weight, std=float(_init_values["out_proj"]))
|
| 107 |
+
elif "adapter" in name or "lm_head" in name:
|
| 108 |
+
self._normal_(module.weight, std=float(_init_values["std"]))
|
| 109 |
+
elif isinstance(module, torch.nn.Embedding):
|
| 110 |
+
self._normal_(module.weight, std=float(_init_values["embedding"]))
|
| 111 |
|
| 112 |
|
| 113 |
@dataclass
|
|
|
|
| 535 |
return x
|
| 536 |
|
| 537 |
|
| 538 |
+
#################################### Main Model ##################################################################
|
| 539 |
+
|
| 540 |
+
|
| 541 |
class RavenForCausalLM(RavenPreTrainedModel, GenerationMixin):
|
| 542 |
freqs_cis: torch.Tensor
|
| 543 |
|
|
|
|
| 568 |
ln_f=RMSNorm(config.n_embd, eps=config.norm_eps), # used twice :>
|
| 569 |
)
|
| 570 |
)
|
|
|
|
| 571 |
# Head
|
| 572 |
self.lm_head = torch.nn.Linear(config.n_embd, config.padded_vocab_size, bias=False)
|
| 573 |
if self.config.tie_embeddings:
|
| 574 |
self.tie_weights()
|
| 575 |
# rope
|
| 576 |
self.register_buffer("freqs_cis", self._precompute_freqs_cis(), persistent=True)
|
| 577 |
+
self.gradient_checkpointing = False
|
| 578 |
+
# Call weight init through HF post init:
|
| 579 |
+
self.post_init()
|
| 580 |
|
| 581 |
def get_input_embeddings(self):
|
| 582 |
return self.transformer.wte
|
|
|
|
| 585 |
return self.lm_head
|
| 586 |
|
| 587 |
def _precompute_freqs_cis(self):
|
| 588 |
+
return precompute_freqs_cis(
|
|
|
|
| 589 |
self.config.n_embd // self.config.num_attention_heads, self.config.block_size, self.config.rope_base, 1
|
| 590 |
)
|
|
|
|
| 591 |
|
| 592 |
def compile_mask(
|
| 593 |
self,
|
|
|
|
| 627 |
H=None,
|
| 628 |
Q_LEN=seq_len,
|
| 629 |
KV_LEN=kv_length,
|
| 630 |
+
device=str(input_ids.device),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 631 |
)
|
| 632 |
|
| 633 |
return block_mask
|
|
|
|
| 753 |
|
| 754 |
for grad_step in range(num_steps_with_grad):
|
| 755 |
xk = x
|
| 756 |
+
x, block_idx = self._maybe_checkpoint_core_block(
|
| 757 |
xk, input_embeds, freqs_cis, mask, past_key_values, block_idx, num_steps_no_grad + grad_step
|
| 758 |
)
|
| 759 |
return self.transformer.ln_f(x), num_steps_no_grad, num_steps_with_grad, xk.detach(), block_idx # type: ignore # types broken in 2.6+
|
|
|
|
| 768 |
block_idx: torch.Tensor,
|
| 769 |
current_step: int | Tensor,
|
| 770 |
):
|
| 771 |
+
block_idx = block_idx.detach().clone() # line only included to convince torch.checkpointing
|
| 772 |
x = self._maybe_inject_noise(x, current_step)
|
| 773 |
x = self.transformer.adapter(torch.cat([x, input_embeds.to(x.device)], dim=-1)) # type: ignore # types broken in 2.6+
|
| 774 |
for block in self.transformer.core_block: # type: ignore # types broken in 2.6+
|
| 775 |
block_idx += 1
|
| 776 |
x = block(x, freqs_cis, block_idx, mask, past_key_values)
|
| 777 |
+
|
| 778 |
return x, block_idx
|
| 779 |
|
| 780 |
+
@torch._dynamo.disable(recursive=False) # type: ignore
|
| 781 |
+
def randomized_iteration_sampler(self) -> tuple[torch.Tensor, torch.Tensor]:
|
| 782 |
+
"""Outputs are long tensors so that they can be passed through compiled functions"""
|
| 783 |
+
t = max(self.config.mean_recurrence - self.config.mean_backprop_depth, 0)
|
| 784 |
+
s = self.config.mean_backprop_depth
|
| 785 |
+
if torch.rand((1,)).is_meta: # annoying clause to make meta-tensor-based flop counting work
|
| 786 |
+
# these values are only the mean TFLOPs of the randomized sampler
|
| 787 |
+
# Note that this clause also breaks the contract, and returns ints in meta tensor mode
|
| 788 |
+
return t, s # type: ignore
|
| 789 |
+
if self.training:
|
| 790 |
+
sigma = 0.5
|
| 791 |
+
mu = math.log(t + s) - (sigma**2 / 2)
|
| 792 |
+
rate = torch.zeros((1,)).log_normal_(mean=mu, std=sigma)
|
| 793 |
+
p = torch.poisson(torch.tensor([rate], dtype=torch.float)) + 1
|
| 794 |
+
n = torch.clamp(p - s, min=0)
|
| 795 |
+
k = torch.as_tensor(torch.minimum(torch.as_tensor(s), p))
|
| 796 |
+
else:
|
| 797 |
+
n, k = torch.as_tensor(self.config.mean_recurrence), torch.as_tensor(0)
|
| 798 |
+
|
| 799 |
+
return n.to(dtype=torch.long), k.to(dtype=torch.long)
|
| 800 |
+
|
| 801 |
+
def initialize_state(self, input_embeds, scale: float = 1.0):
|
| 802 |
+
x = torch.randn_like(input_embeds)
|
| 803 |
+
std = self.config.init_values["std"] * scale
|
| 804 |
+
if std > 0:
|
| 805 |
+
torch.nn.init.trunc_normal_(x, mean=0.0, std=std, a=-3 * std, b=3 * std)
|
| 806 |
+
if self.emb_scale != 1:
|
| 807 |
+
x = x * self.emb_scale
|
| 808 |
+
else:
|
| 809 |
+
x.zero_()
|
| 810 |
+
return x
|
| 811 |
+
|
| 812 |
+
def _maybe_inject_noise(self, x, current_step, renorm=True):
|
| 813 |
+
if self.config.test_time_noise > 0:
|
| 814 |
+
n = self.config.test_time_noise * self.config.init_values["std"] * self.emb_scale
|
| 815 |
+
if self.config.test_time_noise_type == "geom":
|
| 816 |
+
step1 = torch.as_tensor(current_step + 1, device=x.device) # need to cast for compile
|
| 817 |
+
x = x * (1 - n / step1) + torch.randn_like(x) * n / step1
|
| 818 |
+
elif self.config.test_time_noise_type == "sqrt":
|
| 819 |
+
step1sqrt = torch.as_tensor(current_step + 1, device=x.device).sqrt() # need to cast for compile
|
| 820 |
+
x = x * (1 - n / step1sqrt) + torch.randn_like(x) * n / step1sqrt
|
| 821 |
+
elif self.config.test_time_noise_type == "line":
|
| 822 |
+
noise = max(n, (self.config.mean_recurrence - current_step) / self.config.mean_recurrence) # type: ignore
|
| 823 |
+
x = x * (1 - noise) + torch.randn_like(x) * noise
|
| 824 |
+
elif self.config.test_time_noise_type == "chi":
|
| 825 |
+
noise = 2 * torch.rand(1, device=x.device, dtype=x.dtype) * n
|
| 826 |
+
x = x * (1 - noise) + torch.randn_like(x) * noise
|
| 827 |
+
elif self.config.test_time_noise_type == "fixed":
|
| 828 |
+
x = x * (1 - n) + torch.randn_like(x) * n
|
| 829 |
+
else:
|
| 830 |
+
raise ValueError()
|
| 831 |
+
|
| 832 |
+
if renorm:
|
| 833 |
+
x = self.transformer.core_block[-1].norm_4(x) # type: ignore moduledict types still broken in pytorch
|
| 834 |
+
return x
|
| 835 |
+
|
| 836 |
+
""" ------------------ Alternative interfaces into the model forward ---------------------------------------- """
|
| 837 |
+
|
| 838 |
@torch.no_grad()
|
| 839 |
def iterate_one_step(
|
| 840 |
self,
|
|
|
|
| 930 |
input_embeds = block(input_embeds, freqs_cis, block_idx, prepared_attn_mask, past_key_values)
|
| 931 |
return input_embeds, block_idx
|
| 932 |
|
| 933 |
+
@torch.no_grad()
|
| 934 |
+
def _prefill_with_varied_exit_steps(
|
| 935 |
+
self,
|
| 936 |
+
input_ids: torch.Tensor,
|
| 937 |
+
exit_evaluator: "PerIterationExitEvaluator",
|
| 938 |
+
past_key_values: Optional[ValidCache] = None,
|
| 939 |
+
init_scale: float = 1.0,
|
| 940 |
+
**kwargs,
|
| 941 |
+
) -> Tuple[torch.Tensor, ValidCache, List[int]]:
|
| 942 |
+
""" "
|
| 943 |
+
Note that this the opposite of a real prefill, it goes token-by token and can adaptively exit on each.
|
| 944 |
+
Use for scientific experiments.
|
| 945 |
+
"""
|
| 946 |
+
# currently the cache doesn't support batching with adaptive compute
|
| 947 |
+
assert input_ids.shape[0] == 1
|
|
|
|
|
|
|
|
|
|
| 948 |
|
| 949 |
+
if past_key_values is None:
|
| 950 |
+
past_key_values = HuginnDynamicCache()
|
| 951 |
+
attention_mask = None
|
| 952 |
+
output = torch.empty(
|
| 953 |
+
(input_ids.shape[0], 0, self.config.vocab_size), device=input_ids.device, dtype=torch.float
|
| 954 |
+
)
|
| 955 |
+
compute_steps = []
|
| 956 |
+
for pos in range(input_ids.shape[1]):
|
| 957 |
+
aux_inputs = {
|
| 958 |
+
"cache_position": pos,
|
| 959 |
+
"past_key_values": past_key_values,
|
| 960 |
+
"attention_mask": attention_mask,
|
| 961 |
+
}
|
| 962 |
+
freqs_cis = self.freqs_cis[:, pos]
|
| 963 |
+
embedded_inputs, block_idx = self.embed_inputs(input_ids[:, pos].unsqueeze(1), **aux_inputs)
|
| 964 |
|
| 965 |
+
current_latents = self.initialize_state(embedded_inputs, scale=init_scale)
|
| 966 |
+
exit_evaluator.init(current_latents)
|
| 967 |
+
|
| 968 |
+
# Main recurrence
|
| 969 |
+
for compute_step in range(self.config.mean_recurrence):
|
| 970 |
+
current_latents, block_idx, _ = self.iterate_one_step(
|
| 971 |
+
embedded_inputs,
|
| 972 |
+
current_latents,
|
| 973 |
+
block_idx=block_idx,
|
| 974 |
+
**aux_inputs,
|
| 975 |
+
current_step=compute_step,
|
| 976 |
+
)
|
| 977 |
+
new_exits, _, _ = exit_evaluator.check(self, current_latents, aux_inputs)
|
| 978 |
+
if new_exits.any():
|
| 979 |
+
break
|
| 980 |
+
compute_steps.append(compute_step + 1)
|
| 981 |
+
|
| 982 |
+
x = self.transformer.ln_f(current_latents) # type: ignore
|
| 983 |
+
|
| 984 |
+
# Coda layers
|
| 985 |
+
block_idx = torch.tensor(0, device=torch.device("cpu"), dtype=torch.long) # use negative indices for head
|
| 986 |
+
for block in self.transformer.coda: # type: ignore # types broken in 2.6+
|
| 987 |
+
block_idx -= 1
|
| 988 |
+
x = block(x, freqs_cis, block_idx, attention_mask, past_key_values)
|
| 989 |
+
|
| 990 |
+
x = self.transformer.ln_f(x) # type: ignore
|
| 991 |
+
logits = self.lm_head(x).float()
|
| 992 |
+
output = torch.cat([output, logits], dim=1)
|
| 993 |
+
return output, past_key_values, compute_steps # type: ignore
|
| 994 |
+
|
| 995 |
+
@torch.no_grad()
|
| 996 |
+
def forward_with_adaptive_compute(
|
| 997 |
+
self,
|
| 998 |
+
input_ids: torch.Tensor,
|
| 999 |
+
exit_evaluator: "PerIterationExitEvaluator",
|
| 1000 |
+
labels: Optional[torch.Tensor] = None,
|
| 1001 |
+
past_key_values: Optional[ValidCache] = None,
|
| 1002 |
+
output_details: dict = {
|
| 1003 |
+
"return_logits": True,
|
| 1004 |
+
"return_latents": True,
|
| 1005 |
+
"return_head": False,
|
| 1006 |
+
"return_stats": False,
|
| 1007 |
+
},
|
| 1008 |
+
init_scale: float = 1.0,
|
| 1009 |
+
**kwargs,
|
| 1010 |
+
) -> CausalLMOutputRecurrentLatents:
|
| 1011 |
+
"""This forward call does not make use of the causal nature of transformers, it runs token-by token!
|
| 1012 |
+
Do not use this function for anything other than scientific experiments with adaptive compute!
|
| 1013 |
+
"""
|
| 1014 |
+
logits, past_key_values, compute_steps = self._prefill_with_varied_exit_steps(
|
| 1015 |
+
input_ids, exit_evaluator, past_key_values, init_scale
|
| 1016 |
+
)
|
| 1017 |
+
if labels is not None:
|
| 1018 |
+
loss = torch.nn.functional.cross_entropy(logits.view(-1, logits.shape[-1]), labels.view(-1))
|
| 1019 |
+
log_ppl = loss.clone().detach()
|
| 1020 |
else:
|
| 1021 |
+
loss, log_ppl = torch.as_tensor(0.0), torch.as_tensor(0.0)
|
|
|
|
| 1022 |
|
| 1023 |
+
return CausalLMOutputRecurrentLatents(
|
| 1024 |
+
loss=loss,
|
| 1025 |
+
log_ppl=log_ppl,
|
| 1026 |
+
logits=logits if output_details["return_logits"] else None,
|
| 1027 |
+
past_key_values=None,
|
| 1028 |
+
hidden_states=None,
|
| 1029 |
+
latent_states=None,
|
| 1030 |
+
attention_maps=None,
|
| 1031 |
+
stats={"compute_steps": compute_steps},
|
| 1032 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1033 |
|
| 1034 |
+
def get_stats(self, logits, x, latent_states, xk, input_embeds, num_steps_no_grad, num_steps_with_grad):
|
| 1035 |
+
probs = torch.softmax(logits.float(), dim=-1)
|
| 1036 |
+
prob_entropy = torch.where(probs > 0, -probs * probs.log(), 0).sum(dim=-1)
|
| 1037 |
+
residual_diff = (x - latent_states).norm(dim=-1)
|
| 1038 |
+
rel_residual = residual_diff / latent_states.norm(dim=-1)
|
| 1039 |
+
stats = {
|
| 1040 |
+
"entropy": prob_entropy,
|
| 1041 |
+
"residual_diff": residual_diff,
|
| 1042 |
+
"rel_residual": rel_residual,
|
| 1043 |
+
"num_steps_no_grad": num_steps_no_grad,
|
| 1044 |
+
"num_steps_with_grad": num_steps_with_grad,
|
| 1045 |
+
}
|
| 1046 |
+
return stats
|
| 1047 |
+
|
| 1048 |
+
def _maybe_checkpoint_core_block(self, *args, **kwargs) -> tuple[Tensor, Tensor]:
|
| 1049 |
+
if self.gradient_checkpointing:
|
| 1050 |
+
return checkpoint(
|
| 1051 |
+
self.core_block_forward,
|
| 1052 |
+
*args,
|
| 1053 |
+
use_reentrant=False,
|
| 1054 |
+
preserve_rng_state=False,
|
| 1055 |
+
determinism_check="none",
|
| 1056 |
+
**kwargs,
|
| 1057 |
+
) # type: ignore
|
| 1058 |
+
else:
|
| 1059 |
+
return self.core_block_forward(*args)
|
| 1060 |
+
|
| 1061 |
+
""""------------------------------------------Generation Utilities from here----------------------------------"""
|
| 1062 |
|
| 1063 |
def prepare_inputs_for_generation(
|
| 1064 |
self,
|
|
|
|
| 1110 |
def generate(self, *args, **kwargs):
|
| 1111 |
"""Dispatcher - use HF generate in all normal cases."""
|
| 1112 |
self.generation_config = args[1] if len(args) > 1 else self.generation_config
|
| 1113 |
+
if any(k in kwargs for k in ("criterion", "exit_threshold", "exit_evaluator")):
|
|
|
|
| 1114 |
return self.generate_with_adaptive_compute(*args, **kwargs)
|
| 1115 |
+
elif any(k in kwargs for k in ("draft_steps", "lookahead_for_draft", "verification_threshold")):
|
| 1116 |
+
return self.generate_speculative(*args, **kwargs)
|
| 1117 |
elif "continuous_compute" in kwargs:
|
|
|
|
| 1118 |
return self.generate_minimal(*args, **kwargs)
|
| 1119 |
else:
|
| 1120 |
return super().generate(*args, **kwargs)
|
|
|
|
| 1152 |
lookup_strategy=cache_lookup_strategy,
|
| 1153 |
)
|
| 1154 |
model_kwargs["use_cache"] = True
|
| 1155 |
+
model_kwargs = self._get_initial_cache_position(input_ids.shape[1], input_ids.device, model_kwargs)
|
| 1156 |
return model_kwargs, generation_config, max_new_tokens
|
| 1157 |
|
| 1158 |
@torch.no_grad()
|
|
|
|
| 1169 |
) -> Union[torch.Tensor, dict[str, Any]]:
|
| 1170 |
"""Minimal single-sequence generation. Template for more complicated generate tasks"""
|
| 1171 |
model_kwargs, generation_config, max_new_tokens = self._prep_generate_args(
|
| 1172 |
+
input_ids, generation_config, cache_lookup_strategy, model_kwargs
|
| 1173 |
)
|
| 1174 |
stop_tokens = self._get_stops(generation_config, tokenizer, model_kwargs).to(input_ids.device)
|
| 1175 |
unfinished_sequences = torch.ones(input_ids.shape[0], dtype=torch.long, device=input_ids.device)
|
|
|
|
| 1232 |
tokenizer=None,
|
| 1233 |
streamer=None,
|
| 1234 |
continuous_compute=False, # warm-start state / continuous CoT
|
| 1235 |
+
criterion="none", # adaptive compute is off by default, turn on by choosing an exit criterion
|
| 1236 |
exit_threshold: Union[str, float, int] = "auto",
|
| 1237 |
init_scale: float = 1.0,
|
| 1238 |
cache_lookup_strategy: str = "full",
|
| 1239 |
+
do_not_exit_in_prefill: bool = False,
|
| 1240 |
+
min_steps: int = 0,
|
| 1241 |
+
check_criterion_every_n_steps=1,
|
| 1242 |
+
exit_evaluator: "Optional[PerIterationExitEvaluator]" = None, # optional plugin of a new exit eval object
|
| 1243 |
**model_kwargs,
|
| 1244 |
) -> Union[torch.Tensor, GenerateDecoderOnlyOutput]:
|
| 1245 |
"""
|
| 1246 |
Generate tokens with adaptive compute. This is NOT the most efficient implementation.
|
| 1247 |
For batches, on each token, we iterate until the entire batch finishes.
|
| 1248 |
+
Note: While the method can be used batched, and will produce sensible results, this cannot be used to evaluate
|
| 1249 |
+
the success of adaptive compute methods, which should only ever be benchmarked with batch_size=1.
|
| 1250 |
+
This is because the KV-cache entries are necessarily batched and so contain entries equal to the sequence
|
| 1251 |
+
with the largest number of steps in the whole batch, and these KV states, which would not have been computed
|
| 1252 |
+
if there was only one (short compute) sequence in the batch, will be picked up by later compute steps,
|
| 1253 |
+
making early exits look better than they are.
|
| 1254 |
"""
|
| 1255 |
model_kwargs, generation_config, max_new_tokens = self._prep_generate_args(
|
| 1256 |
input_ids, generation_config, cache_lookup_strategy, model_kwargs
|
|
|
|
| 1269 |
# Track which sequences have finished (using unfinished_sequences to match generate_minimal)
|
| 1270 |
unfinished_sequences = torch.ones(batch_size, dtype=torch.long, device=input_ids.device)
|
| 1271 |
|
| 1272 |
+
if exit_evaluator is None:
|
| 1273 |
+
exit_evaluator = get_adaptive_exit_evaluator(self, criterion, exit_threshold)
|
| 1274 |
+
|
| 1275 |
# Generate tokens
|
| 1276 |
+
for token_step_in_sequence in range(max_new_tokens):
|
| 1277 |
# Adaptive compute forward
|
| 1278 |
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
|
| 1279 |
aux_inputs = {
|
|
|
|
| 1286 |
else model_kwargs["input_states"]
|
| 1287 |
)
|
| 1288 |
|
| 1289 |
+
# Initialize next_states for continuous compute
|
| 1290 |
+
if continuous_compute:
|
| 1291 |
+
next_states = current_latents[:, -1:, :].clone()
|
| 1292 |
+
|
| 1293 |
# Initialize criterion tracking for each sequence in batch
|
| 1294 |
exit_values_per_seq = [[] for _ in range(batch_size)]
|
| 1295 |
compute_steps_per_seq = [0] * batch_size
|
| 1296 |
exit_reached = torch.zeros(batch_size, dtype=torch.bool, device=input_ids.device)
|
| 1297 |
|
| 1298 |
+
outputs, next_token_logits = None, None
|
| 1299 |
+
exit_evaluator.init(current_latents)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1300 |
|
| 1301 |
# Iterate through compute steps
|
| 1302 |
for compute_step in range(max_steps):
|
|
|
|
| 1303 |
current_latents, block_idx, _ = self.iterate_one_step(
|
| 1304 |
embedded_inputs,
|
| 1305 |
current_latents,
|
|
|
|
| 1308 |
current_step=compute_step,
|
| 1309 |
)
|
| 1310 |
|
| 1311 |
+
# Skip checking exit conditions if min_steps not met, or not checking this step, or in prefill
|
| 1312 |
+
if (
|
| 1313 |
+
compute_step < min_steps
|
| 1314 |
+
or (compute_step - min_steps) % check_criterion_every_n_steps != 0
|
| 1315 |
+
or (do_not_exit_in_prefill and token_step_in_sequence == 0)
|
| 1316 |
+
):
|
| 1317 |
+
continue
|
| 1318 |
+
|
| 1319 |
+
# Otherwise check for new exits, potentially by evaluating the coda:
|
| 1320 |
+
new_exits, outputs, exit_values = exit_evaluator.check(self, current_latents, aux_inputs)
|
| 1321 |
+
|
| 1322 |
+
# Record values and check exits for each sequence
|
| 1323 |
+
for i in range(batch_size):
|
| 1324 |
+
if not exit_reached[i] and unfinished_sequences[i].bool():
|
| 1325 |
+
exit_values_per_seq[i].append(exit_values[i].item())
|
| 1326 |
+
|
| 1327 |
+
new_exits = new_exits & ~exit_reached & unfinished_sequences.bool()
|
| 1328 |
+
|
| 1329 |
+
if new_exits.any():
|
| 1330 |
+
exit_reached = exit_reached | new_exits
|
| 1331 |
+
if outputs is not None:
|
| 1332 |
+
logits = outputs.logits
|
| 1333 |
+
else:
|
| 1334 |
+
# For latent-based criteria, compute outputs when we need them
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1335 |
outputs = self.predict_from_latents(current_latents, **aux_inputs)
|
| 1336 |
+
logits = outputs.logits
|
| 1337 |
+
|
| 1338 |
+
if next_token_logits is None:
|
| 1339 |
+
next_token_logits = logits[:, -1, :].to(**logit_type) # type: ignore
|
| 1340 |
+
else:
|
| 1341 |
+
next_token_logits[new_exits] = logits[new_exits, -1, :].to(**logit_type) # type: ignore
|
| 1342 |
+
|
|
|
|
|
|
|
|
|
|
| 1343 |
for i in range(batch_size):
|
| 1344 |
+
if new_exits[i]:
|
| 1345 |
+
compute_steps_per_seq[i] = compute_step + 1
|
| 1346 |
|
| 1347 |
+
# Update continuous compute states for newly exited sequences
|
| 1348 |
+
if continuous_compute:
|
| 1349 |
+
next_states[new_exits] = current_latents[new_exits, -1:, :]
|
| 1350 |
+
|
| 1351 |
+
# If all sequences have exited or finished, break early
|
| 1352 |
+
if (exit_reached | ~unfinished_sequences.bool()).all():
|
| 1353 |
+
break
|
| 1354 |
+
|
| 1355 |
+
# This else triggers if the for loop finishes without breaking:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1356 |
else:
|
| 1357 |
+
if outputs is None:
|
| 1358 |
+
outputs = self.predict_from_latents(current_latents, **aux_inputs)
|
| 1359 |
|
| 1360 |
# For sequences that didn't exit early, use the final logits
|
| 1361 |
if next_token_logits is None:
|
| 1362 |
next_token_logits = outputs.logits[:, -1, :].to(**logit_type) # type: ignore
|
| 1363 |
+
for i in range(batch_size):
|
| 1364 |
+
compute_steps_per_seq[i] = max_steps
|
| 1365 |
else:
|
| 1366 |
for i in range(batch_size):
|
| 1367 |
if not exit_reached[i] and unfinished_sequences[i].bool():
|
| 1368 |
next_token_logits[i] = outputs.logits[i, -1, :].to(**logit_type) # type: ignore
|
| 1369 |
compute_steps_per_seq[i] = max_steps
|
|
|
|
| 1370 |
# Save latent states for continuous compute if enabled
|
| 1371 |
if continuous_compute:
|
| 1372 |
+
still_running = ~exit_reached & unfinished_sequences.bool()
|
| 1373 |
+
next_states[still_running] = current_latents[still_running, -1:, :]
|
| 1374 |
+
model_kwargs["input_states"] = next_states
|
| 1375 |
|
| 1376 |
# Record compute steps for this token generation
|
| 1377 |
compute_steps.append([compute_steps_per_seq, exit_values_per_seq])
|
|
|
|
| 1386 |
streamer.put(next_token.cpu())
|
| 1387 |
|
| 1388 |
# Update model kwargs for next iteration
|
| 1389 |
+
model_kwargs = self._update_model_kwargs_for_generation(outputs, model_kwargs) # type: ignore
|
| 1390 |
|
| 1391 |
# Check for stop tokens and update unfinished sequences
|
| 1392 |
for i in range(batch_size):
|
|
|
|
| 1419 |
)
|
| 1420 |
return input_ids
|
| 1421 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1422 |
@torch.no_grad()
|
| 1423 |
def generate_speculative(
|
| 1424 |
self,
|
|
|
|
| 1600 |
)
|
| 1601 |
return input_ids
|
| 1602 |
|
| 1603 |
+
def _get_stops(self, generation_config, tokenizer, model_kwargs):
|
| 1604 |
+
stop_tokens = {65504, 65505, 65508} # begin_text, end_text, end_turn
|
| 1605 |
+
if generation_config.eos_token_id is not None:
|
| 1606 |
+
try:
|
| 1607 |
+
stop_tokens.update(generation_config.eos_token_id)
|
| 1608 |
+
except TypeError:
|
| 1609 |
+
stop_tokens.add(generation_config.eos_token_id)
|
| 1610 |
+
if "stopping_criteria" in model_kwargs and tokenizer is None:
|
| 1611 |
+
tokenizer = model_kwargs["stopping_criteria"][0].tokenizer
|
| 1612 |
+
if hasattr(generation_config, "stop_strings") and tokenizer and generation_config.stop_strings:
|
| 1613 |
+
for s in generation_config.stop_strings:
|
| 1614 |
+
token_id = tokenizer(s, add_special_tokens=False)["input_ids"][0]
|
| 1615 |
+
stop_tokens.add(token_id)
|
| 1616 |
+
return torch.tensor(list(stop_tokens))
|
| 1617 |
+
|
| 1618 |
+
def _sample_next_token(self, next_token_logits, generation_config):
|
| 1619 |
+
"""Helper function to sample the next token."""
|
| 1620 |
+
if generation_config.do_sample:
|
| 1621 |
+
if generation_config.temperature:
|
| 1622 |
+
next_token_logits = next_token_logits.float() / generation_config.temperature
|
| 1623 |
+
|
| 1624 |
+
probs = F.softmax(next_token_logits, dim=-1)
|
| 1625 |
+
|
| 1626 |
+
# Apply top_k
|
| 1627 |
+
if generation_config.top_k:
|
| 1628 |
+
top_k_values, _ = torch.topk(probs, generation_config.top_k, dim=-1)
|
| 1629 |
+
min_values = top_k_values[:, -1].unsqueeze(-1).expand_as(probs)
|
| 1630 |
+
probs = torch.where(probs < min_values, torch.zeros_like(probs), probs)
|
| 1631 |
+
|
| 1632 |
+
# Apply top_p (nucleus sampling)
|
| 1633 |
+
if generation_config.top_p:
|
| 1634 |
+
sorted_probs, sorted_indices = torch.sort(probs, descending=True, dim=-1)
|
| 1635 |
+
cumulative_probs = torch.cumsum(sorted_probs, dim=-1)
|
| 1636 |
+
|
| 1637 |
+
# Create mask for probs to keep
|
| 1638 |
+
remove_indices = cumulative_probs > generation_config.top_p
|
| 1639 |
+
remove_indices[:, 0] = False # Keep at least the top probability
|
| 1640 |
+
|
| 1641 |
+
# Convert sorted indices mask back to original indices mask
|
| 1642 |
+
mask = torch.zeros_like(probs, dtype=torch.bool)
|
| 1643 |
+
for i in range(probs.shape[0]):
|
| 1644 |
+
mask[i, sorted_indices[i, remove_indices[i]]] = True
|
| 1645 |
+
|
| 1646 |
+
probs = torch.where(mask, torch.zeros_like(probs), probs)
|
| 1647 |
+
|
| 1648 |
+
# Apply min_p
|
| 1649 |
+
if generation_config.min_p:
|
| 1650 |
+
max_probs = probs.max(dim=-1, keepdim=True)[0]
|
| 1651 |
+
min_p_threshold = generation_config.min_p * max_probs
|
| 1652 |
+
probs = torch.where(probs < min_p_threshold, torch.zeros_like(probs), probs)
|
| 1653 |
+
|
| 1654 |
+
# Renormalize probabilities
|
| 1655 |
+
probs = probs / probs.sum(dim=-1, keepdim=True).clamp(min=1e-10)
|
| 1656 |
+
|
| 1657 |
+
# Sample from the distribution
|
| 1658 |
+
return torch.multinomial(probs, num_samples=1)
|
| 1659 |
+
else:
|
| 1660 |
+
return torch.argmax(next_token_logits, dim=-1, keepdim=True)
|
| 1661 |
+
|
| 1662 |
+
|
| 1663 |
+
################################ Model Utils #######################################################################
|
| 1664 |
|
| 1665 |
|
|
|
|
| 1666 |
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0, condense_ratio: int = 1):
|
| 1667 |
with torch.autocast("cuda", enabled=False):
|
| 1668 |
inv_freqs = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
|
|
|
|
| 1688 |
return torch.split(rotated_qk.type_as(q), q.shape[2], dim=2) # type: ignore
|
| 1689 |
|
| 1690 |
|
| 1691 |
+
#################################### Adaptive Compute Exit Evaluators ##########################################
|
| 1692 |
+
|
| 1693 |
+
Exit = Tuple[torch.Tensor, Optional[CausalLMOutputRecurrentLatents], torch.Tensor]
|
| 1694 |
+
|
| 1695 |
+
|
| 1696 |
+
class PerIterationExitEvaluator:
|
| 1697 |
+
"""Base class for exit evaluators that check after each recurrent step."""
|
| 1698 |
+
|
| 1699 |
+
def init(self, initial_latents: torch.Tensor):
|
| 1700 |
+
"""Initialize evaluator state."""
|
| 1701 |
+
|
| 1702 |
+
def check(self, model: "RavenForCausalLM", latents: torch.Tensor, aux_inputs: dict) -> Exit:
|
| 1703 |
+
"""Returns (should_exit, outputs (or None), exit_values)"""
|
| 1704 |
+
raise NotImplementedError()
|
| 1705 |
+
|
| 1706 |
+
|
| 1707 |
+
class NoOpExitEvaluator(PerIterationExitEvaluator):
|
| 1708 |
+
"""Exit evaluator that never exits early."""
|
| 1709 |
+
|
| 1710 |
+
def check(self, model: "RavenForCausalLM", latents: torch.Tensor, aux_inputs: dict) -> Exit:
|
| 1711 |
+
return (
|
| 1712 |
+
torch.zeros(latents.shape[0], device=latents.device, dtype=torch.bool),
|
| 1713 |
+
None,
|
| 1714 |
+
torch.zeros(latents.shape[0], device=latents.device),
|
| 1715 |
+
)
|
| 1716 |
+
|
| 1717 |
+
|
| 1718 |
+
class EntropyDiffExitEvaluator(PerIterationExitEvaluator):
|
| 1719 |
+
"""Exit based on change in output entropy."""
|
| 1720 |
+
|
| 1721 |
+
def __init__(self, exit_threshold: Union[str, float] = "auto"):
|
| 1722 |
+
self.exit_threshold = 1e-3 if exit_threshold == "auto" else float(exit_threshold)
|
| 1723 |
+
|
| 1724 |
+
def init(self, initial_latents: torch.Tensor):
|
| 1725 |
+
batch_size = initial_latents.shape[0]
|
| 1726 |
+
self.prev_entropy = torch.ones(batch_size, device=initial_latents.device) * 100.0
|
| 1727 |
+
|
| 1728 |
+
def check(self, model: "RavenForCausalLM", latents: torch.Tensor, aux_inputs: dict) -> Exit:
|
| 1729 |
+
outputs = model.predict_from_latents(latents, **aux_inputs)
|
| 1730 |
+
logits: torch.Tensor = outputs.logits # type: ignore
|
| 1731 |
+
probs = F.softmax(logits[:, -1, :], dim=-1)
|
| 1732 |
+
entropy = -torch.sum(probs * torch.log(probs + 1e-10), dim=-1)
|
| 1733 |
+
exit_values = (entropy - self.prev_entropy).abs()
|
| 1734 |
+
self.prev_entropy = entropy
|
| 1735 |
+
return exit_values < self.exit_threshold, outputs, exit_values
|
| 1736 |
+
|
| 1737 |
+
|
| 1738 |
+
class LatentDiffExitEvaluator(PerIterationExitEvaluator):
|
| 1739 |
+
"""Exit based on change in latent states."""
|
| 1740 |
+
|
| 1741 |
+
def __init__(self, exit_threshold: Union[str, float] = "auto"):
|
| 1742 |
+
self.exit_threshold = 0.03 if exit_threshold == "auto" else float(exit_threshold)
|
| 1743 |
+
|
| 1744 |
+
def init(self, initial_latents: torch.Tensor):
|
| 1745 |
+
self.prev_latents = initial_latents.clone().detach()
|
| 1746 |
+
|
| 1747 |
+
def check(self, model: "RavenForCausalLM", latents: torch.Tensor, aux_inputs: dict) -> Exit:
|
| 1748 |
+
exit_values = ((latents - self.prev_latents).norm(dim=-1) / latents.norm(dim=-1)).mean(dim=-1)
|
| 1749 |
+
self.prev_latents = latents.clone().detach()
|
| 1750 |
+
return exit_values < self.exit_threshold, None, exit_values
|
| 1751 |
+
|
| 1752 |
+
|
| 1753 |
+
class KLExitEvaluator(PerIterationExitEvaluator):
|
| 1754 |
+
"""Exit based on KL divergence between successive outputs."""
|
| 1755 |
+
|
| 1756 |
+
def __init__(self, model: "RavenForCausalLM", exit_threshold: Union[str, float] = "auto"):
|
| 1757 |
+
self.exit_threshold = 0.001 if exit_threshold == "auto" else float(exit_threshold)
|
| 1758 |
+
self.V = model.config.padded_vocab_size
|
| 1759 |
+
|
| 1760 |
+
def init(self, initial_latents: torch.Tensor):
|
| 1761 |
+
batch_size = initial_latents.shape[0]
|
| 1762 |
+
self.prev_log_probs = ((1 / self.V) * torch.ones(batch_size, self.V, device=initial_latents.device)).log()
|
| 1763 |
+
|
| 1764 |
+
def check(self, model: "RavenForCausalLM", latents: torch.Tensor, aux_inputs: dict) -> Exit:
|
| 1765 |
+
outputs = model.predict_from_latents(latents, **aux_inputs)
|
| 1766 |
+
logits: torch.Tensor = outputs.logits # type: ignore
|
| 1767 |
+
log_probs = F.log_softmax(logits[:, -1, :].float(), dim=-1)
|
| 1768 |
+
exit_values = F.kl_div(log_probs, self.prev_log_probs, reduction="none", log_target=True).sum(dim=-1)
|
| 1769 |
+
self.prev_log_probs = log_probs
|
| 1770 |
+
return exit_values < self.exit_threshold, outputs, exit_values
|
| 1771 |
+
|
| 1772 |
+
|
| 1773 |
+
class MinKLExitEvaluator(PerIterationExitEvaluator):
|
| 1774 |
+
"""Exit based on min-p filtered KL divergence."""
|
| 1775 |
+
|
| 1776 |
+
def __init__(self, model: "RavenForCausalLM", exit_threshold: Union[str, float] = "auto"):
|
| 1777 |
+
self.exit_threshold = 1e-5 if exit_threshold == "auto" else float(exit_threshold)
|
| 1778 |
+
self.V = model.config.padded_vocab_size
|
| 1779 |
+
|
| 1780 |
+
def init(self, initial_latents: torch.Tensor):
|
| 1781 |
+
batch_size = initial_latents.shape[0]
|
| 1782 |
+
self.prev_log_probs = ((1 / self.V) * torch.ones(batch_size, self.V, device=initial_latents.device)).log()
|
| 1783 |
+
|
| 1784 |
+
def _calc_minp_log_probs(self, logits: torch.Tensor) -> torch.Tensor:
|
| 1785 |
+
probs = F.softmax(logits[:, -1, :], dim=-1)
|
| 1786 |
+
max_probs = probs.max(dim=-1, keepdim=True)[0]
|
| 1787 |
+
probs_mask = probs < (0.1 * max_probs)
|
| 1788 |
+
masked_probs = probs
|
| 1789 |
+
masked_probs[probs_mask] = 1 / self.V
|
| 1790 |
+
probs = masked_probs / masked_probs.sum(dim=-1, keepdim=True)
|
| 1791 |
+
return probs.log()
|
| 1792 |
+
|
| 1793 |
+
def check(self, model: "RavenForCausalLM", latents: torch.Tensor, aux_inputs: dict) -> Exit:
|
| 1794 |
+
outputs = model.predict_from_latents(latents, **aux_inputs)
|
| 1795 |
+
logits: torch.Tensor = outputs.logits # type: ignore
|
| 1796 |
+
log_probs = self._calc_minp_log_probs(logits)
|
| 1797 |
+
exit_values = F.kl_div(log_probs, self.prev_log_probs, reduction="none", log_target=True).sum(dim=-1)
|
| 1798 |
+
self.prev_log_probs = log_probs
|
| 1799 |
+
return exit_values < self.exit_threshold, outputs, exit_values
|
| 1800 |
+
|
| 1801 |
+
|
| 1802 |
+
class ArgmaxStabilityExitEvaluator(PerIterationExitEvaluator):
|
| 1803 |
+
"""Exit based on argmax stability over consecutive steps."""
|
| 1804 |
+
|
| 1805 |
+
def __init__(self, exit_threshold: Union[str, int] = "auto"):
|
| 1806 |
+
self.exit_threshold = 5 if exit_threshold == "auto" else int(exit_threshold)
|
| 1807 |
+
|
| 1808 |
+
def init(self, initial_latents: torch.Tensor):
|
| 1809 |
+
batch_size = initial_latents.shape[0]
|
| 1810 |
+
self.prev_argmax = torch.ones(batch_size, dtype=torch.long, device=initial_latents.device) * -1
|
| 1811 |
+
self.stable_for_n_steps = torch.zeros(batch_size, dtype=torch.long, device=initial_latents.device)
|
| 1812 |
+
|
| 1813 |
+
def check(self, model: "RavenForCausalLM", latents: torch.Tensor, aux_inputs: dict) -> Exit:
|
| 1814 |
+
outputs = model.predict_from_latents(latents, **aux_inputs)
|
| 1815 |
+
logits: torch.Tensor = outputs.logits # type: ignore
|
| 1816 |
+
current_argmax = logits[:, -1, :].argmax(dim=-1)
|
| 1817 |
+
stable_for_n_steps = torch.where(
|
| 1818 |
+
current_argmax == self.prev_argmax, self.stable_for_n_steps + 1, torch.zeros_like(self.stable_for_n_steps)
|
| 1819 |
+
)
|
| 1820 |
+
exit_values = stable_for_n_steps
|
| 1821 |
+
self.prev_argmax = current_argmax
|
| 1822 |
+
self.stable_for_n_steps = stable_for_n_steps
|
| 1823 |
+
return exit_values >= self.exit_threshold, outputs, exit_values
|
| 1824 |
+
|
| 1825 |
+
|
| 1826 |
+
class CosineExitEvaluator(PerIterationExitEvaluator):
|
| 1827 |
+
"""Exit based on cosine similarity between successive latent states."""
|
| 1828 |
+
|
| 1829 |
+
def __init__(self, exit_threshold: Union[str, float] = "auto"):
|
| 1830 |
+
self.exit_threshold = 1e-3 if exit_threshold == "auto" else float(exit_threshold)
|
| 1831 |
+
|
| 1832 |
+
def init(self, initial_latents: torch.Tensor):
|
| 1833 |
+
self.prev_latents = initial_latents.clone().detach()
|
| 1834 |
+
|
| 1835 |
+
def check(self, model: "RavenForCausalLM", latents: torch.Tensor, aux_inputs: dict) -> Exit:
|
| 1836 |
+
cosine_sim = (
|
| 1837 |
+
(latents * self.prev_latents).sum(dim=-1) / latents.norm(dim=-1) / self.prev_latents.norm(dim=-1)
|
| 1838 |
+
).mean(dim=1)
|
| 1839 |
+
exit_values = 1 - cosine_sim
|
| 1840 |
+
self.prev_latents = latents.clone().detach()
|
| 1841 |
+
return exit_values < self.exit_threshold, None, exit_values
|
| 1842 |
+
|
| 1843 |
+
|
| 1844 |
+
class NumStepsGenerator(PerIterationExitEvaluator):
|
| 1845 |
+
def __init__(self, steps_fn: Callable):
|
| 1846 |
+
self.steps_fn = steps_fn
|
| 1847 |
+
self.counter = 0
|
| 1848 |
+
self.target_steps = 0
|
| 1849 |
+
self.current_step = 0
|
| 1850 |
+
|
| 1851 |
+
def init(self, initial_latents):
|
| 1852 |
+
self.target_steps = self.steps_fn(self.counter)
|
| 1853 |
+
self.counter += 1
|
| 1854 |
+
self.current_step = 0
|
| 1855 |
+
|
| 1856 |
+
def check(self, model: "RavenForCausalLM", latents: torch.Tensor, aux_inputs: dict) -> Exit:
|
| 1857 |
+
self.current_step += 1
|
| 1858 |
+
should_exit = self.current_step >= self.target_steps
|
| 1859 |
+
return (
|
| 1860 |
+
torch.full((latents.shape[0],), should_exit, dtype=torch.bool, device=latents.device),
|
| 1861 |
+
None,
|
| 1862 |
+
torch.zeros(latents.shape[0], device=latents.device),
|
| 1863 |
+
)
|
| 1864 |
+
|
| 1865 |
+
|
| 1866 |
+
def get_adaptive_exit_evaluator(
|
| 1867 |
+
model: "RavenForCausalLM", criterion: str, exit_threshold: Union[str, float, int]
|
| 1868 |
+
) -> PerIterationExitEvaluator:
|
| 1869 |
+
"""Factory function to create appropriate exit evaluator."""
|
| 1870 |
+
if criterion == "entropy-diff":
|
| 1871 |
+
return EntropyDiffExitEvaluator(exit_threshold)
|
| 1872 |
+
elif criterion == "latent-diff":
|
| 1873 |
+
return LatentDiffExitEvaluator(exit_threshold)
|
| 1874 |
+
elif criterion == "cosine":
|
| 1875 |
+
return CosineExitEvaluator(exit_threshold)
|
| 1876 |
+
elif "kl" in criterion:
|
| 1877 |
+
if criterion == "minp-kl":
|
| 1878 |
+
return MinKLExitEvaluator(model, exit_threshold)
|
| 1879 |
+
else:
|
| 1880 |
+
return KLExitEvaluator(model, exit_threshold)
|
| 1881 |
+
elif criterion == "argmax-stability":
|
| 1882 |
+
return ArgmaxStabilityExitEvaluator(exit_threshold) # type: ignore
|
| 1883 |
+
elif criterion == "none":
|
| 1884 |
+
return NoOpExitEvaluator()
|
| 1885 |
+
else:
|
| 1886 |
+
raise ValueError(f"Invalid adaptive compute strategy: {criterion}")
|
| 1887 |
+
|
| 1888 |
+
|
| 1889 |
#################################### HF registration ############################################################
|
| 1890 |
|
| 1891 |
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
|