tomaarsen HF Staff commited on
Commit
e89605f
·
verified ·
1 Parent(s): c070bd7

Create train_script.py

Browse files
Files changed (1) hide show
  1. train_script.py +80 -0
train_script.py ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datasets import load_dataset
2
+ from sentence_transformers import (
3
+ SparseEncoder,
4
+ SparseEncoderTrainer,
5
+ SparseEncoderTrainingArguments,
6
+ SparseEncoderModelCardData,
7
+ )
8
+ from sentence_transformers.sparse_encoder.losses import SpladeLoss, SparseMultipleNegativesRankingLoss
9
+ from sentence_transformers.training_args import BatchSamplers
10
+ from sentence_transformers.sparse_encoder.evaluation import SparseNanoBEIREvaluator
11
+
12
+ # 1. Load a model to finetune with 2. (Optional) model card data
13
+ model = SparseEncoder(
14
+ "distilbert/distilbert-base-uncased",
15
+ model_card_data=SparseEncoderModelCardData(
16
+ language="en",
17
+ license="apache-2.0",
18
+ model_name="Distilbert base trained on Natural-Questions tuples",
19
+ )
20
+ )
21
+
22
+ # 3. Load a dataset to finetune on
23
+ full_dataset = load_dataset("sentence-transformers/natural-questions", split="train").select(range(100_000))
24
+ dataset_dict = full_dataset.train_test_split(test_size=1_000, seed=12)
25
+ train_dataset = dataset_dict["train"]
26
+ eval_dataset = dataset_dict["test"]
27
+
28
+ # 4. Define a loss function
29
+ loss = SpladeLoss(
30
+ model=model,
31
+ loss=SparseMultipleNegativesRankingLoss(model=model),
32
+ lambda_query=5e-5,
33
+ lambda_corpus=3e-5,
34
+ )
35
+
36
+ # 5. (Optional) Specify training arguments
37
+ args = SparseEncoderTrainingArguments(
38
+ # Required parameter:
39
+ output_dir="models/splade-distilbert-base-uncased-nq",
40
+ # Optional training parameters:
41
+ num_train_epochs=1,
42
+ per_device_train_batch_size=16,
43
+ per_device_eval_batch_size=16,
44
+ learning_rate=2e-5,
45
+ warmup_ratio=0.1,
46
+ fp16=True, # Set to False if you get an error that your GPU can't run on FP16
47
+ bf16=False, # Set to True if you have a GPU that supports BF16
48
+ batch_sampler=BatchSamplers.NO_DUPLICATES, # MultipleNegativesRankingLoss benefits from no duplicate samples in a batch
49
+ # Optional tracking/debugging parameters:
50
+ eval_strategy="steps",
51
+ eval_steps=1000,
52
+ save_strategy="steps",
53
+ save_steps=1000,
54
+ save_total_limit=2,
55
+ logging_steps=100,
56
+ run_name="splade-distilbert-base-uncased-nq", # Will be used in W&B if `wandb` is installed
57
+ )
58
+
59
+ # 6. (Optional) Create an evaluator & evaluate the base model
60
+ dev_evaluator = SparseNanoBEIREvaluator(dataset_names=["msmarco", "nfcorpus", "nq"], batch_size=16)
61
+
62
+ # 7. Create a trainer & train
63
+ trainer = SparseEncoderTrainer(
64
+ model=model,
65
+ args=args,
66
+ train_dataset=train_dataset,
67
+ eval_dataset=eval_dataset,
68
+ loss=loss,
69
+ evaluator=dev_evaluator,
70
+ )
71
+ trainer.train()
72
+
73
+ # 8. Evaluate the model performance again after training
74
+ dev_evaluator(model)
75
+
76
+ # 9. Save the trained model
77
+ model.save_pretrained("models/splade-distilbert-base-uncased-nq/final")
78
+
79
+ # 10. (Optional) Push it to the Hugging Face Hub
80
+ model.push_to_hub("splade-distilbert-base-uncased-nq")