tomaarsen HF Staff commited on
Commit
70c77d5
·
verified ·
1 Parent(s): cbab74d

Add new SparseEncoder model

Browse files
1_SpladePooling/config.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "pooling_strategy": "max",
3
+ "activation_function": "relu",
4
+ "word_embedding_dimension": 30522
5
+ }
README.md ADDED
@@ -0,0 +1,1857 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ tags:
6
+ - sentence-transformers
7
+ - sparse-encoder
8
+ - sparse
9
+ - splade
10
+ - generated_from_trainer
11
+ - dataset_size:99000
12
+ - loss:SpladeLoss
13
+ - loss:SparseMultipleNegativesRankingLoss
14
+ - loss:FlopsLoss
15
+ base_model: distilbert/distilbert-base-uncased
16
+ widget:
17
+ - source_sentence: who are the dancers in the limp bizkit rollin video
18
+ sentences:
19
+ - Voting age Before the Second World War, the voting age in almost all countries
20
+ was 21 years or higher. Czechoslovakia was the first to reduce the voting age
21
+ to 20 years in 1946, and by 1968 a total of 17 countries had lowered their voting
22
+ age.[1] Many countries, particularly in Western Europe, reduced their voting ages
23
+ to 18 years during the 1970s, starting with the United Kingdom (1969),[2] with
24
+ the United States (26th Amendment) (1971), Canada, West Germany (1972), Australia
25
+ (1974), France (1974), and others following soon afterwards. By the end of the
26
+ 20th century, 18 had become by far the most common voting age. However, a few
27
+ countries maintain a voting age of 20 years or higher. It was argued that young
28
+ men could be drafted to go to war at 18, and many people felt they should be able
29
+ to vote at the age of 18.[3]
30
+ - Rollin' (Limp Bizkit song) The music video was filmed atop the South Tower of
31
+ the former World Trade Center in New York City. The introduction features Ben
32
+ Stiller and Stephen Dorff mistaking Fred Durst for the valet and giving him the
33
+ keys to their Bentley Azure. Also making a cameo is break dancer Mr. Wiggles.
34
+ The rest of the video has several cuts to Durst and his bandmates hanging out
35
+ of the Bentley as they drive about Manhattan. The song Ben Stiller is playing
36
+ at the beginning is "My Generation" from the same album. The video also features
37
+ scenes of Fred Durst with five girls dancing in a room. The video was filmed around
38
+ the same time as the film Zoolander, which explains Stiller and Dorff's appearance.
39
+ Fred Durst has a small cameo in that film.
40
+ - Eobard Thawne When Thawne reappears, he murders the revived Johnny Quick,[9] before
41
+ proceeding to trap Barry and the revived Max Mercury inside the negative Speed
42
+ Force. Thawne then attempts to kill Wally West's children through their connection
43
+ to the Speed Force in front of Linda Park-West, only to be stopped by Jay Garrick
44
+ and Bart Allen. Thawne defeats Jay and prepares to kill Bart, but Barry, Max,
45
+ Wally, Jesse Quick, and Impulse arrive to prevent the villain from doing so.[8][10]
46
+ In the ensuing fight, Thawne reveals that he is responsible for every tragedy
47
+ that has occurred in Barry's life, including the death of his mother. Thawne then
48
+ decides to destroy everything the Flash holds dear by killing Barry's wife, Iris,
49
+ before they even met.[10]
50
+ - source_sentence: who wins season 14 of hell's kitchen
51
+ sentences:
52
+ - Hell's Kitchen (U.S. season 14) Season 14 of the American competitive reality
53
+ television series Hell's Kitchen premiered on March 3, 2015 on Fox. The prize
54
+ is a head chef position at Gordon Ramsay Pub & Grill in Caesars Atlantic City.[1]
55
+ Gordon Ramsay returned as head chef with Andi Van Willigan and James Avery returning
56
+ as sous-chefs for both their respective kitchens as well as Marino Monferrato
57
+ as the maître d'. Executive chef Meghan Gill from Roanoke, Virginia, won the
58
+ competition, thus becoming the fourteenth winner of Hell's Kitchen.
59
+ - 'Maze Runner: The Death Cure On April 22, 2017, the studio delayed the release
60
+ date once again, to February 9, 2018, in order to allow more time for post-production;
61
+ months later, on August 25, the studio moved the release forward two weeks.[17]
62
+ The film will premiere on January 26, 2018 in 3D, IMAX and IMAX 3D.[18][19]'
63
+ - North American Plate On its western edge, the Farallon Plate has been subducting
64
+ under the North American Plate since the Jurassic Period. The Farallon Plate has
65
+ almost completely subducted beneath the western portion of the North American
66
+ Plate leaving that part of the North American Plate in contact with the Pacific
67
+ Plate as the San Andreas Fault. The Juan de Fuca, Explorer, Gorda, Rivera, Cocos
68
+ and Nazca plates are remnants of the Farallon Plate.
69
+ - source_sentence: who played the dj in the movie the warriors
70
+ sentences:
71
+ - List of Arrow episodes As of May 17, 2018,[update] 138 episodes of Arrow have
72
+ aired, concluding the sixth season. On April 2, 2018, the CW renewed the series
73
+ for a seventh season.[1]
74
+ - Lynne Thigpen Cherlynne Theresa "Lynne" Thigpen (December 22, 1948 – March 12,
75
+ 2003) was an American actress, best known for her role as "The Chief" of ACME
76
+ in the various Carmen Sandiego television series and computer games from 1991
77
+ to 1997. For her varied television work, Thigpen was nominated for six Daytime
78
+ Emmy Awards; she won a Tony Award in 1997 for portraying Dr. Judith Kaufman in
79
+ An American Daughter.
80
+ - The Washington Post The Washington Post is an American daily newspaper. It is
81
+ the most widely circulated newspaper published in Washington, D.C., and was founded
82
+ on December 6, 1877,[7] making it the area's oldest extant newspaper. In February
83
+ 2017, amid a barrage of criticism from President Donald Trump over the paper's
84
+ coverage of his campaign and early presidency as well as concerns among the American
85
+ press about Trump's criticism and threats against journalists who provide coverage
86
+ he deems unfavorable, the Post adopted the slogan "Democracy Dies in Darkness".[8]
87
+ - source_sentence: how old was messi when he started his career
88
+ sentences:
89
+ - Lionel Messi Born and raised in central Argentina, Messi was diagnosed with a
90
+ growth hormone deficiency as a child. At age 13, he relocated to Spain to join
91
+ Barcelona, who agreed to pay for his medical treatment. After a fast progression
92
+ through Barcelona's youth academy, Messi made his competitive debut aged 17 in
93
+ October 2004. Despite being injury-prone during his early career, he established
94
+ himself as an integral player for the club within the next three years, finishing
95
+ 2007 as a finalist for both the Ballon d'Or and FIFA World Player of the Year
96
+ award, a feat he repeated the following year. His first uninterrupted campaign
97
+ came in the 2008–09 season, during which he helped Barcelona achieve the first
98
+ treble in Spanish football. At 22 years old, Messi won the Ballon d'Or and FIFA
99
+ World Player of the Year award by record voting margins.
100
+ - We Are Marshall Filming of We Are Marshall commenced on April 3, 2006, in Huntington,
101
+ West Virginia, and was completed in Atlanta, Georgia. The premiere for the film
102
+ was held at the Keith Albee Theater on December 12, 2006, in Huntington; other
103
+ special screenings were held at Pullman Square. The movie was released nationwide
104
+ on December 22, 2006.
105
+ - One Fish, Two Fish, Red Fish, Blue Fish One Fish, Two Fish, Red Fish, Blue Fish
106
+ is a 1960 children's book by Dr. Seuss. It is a simple rhyming book for beginning
107
+ readers, with a freewheeling plot about a boy and a girl named Jay and Kay and
108
+ the many amazing creatures they have for friends and pets. Interspersed are some
109
+ rather surreal and unrelated skits, such as a man named Ned whose feet stick out
110
+ from his bed, and a creature who has a bird in his ear. As of 2001, over 6 million
111
+ copies of the book had been sold, placing it 13th on a list of "All-Time Bestselling
112
+ Children's Books" from Publishers Weekly.[1] Based on a 2007 online poll, the
113
+ United States' National Education Association labor union named the book one of
114
+ its "Teachers' Top 100 Books for Children."[2]
115
+ - source_sentence: is send in the clowns from a musical
116
+ sentences:
117
+ - Money in the Bank ladder match The first match was contested in 2005 at WrestleMania
118
+ 21, after being invented (in kayfabe) by Chris Jericho.[1] At the time, it was
119
+ exclusive to wrestlers of the Raw brand, and Edge won the inaugural match.[1]
120
+ From then until 2010, the Money in the Bank ladder match, now open to all WWE
121
+ brands, became a WrestleMania mainstay. 2010 saw a second and third Money in the
122
+ Bank ladder match when the Money in the Bank pay-per-view debuted in July. Unlike
123
+ the matches at WrestleMania, this new event featured two such ladder matches –
124
+ one each for a contract for the WWE Championship and World Heavyweight Championship,
125
+ respectively.
126
+ - The Suite Life on Deck The Suite Life on Deck is an American sitcom that aired
127
+ on Disney Channel from September 26, 2008 to May 6, 2011. It is a sequel/spin-off
128
+ of the Disney Channel Original Series The Suite Life of Zack & Cody. The series
129
+ follows twin brothers Zack and Cody Martin and hotel heiress London Tipton in
130
+ a new setting, the SS Tipton, where they attend classes at "Seven Seas High School"
131
+ and meet Bailey Pickett while Mr. Moseby manages the ship. The ship travels around
132
+ the world to nations such as Italy, France, Greece, India, Sweden and the United
133
+ Kingdom where the characters experience different cultures, adventures, and situations.[1]
134
+ - 'Send In the Clowns "Send In the Clowns" is a song written by Stephen Sondheim
135
+ for the 1973 musical A Little Night Music, an adaptation of Ingmar Bergman''s
136
+ film Smiles of a Summer Night. It is a ballad from Act Two, in which the character
137
+ Desirée reflects on the ironies and disappointments of her life. Among other things,
138
+ she looks back on an affair years earlier with the lawyer Fredrik, who was deeply
139
+ in love with her but whose marriage proposals she had rejected. Meeting him after
140
+ so long, she realizes she is in love with him and finally ready to marry him,
141
+ but now it is he who rejects her: he is in an unconsummated marriage with a much
142
+ younger woman. Desirée proposes marriage to rescue him from this situation, but
143
+ he declines, citing his dedication to his bride. Reacting to his rejection, Desirée
144
+ sings this song. The song is later reprised as a coda after Fredrik''s young wife
145
+ runs away with his son, and Fredrik is finally free to accept Desirée''s offer.[1]'
146
+ datasets:
147
+ - sentence-transformers/natural-questions
148
+ pipeline_tag: feature-extraction
149
+ library_name: sentence-transformers
150
+ metrics:
151
+ - dot_accuracy@1
152
+ - dot_accuracy@3
153
+ - dot_accuracy@5
154
+ - dot_accuracy@10
155
+ - dot_precision@1
156
+ - dot_precision@3
157
+ - dot_precision@5
158
+ - dot_precision@10
159
+ - dot_recall@1
160
+ - dot_recall@3
161
+ - dot_recall@5
162
+ - dot_recall@10
163
+ - dot_ndcg@10
164
+ - dot_mrr@10
165
+ - dot_map@100
166
+ - row_non_zero_mean_query
167
+ - row_sparsity_mean_query
168
+ - row_non_zero_mean_corpus
169
+ - row_sparsity_mean_corpus
170
+ co2_eq_emissions:
171
+ emissions: 32.749162711505036
172
+ energy_consumed: 0.08425262208968576
173
+ source: codecarbon
174
+ training_type: fine-tuning
175
+ on_cloud: false
176
+ cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
177
+ ram_total_size: 31.777088165283203
178
+ hours_used: 0.292
179
+ hardware_used: 1 x NVIDIA GeForce RTX 3090
180
+ model-index:
181
+ - name: splade-distilbert-base-uncased trained on Natural Questions
182
+ results:
183
+ - task:
184
+ type: sparse-information-retrieval
185
+ name: Sparse Information Retrieval
186
+ dataset:
187
+ name: NanoMSMARCO
188
+ type: NanoMSMARCO
189
+ metrics:
190
+ - type: dot_accuracy@1
191
+ value: 0.24
192
+ name: Dot Accuracy@1
193
+ - type: dot_accuracy@3
194
+ value: 0.44
195
+ name: Dot Accuracy@3
196
+ - type: dot_accuracy@5
197
+ value: 0.6
198
+ name: Dot Accuracy@5
199
+ - type: dot_accuracy@10
200
+ value: 0.72
201
+ name: Dot Accuracy@10
202
+ - type: dot_precision@1
203
+ value: 0.24
204
+ name: Dot Precision@1
205
+ - type: dot_precision@3
206
+ value: 0.14666666666666664
207
+ name: Dot Precision@3
208
+ - type: dot_precision@5
209
+ value: 0.12000000000000002
210
+ name: Dot Precision@5
211
+ - type: dot_precision@10
212
+ value: 0.07200000000000001
213
+ name: Dot Precision@10
214
+ - type: dot_recall@1
215
+ value: 0.24
216
+ name: Dot Recall@1
217
+ - type: dot_recall@3
218
+ value: 0.44
219
+ name: Dot Recall@3
220
+ - type: dot_recall@5
221
+ value: 0.6
222
+ name: Dot Recall@5
223
+ - type: dot_recall@10
224
+ value: 0.72
225
+ name: Dot Recall@10
226
+ - type: dot_ndcg@10
227
+ value: 0.46533877878819696
228
+ name: Dot Ndcg@10
229
+ - type: dot_mrr@10
230
+ value: 0.3856269841269841
231
+ name: Dot Mrr@10
232
+ - type: dot_map@100
233
+ value: 0.3974184036014145
234
+ name: Dot Map@100
235
+ - type: row_non_zero_mean_query
236
+ value: 15.779999732971191
237
+ name: Row Non Zero Mean Query
238
+ - type: row_sparsity_mean_query
239
+ value: 0.9994829297065735
240
+ name: Row Sparsity Mean Query
241
+ - type: row_non_zero_mean_corpus
242
+ value: 25.729328155517578
243
+ name: Row Non Zero Mean Corpus
244
+ - type: row_sparsity_mean_corpus
245
+ value: 0.9991570711135864
246
+ name: Row Sparsity Mean Corpus
247
+ - type: dot_accuracy@1
248
+ value: 0.22
249
+ name: Dot Accuracy@1
250
+ - type: dot_accuracy@3
251
+ value: 0.42
252
+ name: Dot Accuracy@3
253
+ - type: dot_accuracy@5
254
+ value: 0.6
255
+ name: Dot Accuracy@5
256
+ - type: dot_accuracy@10
257
+ value: 0.74
258
+ name: Dot Accuracy@10
259
+ - type: dot_precision@1
260
+ value: 0.22
261
+ name: Dot Precision@1
262
+ - type: dot_precision@3
263
+ value: 0.13999999999999999
264
+ name: Dot Precision@3
265
+ - type: dot_precision@5
266
+ value: 0.12000000000000002
267
+ name: Dot Precision@5
268
+ - type: dot_precision@10
269
+ value: 0.07400000000000001
270
+ name: Dot Precision@10
271
+ - type: dot_recall@1
272
+ value: 0.22
273
+ name: Dot Recall@1
274
+ - type: dot_recall@3
275
+ value: 0.42
276
+ name: Dot Recall@3
277
+ - type: dot_recall@5
278
+ value: 0.6
279
+ name: Dot Recall@5
280
+ - type: dot_recall@10
281
+ value: 0.74
282
+ name: Dot Recall@10
283
+ - type: dot_ndcg@10
284
+ value: 0.46328494594550307
285
+ name: Dot Ndcg@10
286
+ - type: dot_mrr@10
287
+ value: 0.37662698412698403
288
+ name: Dot Mrr@10
289
+ - type: dot_map@100
290
+ value: 0.3856610333651542
291
+ name: Dot Map@100
292
+ - type: row_non_zero_mean_query
293
+ value: 15.380000114440918
294
+ name: Row Non Zero Mean Query
295
+ - type: row_sparsity_mean_query
296
+ value: 0.9994961023330688
297
+ name: Row Sparsity Mean Query
298
+ - type: row_non_zero_mean_corpus
299
+ value: 26.596866607666016
300
+ name: Row Non Zero Mean Corpus
301
+ - type: row_sparsity_mean_corpus
302
+ value: 0.9991285800933838
303
+ name: Row Sparsity Mean Corpus
304
+ - task:
305
+ type: sparse-information-retrieval
306
+ name: Sparse Information Retrieval
307
+ dataset:
308
+ name: NanoNFCorpus
309
+ type: NanoNFCorpus
310
+ metrics:
311
+ - type: dot_accuracy@1
312
+ value: 0.3
313
+ name: Dot Accuracy@1
314
+ - type: dot_accuracy@3
315
+ value: 0.42
316
+ name: Dot Accuracy@3
317
+ - type: dot_accuracy@5
318
+ value: 0.52
319
+ name: Dot Accuracy@5
320
+ - type: dot_accuracy@10
321
+ value: 0.56
322
+ name: Dot Accuracy@10
323
+ - type: dot_precision@1
324
+ value: 0.3
325
+ name: Dot Precision@1
326
+ - type: dot_precision@3
327
+ value: 0.2866666666666667
328
+ name: Dot Precision@3
329
+ - type: dot_precision@5
330
+ value: 0.264
331
+ name: Dot Precision@5
332
+ - type: dot_precision@10
333
+ value: 0.214
334
+ name: Dot Precision@10
335
+ - type: dot_recall@1
336
+ value: 0.01879480879384032
337
+ name: Dot Recall@1
338
+ - type: dot_recall@3
339
+ value: 0.05027421919442009
340
+ name: Dot Recall@3
341
+ - type: dot_recall@5
342
+ value: 0.08706875727827264
343
+ name: Dot Recall@5
344
+ - type: dot_recall@10
345
+ value: 0.11178880663195827
346
+ name: Dot Recall@10
347
+ - type: dot_ndcg@10
348
+ value: 0.2582539565166507
349
+ name: Dot Ndcg@10
350
+ - type: dot_mrr@10
351
+ value: 0.38549999999999995
352
+ name: Dot Mrr@10
353
+ - type: dot_map@100
354
+ value: 0.1034946476704924
355
+ name: Dot Map@100
356
+ - type: row_non_zero_mean_query
357
+ value: 20.18000030517578
358
+ name: Row Non Zero Mean Query
359
+ - type: row_sparsity_mean_query
360
+ value: 0.9993388652801514
361
+ name: Row Sparsity Mean Query
362
+ - type: row_non_zero_mean_corpus
363
+ value: 30.07179069519043
364
+ name: Row Non Zero Mean Corpus
365
+ - type: row_sparsity_mean_corpus
366
+ value: 0.9990148544311523
367
+ name: Row Sparsity Mean Corpus
368
+ - type: dot_accuracy@1
369
+ value: 0.34
370
+ name: Dot Accuracy@1
371
+ - type: dot_accuracy@3
372
+ value: 0.52
373
+ name: Dot Accuracy@3
374
+ - type: dot_accuracy@5
375
+ value: 0.52
376
+ name: Dot Accuracy@5
377
+ - type: dot_accuracy@10
378
+ value: 0.58
379
+ name: Dot Accuracy@10
380
+ - type: dot_precision@1
381
+ value: 0.34
382
+ name: Dot Precision@1
383
+ - type: dot_precision@3
384
+ value: 0.3133333333333333
385
+ name: Dot Precision@3
386
+ - type: dot_precision@5
387
+ value: 0.288
388
+ name: Dot Precision@5
389
+ - type: dot_precision@10
390
+ value: 0.226
391
+ name: Dot Precision@10
392
+ - type: dot_recall@1
393
+ value: 0.021422381525060468
394
+ name: Dot Recall@1
395
+ - type: dot_recall@3
396
+ value: 0.0742401436593227
397
+ name: Dot Recall@3
398
+ - type: dot_recall@5
399
+ value: 0.08995450762658255
400
+ name: Dot Recall@5
401
+ - type: dot_recall@10
402
+ value: 0.11319066947710729
403
+ name: Dot Recall@10
404
+ - type: dot_ndcg@10
405
+ value: 0.27630767880389084
406
+ name: Dot Ndcg@10
407
+ - type: dot_mrr@10
408
+ value: 0.42138888888888887
409
+ name: Dot Mrr@10
410
+ - type: dot_map@100
411
+ value: 0.11387493422516994
412
+ name: Dot Map@100
413
+ - type: row_non_zero_mean_query
414
+ value: 18.81999969482422
415
+ name: Row Non Zero Mean Query
416
+ - type: row_sparsity_mean_query
417
+ value: 0.9993834495544434
418
+ name: Row Sparsity Mean Query
419
+ - type: row_non_zero_mean_corpus
420
+ value: 30.65966796875
421
+ name: Row Non Zero Mean Corpus
422
+ - type: row_sparsity_mean_corpus
423
+ value: 0.9989954829216003
424
+ name: Row Sparsity Mean Corpus
425
+ - task:
426
+ type: sparse-information-retrieval
427
+ name: Sparse Information Retrieval
428
+ dataset:
429
+ name: NanoNQ
430
+ type: NanoNQ
431
+ metrics:
432
+ - type: dot_accuracy@1
433
+ value: 0.32
434
+ name: Dot Accuracy@1
435
+ - type: dot_accuracy@3
436
+ value: 0.5
437
+ name: Dot Accuracy@3
438
+ - type: dot_accuracy@5
439
+ value: 0.58
440
+ name: Dot Accuracy@5
441
+ - type: dot_accuracy@10
442
+ value: 0.64
443
+ name: Dot Accuracy@10
444
+ - type: dot_precision@1
445
+ value: 0.32
446
+ name: Dot Precision@1
447
+ - type: dot_precision@3
448
+ value: 0.16666666666666663
449
+ name: Dot Precision@3
450
+ - type: dot_precision@5
451
+ value: 0.11599999999999999
452
+ name: Dot Precision@5
453
+ - type: dot_precision@10
454
+ value: 0.064
455
+ name: Dot Precision@10
456
+ - type: dot_recall@1
457
+ value: 0.31
458
+ name: Dot Recall@1
459
+ - type: dot_recall@3
460
+ value: 0.49
461
+ name: Dot Recall@3
462
+ - type: dot_recall@5
463
+ value: 0.56
464
+ name: Dot Recall@5
465
+ - type: dot_recall@10
466
+ value: 0.61
467
+ name: Dot Recall@10
468
+ - type: dot_ndcg@10
469
+ value: 0.46811217927927307
470
+ name: Dot Ndcg@10
471
+ - type: dot_mrr@10
472
+ value: 0.43099999999999994
473
+ name: Dot Mrr@10
474
+ - type: dot_map@100
475
+ value: 0.4334878570971412
476
+ name: Dot Map@100
477
+ - type: row_non_zero_mean_query
478
+ value: 15.079999923706055
479
+ name: Row Non Zero Mean Query
480
+ - type: row_sparsity_mean_query
481
+ value: 0.9995059370994568
482
+ name: Row Sparsity Mean Query
483
+ - type: row_non_zero_mean_corpus
484
+ value: 22.96107292175293
485
+ name: Row Non Zero Mean Corpus
486
+ - type: row_sparsity_mean_corpus
487
+ value: 0.999247670173645
488
+ name: Row Sparsity Mean Corpus
489
+ - type: dot_accuracy@1
490
+ value: 0.3
491
+ name: Dot Accuracy@1
492
+ - type: dot_accuracy@3
493
+ value: 0.5
494
+ name: Dot Accuracy@3
495
+ - type: dot_accuracy@5
496
+ value: 0.62
497
+ name: Dot Accuracy@5
498
+ - type: dot_accuracy@10
499
+ value: 0.68
500
+ name: Dot Accuracy@10
501
+ - type: dot_precision@1
502
+ value: 0.3
503
+ name: Dot Precision@1
504
+ - type: dot_precision@3
505
+ value: 0.16666666666666663
506
+ name: Dot Precision@3
507
+ - type: dot_precision@5
508
+ value: 0.124
509
+ name: Dot Precision@5
510
+ - type: dot_precision@10
511
+ value: 0.07
512
+ name: Dot Precision@10
513
+ - type: dot_recall@1
514
+ value: 0.29
515
+ name: Dot Recall@1
516
+ - type: dot_recall@3
517
+ value: 0.49
518
+ name: Dot Recall@3
519
+ - type: dot_recall@5
520
+ value: 0.6
521
+ name: Dot Recall@5
522
+ - type: dot_recall@10
523
+ value: 0.66
524
+ name: Dot Recall@10
525
+ - type: dot_ndcg@10
526
+ value: 0.4796509872234161
527
+ name: Dot Ndcg@10
528
+ - type: dot_mrr@10
529
+ value: 0.42804761904761895
530
+ name: Dot Mrr@10
531
+ - type: dot_map@100
532
+ value: 0.4288636915548681
533
+ name: Dot Map@100
534
+ - type: row_non_zero_mean_query
535
+ value: 14.399999618530273
536
+ name: Row Non Zero Mean Query
537
+ - type: row_sparsity_mean_query
538
+ value: 0.999528169631958
539
+ name: Row Sparsity Mean Query
540
+ - type: row_non_zero_mean_corpus
541
+ value: 23.73485565185547
542
+ name: Row Non Zero Mean Corpus
543
+ - type: row_sparsity_mean_corpus
544
+ value: 0.9992223381996155
545
+ name: Row Sparsity Mean Corpus
546
+ - task:
547
+ type: sparse-nano-beir
548
+ name: Sparse Nano BEIR
549
+ dataset:
550
+ name: NanoBEIR mean
551
+ type: NanoBEIR_mean
552
+ metrics:
553
+ - type: dot_accuracy@1
554
+ value: 0.2866666666666667
555
+ name: Dot Accuracy@1
556
+ - type: dot_accuracy@3
557
+ value: 0.4533333333333333
558
+ name: Dot Accuracy@3
559
+ - type: dot_accuracy@5
560
+ value: 0.5666666666666668
561
+ name: Dot Accuracy@5
562
+ - type: dot_accuracy@10
563
+ value: 0.64
564
+ name: Dot Accuracy@10
565
+ - type: dot_precision@1
566
+ value: 0.2866666666666667
567
+ name: Dot Precision@1
568
+ - type: dot_precision@3
569
+ value: 0.19999999999999998
570
+ name: Dot Precision@3
571
+ - type: dot_precision@5
572
+ value: 0.16666666666666666
573
+ name: Dot Precision@5
574
+ - type: dot_precision@10
575
+ value: 0.11666666666666668
576
+ name: Dot Precision@10
577
+ - type: dot_recall@1
578
+ value: 0.1895982695979468
579
+ name: Dot Recall@1
580
+ - type: dot_recall@3
581
+ value: 0.3267580730648067
582
+ name: Dot Recall@3
583
+ - type: dot_recall@5
584
+ value: 0.4156895857594242
585
+ name: Dot Recall@5
586
+ - type: dot_recall@10
587
+ value: 0.4805962688773194
588
+ name: Dot Recall@10
589
+ - type: dot_ndcg@10
590
+ value: 0.39723497152804027
591
+ name: Dot Ndcg@10
592
+ - type: dot_mrr@10
593
+ value: 0.40070899470899474
594
+ name: Dot Mrr@10
595
+ - type: dot_map@100
596
+ value: 0.3114669694563494
597
+ name: Dot Map@100
598
+ - type: row_non_zero_mean_query
599
+ value: 17.013333320617676
600
+ name: Row Non Zero Mean Query
601
+ - type: row_sparsity_mean_query
602
+ value: 0.9994425773620605
603
+ name: Row Sparsity Mean Query
604
+ - type: row_non_zero_mean_corpus
605
+ value: 26.254063924153645
606
+ name: Row Non Zero Mean Corpus
607
+ - type: row_sparsity_mean_corpus
608
+ value: 0.9991398652394613
609
+ name: Row Sparsity Mean Corpus
610
+ - type: dot_accuracy@1
611
+ value: 0.4023861852433281
612
+ name: Dot Accuracy@1
613
+ - type: dot_accuracy@3
614
+ value: 0.5827315541601256
615
+ name: Dot Accuracy@3
616
+ - type: dot_accuracy@5
617
+ value: 0.6721193092621665
618
+ name: Dot Accuracy@5
619
+ - type: dot_accuracy@10
620
+ value: 0.7583987441130299
621
+ name: Dot Accuracy@10
622
+ - type: dot_precision@1
623
+ value: 0.4023861852433281
624
+ name: Dot Precision@1
625
+ - type: dot_precision@3
626
+ value: 0.25922553636839346
627
+ name: Dot Precision@3
628
+ - type: dot_precision@5
629
+ value: 0.2099277864992151
630
+ name: Dot Precision@5
631
+ - type: dot_precision@10
632
+ value: 0.14982417582417581
633
+ name: Dot Precision@10
634
+ - type: dot_recall@1
635
+ value: 0.22672192221710946
636
+ name: Dot Recall@1
637
+ - type: dot_recall@3
638
+ value: 0.36838967779676207
639
+ name: Dot Recall@3
640
+ - type: dot_recall@5
641
+ value: 0.44570232082548333
642
+ name: Dot Recall@5
643
+ - type: dot_recall@10
644
+ value: 0.5264378082924004
645
+ name: Dot Recall@10
646
+ - type: dot_ndcg@10
647
+ value: 0.4631187549753249
648
+ name: Dot Ndcg@10
649
+ - type: dot_mrr@10
650
+ value: 0.5167952081931673
651
+ name: Dot Mrr@10
652
+ - type: dot_map@100
653
+ value: 0.38677121563396466
654
+ name: Dot Map@100
655
+ - type: row_non_zero_mean_query
656
+ value: 19.27265313955454
657
+ name: Row Non Zero Mean Query
658
+ - type: row_sparsity_mean_query
659
+ value: 0.9993685804880582
660
+ name: Row Sparsity Mean Query
661
+ - type: row_non_zero_mean_corpus
662
+ value: 27.068602635310246
663
+ name: Row Non Zero Mean Corpus
664
+ - type: row_sparsity_mean_corpus
665
+ value: 0.9991131195655236
666
+ name: Row Sparsity Mean Corpus
667
+ - task:
668
+ type: sparse-information-retrieval
669
+ name: Sparse Information Retrieval
670
+ dataset:
671
+ name: NanoClimateFEVER
672
+ type: NanoClimateFEVER
673
+ metrics:
674
+ - type: dot_accuracy@1
675
+ value: 0.18
676
+ name: Dot Accuracy@1
677
+ - type: dot_accuracy@3
678
+ value: 0.36
679
+ name: Dot Accuracy@3
680
+ - type: dot_accuracy@5
681
+ value: 0.44
682
+ name: Dot Accuracy@5
683
+ - type: dot_accuracy@10
684
+ value: 0.6
685
+ name: Dot Accuracy@10
686
+ - type: dot_precision@1
687
+ value: 0.18
688
+ name: Dot Precision@1
689
+ - type: dot_precision@3
690
+ value: 0.13333333333333333
691
+ name: Dot Precision@3
692
+ - type: dot_precision@5
693
+ value: 0.1
694
+ name: Dot Precision@5
695
+ - type: dot_precision@10
696
+ value: 0.07
697
+ name: Dot Precision@10
698
+ - type: dot_recall@1
699
+ value: 0.07
700
+ name: Dot Recall@1
701
+ - type: dot_recall@3
702
+ value: 0.1733333333333333
703
+ name: Dot Recall@3
704
+ - type: dot_recall@5
705
+ value: 0.2033333333333333
706
+ name: Dot Recall@5
707
+ - type: dot_recall@10
708
+ value: 0.28
709
+ name: Dot Recall@10
710
+ - type: dot_ndcg@10
711
+ value: 0.216118762316258
712
+ name: Dot Ndcg@10
713
+ - type: dot_mrr@10
714
+ value: 0.2994126984126984
715
+ name: Dot Mrr@10
716
+ - type: dot_map@100
717
+ value: 0.16840852597130174
718
+ name: Dot Map@100
719
+ - type: row_non_zero_mean_query
720
+ value: 25.020000457763672
721
+ name: Row Non Zero Mean Query
722
+ - type: row_sparsity_mean_query
723
+ value: 0.9991803169250488
724
+ name: Row Sparsity Mean Query
725
+ - type: row_non_zero_mean_corpus
726
+ value: 27.777875900268555
727
+ name: Row Non Zero Mean Corpus
728
+ - type: row_sparsity_mean_corpus
729
+ value: 0.9990898966789246
730
+ name: Row Sparsity Mean Corpus
731
+ - task:
732
+ type: sparse-information-retrieval
733
+ name: Sparse Information Retrieval
734
+ dataset:
735
+ name: NanoDBPedia
736
+ type: NanoDBPedia
737
+ metrics:
738
+ - type: dot_accuracy@1
739
+ value: 0.6
740
+ name: Dot Accuracy@1
741
+ - type: dot_accuracy@3
742
+ value: 0.82
743
+ name: Dot Accuracy@3
744
+ - type: dot_accuracy@5
745
+ value: 0.86
746
+ name: Dot Accuracy@5
747
+ - type: dot_accuracy@10
748
+ value: 0.9
749
+ name: Dot Accuracy@10
750
+ - type: dot_precision@1
751
+ value: 0.6
752
+ name: Dot Precision@1
753
+ - type: dot_precision@3
754
+ value: 0.48666666666666664
755
+ name: Dot Precision@3
756
+ - type: dot_precision@5
757
+ value: 0.4439999999999999
758
+ name: Dot Precision@5
759
+ - type: dot_precision@10
760
+ value: 0.4000000000000001
761
+ name: Dot Precision@10
762
+ - type: dot_recall@1
763
+ value: 0.05376110547712118
764
+ name: Dot Recall@1
765
+ - type: dot_recall@3
766
+ value: 0.15092123200468407
767
+ name: Dot Recall@3
768
+ - type: dot_recall@5
769
+ value: 0.19238478534118364
770
+ name: Dot Recall@5
771
+ - type: dot_recall@10
772
+ value: 0.2793082705020891
773
+ name: Dot Recall@10
774
+ - type: dot_ndcg@10
775
+ value: 0.4933229100355268
776
+ name: Dot Ndcg@10
777
+ - type: dot_mrr@10
778
+ value: 0.7174126984126984
779
+ name: Dot Mrr@10
780
+ - type: dot_map@100
781
+ value: 0.3647742683351921
782
+ name: Dot Map@100
783
+ - type: row_non_zero_mean_query
784
+ value: 14.34000015258789
785
+ name: Row Non Zero Mean Query
786
+ - type: row_sparsity_mean_query
787
+ value: 0.9995301961898804
788
+ name: Row Sparsity Mean Query
789
+ - type: row_non_zero_mean_corpus
790
+ value: 22.812902450561523
791
+ name: Row Non Zero Mean Corpus
792
+ - type: row_sparsity_mean_corpus
793
+ value: 0.9992524981498718
794
+ name: Row Sparsity Mean Corpus
795
+ - task:
796
+ type: sparse-information-retrieval
797
+ name: Sparse Information Retrieval
798
+ dataset:
799
+ name: NanoFEVER
800
+ type: NanoFEVER
801
+ metrics:
802
+ - type: dot_accuracy@1
803
+ value: 0.62
804
+ name: Dot Accuracy@1
805
+ - type: dot_accuracy@3
806
+ value: 0.82
807
+ name: Dot Accuracy@3
808
+ - type: dot_accuracy@5
809
+ value: 0.9
810
+ name: Dot Accuracy@5
811
+ - type: dot_accuracy@10
812
+ value: 0.9
813
+ name: Dot Accuracy@10
814
+ - type: dot_precision@1
815
+ value: 0.62
816
+ name: Dot Precision@1
817
+ - type: dot_precision@3
818
+ value: 0.28
819
+ name: Dot Precision@3
820
+ - type: dot_precision@5
821
+ value: 0.184
822
+ name: Dot Precision@5
823
+ - type: dot_precision@10
824
+ value: 0.092
825
+ name: Dot Precision@10
826
+ - type: dot_recall@1
827
+ value: 0.61
828
+ name: Dot Recall@1
829
+ - type: dot_recall@3
830
+ value: 0.7866666666666666
831
+ name: Dot Recall@3
832
+ - type: dot_recall@5
833
+ value: 0.8566666666666666
834
+ name: Dot Recall@5
835
+ - type: dot_recall@10
836
+ value: 0.8566666666666666
837
+ name: Dot Recall@10
838
+ - type: dot_ndcg@10
839
+ value: 0.7518512751926597
840
+ name: Dot Ndcg@10
841
+ - type: dot_mrr@10
842
+ value: 0.7293333333333335
843
+ name: Dot Mrr@10
844
+ - type: dot_map@100
845
+ value: 0.7119416486291485
846
+ name: Dot Map@100
847
+ - type: row_non_zero_mean_query
848
+ value: 17.84000015258789
849
+ name: Row Non Zero Mean Query
850
+ - type: row_sparsity_mean_query
851
+ value: 0.9994155168533325
852
+ name: Row Sparsity Mean Query
853
+ - type: row_non_zero_mean_corpus
854
+ value: 25.645116806030273
855
+ name: Row Non Zero Mean Corpus
856
+ - type: row_sparsity_mean_corpus
857
+ value: 0.9991597533226013
858
+ name: Row Sparsity Mean Corpus
859
+ - task:
860
+ type: sparse-information-retrieval
861
+ name: Sparse Information Retrieval
862
+ dataset:
863
+ name: NanoFiQA2018
864
+ type: NanoFiQA2018
865
+ metrics:
866
+ - type: dot_accuracy@1
867
+ value: 0.22
868
+ name: Dot Accuracy@1
869
+ - type: dot_accuracy@3
870
+ value: 0.32
871
+ name: Dot Accuracy@3
872
+ - type: dot_accuracy@5
873
+ value: 0.44
874
+ name: Dot Accuracy@5
875
+ - type: dot_accuracy@10
876
+ value: 0.54
877
+ name: Dot Accuracy@10
878
+ - type: dot_precision@1
879
+ value: 0.22
880
+ name: Dot Precision@1
881
+ - type: dot_precision@3
882
+ value: 0.1333333333333333
883
+ name: Dot Precision@3
884
+ - type: dot_precision@5
885
+ value: 0.11599999999999999
886
+ name: Dot Precision@5
887
+ - type: dot_precision@10
888
+ value: 0.07600000000000001
889
+ name: Dot Precision@10
890
+ - type: dot_recall@1
891
+ value: 0.138
892
+ name: Dot Recall@1
893
+ - type: dot_recall@3
894
+ value: 0.25
895
+ name: Dot Recall@3
896
+ - type: dot_recall@5
897
+ value: 0.32938888888888884
898
+ name: Dot Recall@5
899
+ - type: dot_recall@10
900
+ value: 0.3908015873015873
901
+ name: Dot Recall@10
902
+ - type: dot_ndcg@10
903
+ value: 0.29315131681028644
904
+ name: Dot Ndcg@10
905
+ - type: dot_mrr@10
906
+ value: 0.30430158730158724
907
+ name: Dot Mrr@10
908
+ - type: dot_map@100
909
+ value: 0.2444001739214205
910
+ name: Dot Map@100
911
+ - type: row_non_zero_mean_query
912
+ value: 18.940000534057617
913
+ name: Row Non Zero Mean Query
914
+ - type: row_sparsity_mean_query
915
+ value: 0.9993795156478882
916
+ name: Row Sparsity Mean Query
917
+ - type: row_non_zero_mean_corpus
918
+ value: 27.020782470703125
919
+ name: Row Non Zero Mean Corpus
920
+ - type: row_sparsity_mean_corpus
921
+ value: 0.9991146922111511
922
+ name: Row Sparsity Mean Corpus
923
+ - task:
924
+ type: sparse-information-retrieval
925
+ name: Sparse Information Retrieval
926
+ dataset:
927
+ name: NanoHotpotQA
928
+ type: NanoHotpotQA
929
+ metrics:
930
+ - type: dot_accuracy@1
931
+ value: 0.64
932
+ name: Dot Accuracy@1
933
+ - type: dot_accuracy@3
934
+ value: 0.82
935
+ name: Dot Accuracy@3
936
+ - type: dot_accuracy@5
937
+ value: 0.82
938
+ name: Dot Accuracy@5
939
+ - type: dot_accuracy@10
940
+ value: 0.86
941
+ name: Dot Accuracy@10
942
+ - type: dot_precision@1
943
+ value: 0.64
944
+ name: Dot Precision@1
945
+ - type: dot_precision@3
946
+ value: 0.37333333333333324
947
+ name: Dot Precision@3
948
+ - type: dot_precision@5
949
+ value: 0.23199999999999996
950
+ name: Dot Precision@5
951
+ - type: dot_precision@10
952
+ value: 0.132
953
+ name: Dot Precision@10
954
+ - type: dot_recall@1
955
+ value: 0.32
956
+ name: Dot Recall@1
957
+ - type: dot_recall@3
958
+ value: 0.56
959
+ name: Dot Recall@3
960
+ - type: dot_recall@5
961
+ value: 0.58
962
+ name: Dot Recall@5
963
+ - type: dot_recall@10
964
+ value: 0.66
965
+ name: Dot Recall@10
966
+ - type: dot_ndcg@10
967
+ value: 0.60467671511462
968
+ name: Dot Ndcg@10
969
+ - type: dot_mrr@10
970
+ value: 0.7286666666666669
971
+ name: Dot Mrr@10
972
+ - type: dot_map@100
973
+ value: 0.5280557928272471
974
+ name: Dot Map@100
975
+ - type: row_non_zero_mean_query
976
+ value: 18.799999237060547
977
+ name: Row Non Zero Mean Query
978
+ - type: row_sparsity_mean_query
979
+ value: 0.9993841648101807
980
+ name: Row Sparsity Mean Query
981
+ - type: row_non_zero_mean_corpus
982
+ value: 24.752653121948242
983
+ name: Row Non Zero Mean Corpus
984
+ - type: row_sparsity_mean_corpus
985
+ value: 0.999189019203186
986
+ name: Row Sparsity Mean Corpus
987
+ - task:
988
+ type: sparse-information-retrieval
989
+ name: Sparse Information Retrieval
990
+ dataset:
991
+ name: NanoQuoraRetrieval
992
+ type: NanoQuoraRetrieval
993
+ metrics:
994
+ - type: dot_accuracy@1
995
+ value: 0.64
996
+ name: Dot Accuracy@1
997
+ - type: dot_accuracy@3
998
+ value: 0.84
999
+ name: Dot Accuracy@3
1000
+ - type: dot_accuracy@5
1001
+ value: 0.88
1002
+ name: Dot Accuracy@5
1003
+ - type: dot_accuracy@10
1004
+ value: 0.98
1005
+ name: Dot Accuracy@10
1006
+ - type: dot_precision@1
1007
+ value: 0.64
1008
+ name: Dot Precision@1
1009
+ - type: dot_precision@3
1010
+ value: 0.32
1011
+ name: Dot Precision@3
1012
+ - type: dot_precision@5
1013
+ value: 0.21999999999999997
1014
+ name: Dot Precision@5
1015
+ - type: dot_precision@10
1016
+ value: 0.12399999999999999
1017
+ name: Dot Precision@10
1018
+ - type: dot_recall@1
1019
+ value: 0.5740000000000001
1020
+ name: Dot Recall@1
1021
+ - type: dot_recall@3
1022
+ value: 0.768
1023
+ name: Dot Recall@3
1024
+ - type: dot_recall@5
1025
+ value: 0.8446666666666667
1026
+ name: Dot Recall@5
1027
+ - type: dot_recall@10
1028
+ value: 0.9553333333333334
1029
+ name: Dot Recall@10
1030
+ - type: dot_ndcg@10
1031
+ value: 0.7881541877243683
1032
+ name: Dot Ndcg@10
1033
+ - type: dot_mrr@10
1034
+ value: 0.7535238095238094
1035
+ name: Dot Mrr@10
1036
+ - type: dot_map@100
1037
+ value: 0.727066872303161
1038
+ name: Dot Map@100
1039
+ - type: row_non_zero_mean_query
1040
+ value: 17.780000686645508
1041
+ name: Row Non Zero Mean Query
1042
+ - type: row_sparsity_mean_query
1043
+ value: 0.9994174242019653
1044
+ name: Row Sparsity Mean Query
1045
+ - type: row_non_zero_mean_corpus
1046
+ value: 19.436979293823242
1047
+ name: Row Non Zero Mean Corpus
1048
+ - type: row_sparsity_mean_corpus
1049
+ value: 0.9993631839752197
1050
+ name: Row Sparsity Mean Corpus
1051
+ - task:
1052
+ type: sparse-information-retrieval
1053
+ name: Sparse Information Retrieval
1054
+ dataset:
1055
+ name: NanoSCIDOCS
1056
+ type: NanoSCIDOCS
1057
+ metrics:
1058
+ - type: dot_accuracy@1
1059
+ value: 0.36
1060
+ name: Dot Accuracy@1
1061
+ - type: dot_accuracy@3
1062
+ value: 0.48
1063
+ name: Dot Accuracy@3
1064
+ - type: dot_accuracy@5
1065
+ value: 0.62
1066
+ name: Dot Accuracy@5
1067
+ - type: dot_accuracy@10
1068
+ value: 0.76
1069
+ name: Dot Accuracy@10
1070
+ - type: dot_precision@1
1071
+ value: 0.36
1072
+ name: Dot Precision@1
1073
+ - type: dot_precision@3
1074
+ value: 0.21333333333333332
1075
+ name: Dot Precision@3
1076
+ - type: dot_precision@5
1077
+ value: 0.20400000000000001
1078
+ name: Dot Precision@5
1079
+ - type: dot_precision@10
1080
+ value: 0.154
1081
+ name: Dot Precision@10
1082
+ - type: dot_recall@1
1083
+ value: 0.07666666666666667
1084
+ name: Dot Recall@1
1085
+ - type: dot_recall@3
1086
+ value: 0.13366666666666668
1087
+ name: Dot Recall@3
1088
+ - type: dot_recall@5
1089
+ value: 0.21066666666666667
1090
+ name: Dot Recall@5
1091
+ - type: dot_recall@10
1092
+ value: 0.31666666666666665
1093
+ name: Dot Recall@10
1094
+ - type: dot_ndcg@10
1095
+ value: 0.29354115188538094
1096
+ name: Dot Ndcg@10
1097
+ - type: dot_mrr@10
1098
+ value: 0.4672380952380951
1099
+ name: Dot Mrr@10
1100
+ - type: dot_map@100
1101
+ value: 0.21425734227573925
1102
+ name: Dot Map@100
1103
+ - type: row_non_zero_mean_query
1104
+ value: 24.84000015258789
1105
+ name: Row Non Zero Mean Query
1106
+ - type: row_sparsity_mean_query
1107
+ value: 0.9991861581802368
1108
+ name: Row Sparsity Mean Query
1109
+ - type: row_non_zero_mean_corpus
1110
+ value: 34.34458923339844
1111
+ name: Row Non Zero Mean Corpus
1112
+ - type: row_sparsity_mean_corpus
1113
+ value: 0.9988747239112854
1114
+ name: Row Sparsity Mean Corpus
1115
+ - task:
1116
+ type: sparse-information-retrieval
1117
+ name: Sparse Information Retrieval
1118
+ dataset:
1119
+ name: NanoArguAna
1120
+ type: NanoArguAna
1121
+ metrics:
1122
+ - type: dot_accuracy@1
1123
+ value: 0.18
1124
+ name: Dot Accuracy@1
1125
+ - type: dot_accuracy@3
1126
+ value: 0.4
1127
+ name: Dot Accuracy@3
1128
+ - type: dot_accuracy@5
1129
+ value: 0.54
1130
+ name: Dot Accuracy@5
1131
+ - type: dot_accuracy@10
1132
+ value: 0.7
1133
+ name: Dot Accuracy@10
1134
+ - type: dot_precision@1
1135
+ value: 0.18
1136
+ name: Dot Precision@1
1137
+ - type: dot_precision@3
1138
+ value: 0.13333333333333333
1139
+ name: Dot Precision@3
1140
+ - type: dot_precision@5
1141
+ value: 0.10800000000000001
1142
+ name: Dot Precision@5
1143
+ - type: dot_precision@10
1144
+ value: 0.07
1145
+ name: Dot Precision@10
1146
+ - type: dot_recall@1
1147
+ value: 0.18
1148
+ name: Dot Recall@1
1149
+ - type: dot_recall@3
1150
+ value: 0.4
1151
+ name: Dot Recall@3
1152
+ - type: dot_recall@5
1153
+ value: 0.54
1154
+ name: Dot Recall@5
1155
+ - type: dot_recall@10
1156
+ value: 0.7
1157
+ name: Dot Recall@10
1158
+ - type: dot_ndcg@10
1159
+ value: 0.4216491858751158
1160
+ name: Dot Ndcg@10
1161
+ - type: dot_mrr@10
1162
+ value: 0.33469047619047615
1163
+ name: Dot Mrr@10
1164
+ - type: dot_map@100
1165
+ value: 0.34714031247291627
1166
+ name: Dot Map@100
1167
+ - type: row_non_zero_mean_query
1168
+ value: 29.360000610351562
1169
+ name: Row Non Zero Mean Query
1170
+ - type: row_sparsity_mean_query
1171
+ value: 0.9990381002426147
1172
+ name: Row Sparsity Mean Query
1173
+ - type: row_non_zero_mean_corpus
1174
+ value: 29.988996505737305
1175
+ name: Row Non Zero Mean Corpus
1176
+ - type: row_sparsity_mean_corpus
1177
+ value: 0.9990174770355225
1178
+ name: Row Sparsity Mean Corpus
1179
+ - task:
1180
+ type: sparse-information-retrieval
1181
+ name: Sparse Information Retrieval
1182
+ dataset:
1183
+ name: NanoSciFact
1184
+ type: NanoSciFact
1185
+ metrics:
1186
+ - type: dot_accuracy@1
1187
+ value: 0.38
1188
+ name: Dot Accuracy@1
1189
+ - type: dot_accuracy@3
1190
+ value: 0.5
1191
+ name: Dot Accuracy@3
1192
+ - type: dot_accuracy@5
1193
+ value: 0.62
1194
+ name: Dot Accuracy@5
1195
+ - type: dot_accuracy@10
1196
+ value: 0.66
1197
+ name: Dot Accuracy@10
1198
+ - type: dot_precision@1
1199
+ value: 0.38
1200
+ name: Dot Precision@1
1201
+ - type: dot_precision@3
1202
+ value: 0.18
1203
+ name: Dot Precision@3
1204
+ - type: dot_precision@5
1205
+ value: 0.136
1206
+ name: Dot Precision@5
1207
+ - type: dot_precision@10
1208
+ value: 0.07400000000000001
1209
+ name: Dot Precision@10
1210
+ - type: dot_recall@1
1211
+ value: 0.355
1212
+ name: Dot Recall@1
1213
+ - type: dot_recall@3
1214
+ value: 0.475
1215
+ name: Dot Recall@3
1216
+ - type: dot_recall@5
1217
+ value: 0.59
1218
+ name: Dot Recall@5
1219
+ - type: dot_recall@10
1220
+ value: 0.64
1221
+ name: Dot Recall@10
1222
+ - type: dot_ndcg@10
1223
+ value: 0.5021918146434317
1224
+ name: Dot Ndcg@10
1225
+ - type: dot_mrr@10
1226
+ value: 0.467
1227
+ name: Dot Mrr@10
1228
+ - type: dot_map@100
1229
+ value: 0.462876176092865
1230
+ name: Dot Map@100
1231
+ - type: row_non_zero_mean_query
1232
+ value: 19.799999237060547
1233
+ name: Row Non Zero Mean Query
1234
+ - type: row_sparsity_mean_query
1235
+ value: 0.9993513226509094
1236
+ name: Row Sparsity Mean Query
1237
+ - type: row_non_zero_mean_corpus
1238
+ value: 27.219938278198242
1239
+ name: Row Non Zero Mean Corpus
1240
+ - type: row_sparsity_mean_corpus
1241
+ value: 0.9991081357002258
1242
+ name: Row Sparsity Mean Corpus
1243
+ - task:
1244
+ type: sparse-information-retrieval
1245
+ name: Sparse Information Retrieval
1246
+ dataset:
1247
+ name: NanoTouche2020
1248
+ type: NanoTouche2020
1249
+ metrics:
1250
+ - type: dot_accuracy@1
1251
+ value: 0.5510204081632653
1252
+ name: Dot Accuracy@1
1253
+ - type: dot_accuracy@3
1254
+ value: 0.7755102040816326
1255
+ name: Dot Accuracy@3
1256
+ - type: dot_accuracy@5
1257
+ value: 0.8775510204081632
1258
+ name: Dot Accuracy@5
1259
+ - type: dot_accuracy@10
1260
+ value: 0.9591836734693877
1261
+ name: Dot Accuracy@10
1262
+ - type: dot_precision@1
1263
+ value: 0.5510204081632653
1264
+ name: Dot Precision@1
1265
+ - type: dot_precision@3
1266
+ value: 0.4965986394557823
1267
+ name: Dot Precision@3
1268
+ - type: dot_precision@5
1269
+ value: 0.4530612244897959
1270
+ name: Dot Precision@5
1271
+ - type: dot_precision@10
1272
+ value: 0.3857142857142857
1273
+ name: Dot Precision@10
1274
+ - type: dot_recall@1
1275
+ value: 0.038534835153574185
1276
+ name: Dot Recall@1
1277
+ - type: dot_recall@3
1278
+ value: 0.1072377690272331
1279
+ name: Dot Recall@3
1280
+ - type: dot_recall@5
1281
+ value: 0.15706865554129606
1282
+ name: Dot Recall@5
1283
+ - type: dot_recall@10
1284
+ value: 0.25172431385375454
1285
+ name: Dot Recall@10
1286
+ - type: dot_ndcg@10
1287
+ value: 0.4366428831087667
1288
+ name: Dot Ndcg@10
1289
+ - type: dot_mrr@10
1290
+ value: 0.6906948493683187
1291
+ name: Dot Mrr@10
1292
+ - type: dot_map@100
1293
+ value: 0.33070503126735623
1294
+ name: Dot Map@100
1295
+ - type: row_non_zero_mean_query
1296
+ value: 15.22449016571045
1297
+ name: Row Non Zero Mean Query
1298
+ - type: row_sparsity_mean_query
1299
+ value: 0.99950110912323
1300
+ name: Row Sparsity Mean Query
1301
+ - type: row_non_zero_mean_corpus
1302
+ value: 31.900609970092773
1303
+ name: Row Non Zero Mean Corpus
1304
+ - type: row_sparsity_mean_corpus
1305
+ value: 0.9989547729492188
1306
+ name: Row Sparsity Mean Corpus
1307
+ ---
1308
+
1309
+ # splade-distilbert-base-uncased trained on Natural Questions
1310
+
1311
+ This is a [SPLADE Sparse Encoder](https://www.sbert.net/docs/sparse_encoder/usage/usage.html) model finetuned from [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) dataset using the [sentence-transformers](https://www.SBERT.net) library. It maps sentences & paragraphs to a 30522-dimensional sparse vector space and can be used for semantic search and sparse retrieval.
1312
+
1313
+ ## Model Details
1314
+
1315
+ ### Model Description
1316
+ - **Model Type:** SPLADE Sparse Encoder
1317
+ - **Base model:** [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) <!-- at revision 12040accade4e8a0f71eabdb258fecc2e7e948be -->
1318
+ - **Maximum Sequence Length:** 256 tokens
1319
+ - **Output Dimensionality:** 30522 dimensions
1320
+ - **Similarity Function:** Dot Product
1321
+ - **Training Dataset:**
1322
+ - [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions)
1323
+ - **Language:** en
1324
+ - **License:** apache-2.0
1325
+
1326
+ ### Model Sources
1327
+
1328
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
1329
+ - **Documentation:** [Sparse Encoder Documentation](https://www.sbert.net/docs/sparse_encoder/usage/usage.html)
1330
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
1331
+ - **Hugging Face:** [Sparse Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=sparse-encoder)
1332
+
1333
+ ### Full Model Architecture
1334
+
1335
+ ```
1336
+ SparseEncoder(
1337
+ (0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False}) with MLMTransformer model: DistilBertForMaskedLM
1338
+ (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
1339
+ )
1340
+ ```
1341
+
1342
+ ## Usage
1343
+
1344
+ ### Direct Usage (Sentence Transformers)
1345
+
1346
+ First install the Sentence Transformers library:
1347
+
1348
+ ```bash
1349
+ pip install -U sentence-transformers
1350
+ ```
1351
+
1352
+ Then you can load this model and run inference.
1353
+ ```python
1354
+ from sentence_transformers import SparseEncoder
1355
+
1356
+ # Download from the 🤗 Hub
1357
+ model = SparseEncoder("tomaarsen/splade-distilbert-base-uncased-nq-e-3")
1358
+ # Run inference
1359
+ sentences = [
1360
+ 'is send in the clowns from a musical',
1361
+ 'Send In the Clowns "Send In the Clowns" is a song written by Stephen Sondheim for the 1973 musical A Little Night Music, an adaptation of Ingmar Bergman\'s film Smiles of a Summer Night. It is a ballad from Act Two, in which the character Desirée reflects on the ironies and disappointments of her life. Among other things, she looks back on an affair years earlier with the lawyer Fredrik, who was deeply in love with her but whose marriage proposals she had rejected. Meeting him after so long, she realizes she is in love with him and finally ready to marry him, but now it is he who rejects her: he is in an unconsummated marriage with a much younger woman. Desirée proposes marriage to rescue him from this situation, but he declines, citing his dedication to his bride. Reacting to his rejection, Desirée sings this song. The song is later reprised as a coda after Fredrik\'s young wife runs away with his son, and Fredrik is finally free to accept Desirée\'s offer.[1]',
1362
+ 'The Suite Life on Deck The Suite Life on Deck is an American sitcom that aired on Disney Channel from September 26, 2008 to May 6, 2011. It is a sequel/spin-off of the Disney Channel Original Series The Suite Life of Zack & Cody. The series follows twin brothers Zack and Cody Martin and hotel heiress London Tipton in a new setting, the SS Tipton, where they attend classes at "Seven Seas High School" and meet Bailey Pickett while Mr. Moseby manages the ship. The ship travels around the world to nations such as Italy, France, Greece, India, Sweden and the United Kingdom where the characters experience different cultures, adventures, and situations.[1]',
1363
+ ]
1364
+ embeddings = model.encode(sentences)
1365
+ print(embeddings.shape)
1366
+ # (3, 30522)
1367
+
1368
+ # Get the similarity scores for the embeddings
1369
+ similarities = model.similarity(embeddings, embeddings)
1370
+ print(similarities.shape)
1371
+ # [3, 3]
1372
+ ```
1373
+
1374
+ <!--
1375
+ ### Direct Usage (Transformers)
1376
+
1377
+ <details><summary>Click to see the direct usage in Transformers</summary>
1378
+
1379
+ </details>
1380
+ -->
1381
+
1382
+ <!--
1383
+ ### Downstream Usage (Sentence Transformers)
1384
+
1385
+ You can finetune this model on your own dataset.
1386
+
1387
+ <details><summary>Click to expand</summary>
1388
+
1389
+ </details>
1390
+ -->
1391
+
1392
+ <!--
1393
+ ### Out-of-Scope Use
1394
+
1395
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
1396
+ -->
1397
+
1398
+ ## Evaluation
1399
+
1400
+ ### Metrics
1401
+
1402
+ #### Sparse Information Retrieval
1403
+
1404
+ * Datasets: `NanoMSMARCO`, `NanoNFCorpus`, `NanoNQ`, `NanoClimateFEVER`, `NanoDBPedia`, `NanoFEVER`, `NanoFiQA2018`, `NanoHotpotQA`, `NanoMSMARCO`, `NanoNFCorpus`, `NanoNQ`, `NanoQuoraRetrieval`, `NanoSCIDOCS`, `NanoArguAna`, `NanoSciFact` and `NanoTouche2020`
1405
+ * Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator)
1406
+
1407
+ | Metric | NanoMSMARCO | NanoNFCorpus | NanoNQ | NanoClimateFEVER | NanoDBPedia | NanoFEVER | NanoFiQA2018 | NanoHotpotQA | NanoQuoraRetrieval | NanoSCIDOCS | NanoArguAna | NanoSciFact | NanoTouche2020 |
1408
+ |:-------------------------|:------------|:-------------|:-----------|:-----------------|:------------|:-----------|:-------------|:-------------|:-------------------|:------------|:------------|:------------|:---------------|
1409
+ | dot_accuracy@1 | 0.22 | 0.34 | 0.3 | 0.18 | 0.6 | 0.62 | 0.22 | 0.64 | 0.64 | 0.36 | 0.18 | 0.38 | 0.551 |
1410
+ | dot_accuracy@3 | 0.42 | 0.52 | 0.5 | 0.36 | 0.82 | 0.82 | 0.32 | 0.82 | 0.84 | 0.48 | 0.4 | 0.5 | 0.7755 |
1411
+ | dot_accuracy@5 | 0.6 | 0.52 | 0.62 | 0.44 | 0.86 | 0.9 | 0.44 | 0.82 | 0.88 | 0.62 | 0.54 | 0.62 | 0.8776 |
1412
+ | dot_accuracy@10 | 0.74 | 0.58 | 0.68 | 0.6 | 0.9 | 0.9 | 0.54 | 0.86 | 0.98 | 0.76 | 0.7 | 0.66 | 0.9592 |
1413
+ | dot_precision@1 | 0.22 | 0.34 | 0.3 | 0.18 | 0.6 | 0.62 | 0.22 | 0.64 | 0.64 | 0.36 | 0.18 | 0.38 | 0.551 |
1414
+ | dot_precision@3 | 0.14 | 0.3133 | 0.1667 | 0.1333 | 0.4867 | 0.28 | 0.1333 | 0.3733 | 0.32 | 0.2133 | 0.1333 | 0.18 | 0.4966 |
1415
+ | dot_precision@5 | 0.12 | 0.288 | 0.124 | 0.1 | 0.444 | 0.184 | 0.116 | 0.232 | 0.22 | 0.204 | 0.108 | 0.136 | 0.4531 |
1416
+ | dot_precision@10 | 0.074 | 0.226 | 0.07 | 0.07 | 0.4 | 0.092 | 0.076 | 0.132 | 0.124 | 0.154 | 0.07 | 0.074 | 0.3857 |
1417
+ | dot_recall@1 | 0.22 | 0.0214 | 0.29 | 0.07 | 0.0538 | 0.61 | 0.138 | 0.32 | 0.574 | 0.0767 | 0.18 | 0.355 | 0.0385 |
1418
+ | dot_recall@3 | 0.42 | 0.0742 | 0.49 | 0.1733 | 0.1509 | 0.7867 | 0.25 | 0.56 | 0.768 | 0.1337 | 0.4 | 0.475 | 0.1072 |
1419
+ | dot_recall@5 | 0.6 | 0.09 | 0.6 | 0.2033 | 0.1924 | 0.8567 | 0.3294 | 0.58 | 0.8447 | 0.2107 | 0.54 | 0.59 | 0.1571 |
1420
+ | dot_recall@10 | 0.74 | 0.1132 | 0.66 | 0.28 | 0.2793 | 0.8567 | 0.3908 | 0.66 | 0.9553 | 0.3167 | 0.7 | 0.64 | 0.2517 |
1421
+ | **dot_ndcg@10** | **0.4633** | **0.2763** | **0.4797** | **0.2161** | **0.4933** | **0.7519** | **0.2932** | **0.6047** | **0.7882** | **0.2935** | **0.4216** | **0.5022** | **0.4366** |
1422
+ | dot_mrr@10 | 0.3766 | 0.4214 | 0.428 | 0.2994 | 0.7174 | 0.7293 | 0.3043 | 0.7287 | 0.7535 | 0.4672 | 0.3347 | 0.467 | 0.6907 |
1423
+ | dot_map@100 | 0.3857 | 0.1139 | 0.4289 | 0.1684 | 0.3648 | 0.7119 | 0.2444 | 0.5281 | 0.7271 | 0.2143 | 0.3471 | 0.4629 | 0.3307 |
1424
+ | row_non_zero_mean_query | 15.38 | 18.82 | 14.4 | 25.02 | 14.34 | 17.84 | 18.94 | 18.8 | 17.78 | 24.84 | 29.36 | 19.8 | 15.2245 |
1425
+ | row_sparsity_mean_query | 0.9995 | 0.9994 | 0.9995 | 0.9992 | 0.9995 | 0.9994 | 0.9994 | 0.9994 | 0.9994 | 0.9992 | 0.999 | 0.9994 | 0.9995 |
1426
+ | row_non_zero_mean_corpus | 26.5969 | 30.6597 | 23.7349 | 27.7779 | 22.8129 | 25.6451 | 27.0208 | 24.7527 | 19.437 | 34.3446 | 29.989 | 27.2199 | 31.9006 |
1427
+ | row_sparsity_mean_corpus | 0.9991 | 0.999 | 0.9992 | 0.9991 | 0.9993 | 0.9992 | 0.9991 | 0.9992 | 0.9994 | 0.9989 | 0.999 | 0.9991 | 0.999 |
1428
+
1429
+ #### Sparse Nano BEIR
1430
+
1431
+ * Dataset: `NanoBEIR_mean`
1432
+ * Evaluated with [<code>SparseNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters:
1433
+ ```json
1434
+ {
1435
+ "dataset_names": [
1436
+ "msmarco",
1437
+ "nfcorpus",
1438
+ "nq"
1439
+ ]
1440
+ }
1441
+ ```
1442
+
1443
+ | Metric | Value |
1444
+ |:-------------------------|:-----------|
1445
+ | dot_accuracy@1 | 0.2867 |
1446
+ | dot_accuracy@3 | 0.4533 |
1447
+ | dot_accuracy@5 | 0.5667 |
1448
+ | dot_accuracy@10 | 0.64 |
1449
+ | dot_precision@1 | 0.2867 |
1450
+ | dot_precision@3 | 0.2 |
1451
+ | dot_precision@5 | 0.1667 |
1452
+ | dot_precision@10 | 0.1167 |
1453
+ | dot_recall@1 | 0.1896 |
1454
+ | dot_recall@3 | 0.3268 |
1455
+ | dot_recall@5 | 0.4157 |
1456
+ | dot_recall@10 | 0.4806 |
1457
+ | **dot_ndcg@10** | **0.3972** |
1458
+ | dot_mrr@10 | 0.4007 |
1459
+ | dot_map@100 | 0.3115 |
1460
+ | row_non_zero_mean_query | 17.0133 |
1461
+ | row_sparsity_mean_query | 0.9994 |
1462
+ | row_non_zero_mean_corpus | 26.2541 |
1463
+ | row_sparsity_mean_corpus | 0.9991 |
1464
+
1465
+ #### Sparse Nano BEIR
1466
+
1467
+ * Dataset: `NanoBEIR_mean`
1468
+ * Evaluated with [<code>SparseNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters:
1469
+ ```json
1470
+ {
1471
+ "dataset_names": [
1472
+ "climatefever",
1473
+ "dbpedia",
1474
+ "fever",
1475
+ "fiqa2018",
1476
+ "hotpotqa",
1477
+ "msmarco",
1478
+ "nfcorpus",
1479
+ "nq",
1480
+ "quoraretrieval",
1481
+ "scidocs",
1482
+ "arguana",
1483
+ "scifact",
1484
+ "touche2020"
1485
+ ]
1486
+ }
1487
+ ```
1488
+
1489
+ | Metric | Value |
1490
+ |:-------------------------|:-----------|
1491
+ | dot_accuracy@1 | 0.4024 |
1492
+ | dot_accuracy@3 | 0.5827 |
1493
+ | dot_accuracy@5 | 0.6721 |
1494
+ | dot_accuracy@10 | 0.7584 |
1495
+ | dot_precision@1 | 0.4024 |
1496
+ | dot_precision@3 | 0.2592 |
1497
+ | dot_precision@5 | 0.2099 |
1498
+ | dot_precision@10 | 0.1498 |
1499
+ | dot_recall@1 | 0.2267 |
1500
+ | dot_recall@3 | 0.3684 |
1501
+ | dot_recall@5 | 0.4457 |
1502
+ | dot_recall@10 | 0.5264 |
1503
+ | **dot_ndcg@10** | **0.4631** |
1504
+ | dot_mrr@10 | 0.5168 |
1505
+ | dot_map@100 | 0.3868 |
1506
+ | row_non_zero_mean_query | 19.2727 |
1507
+ | row_sparsity_mean_query | 0.9994 |
1508
+ | row_non_zero_mean_corpus | 27.0686 |
1509
+ | row_sparsity_mean_corpus | 0.9991 |
1510
+
1511
+ <!--
1512
+ ## Bias, Risks and Limitations
1513
+
1514
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
1515
+ -->
1516
+
1517
+ <!--
1518
+ ### Recommendations
1519
+
1520
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
1521
+ -->
1522
+
1523
+ ## Training Details
1524
+
1525
+ ### Training Dataset
1526
+
1527
+ #### natural-questions
1528
+
1529
+ * Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
1530
+ * Size: 99,000 training samples
1531
+ * Columns: <code>query</code> and <code>answer</code>
1532
+ * Approximate statistics based on the first 1000 samples:
1533
+ | | query | answer |
1534
+ |:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
1535
+ | type | string | string |
1536
+ | details | <ul><li>min: 10 tokens</li><li>mean: 11.71 tokens</li><li>max: 26 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 131.81 tokens</li><li>max: 450 tokens</li></ul> |
1537
+ * Samples:
1538
+ | query | answer |
1539
+ |:--------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
1540
+ | <code>who played the father in papa don't preach</code> | <code>Alex McArthur Alex McArthur (born March 6, 1957) is an American actor.</code> |
1541
+ | <code>where was the location of the battle of hastings</code> | <code>Battle of Hastings The Battle of Hastings[a] was fought on 14 October 1066 between the Norman-French army of William, the Duke of Normandy, and an English army under the Anglo-Saxon King Harold Godwinson, beginning the Norman conquest of England. It took place approximately 7 miles (11 kilometres) northwest of Hastings, close to the present-day town of Battle, East Sussex, and was a decisive Norman victory.</code> |
1542
+ | <code>how many puppies can a dog give birth to</code> | <code>Canine reproduction The largest litter size to date was set by a Neapolitan Mastiff in Manea, Cambridgeshire, UK on November 29, 2004; the litter was 24 puppies.[22]</code> |
1543
+ * Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters:
1544
+ ```json
1545
+ {'loss': SparseMultipleNegativesRankingLoss(
1546
+ (model): SparseEncoder(
1547
+ (0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False}) with MLMTransformer model: DistilBertForMaskedLM
1548
+ (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': None})
1549
+ )
1550
+ (cross_entropy_loss): CrossEntropyLoss()
1551
+ ), 'lambda_corpus': 0.003, 'lambda_query': 0.005}
1552
+ ```
1553
+
1554
+ ### Evaluation Dataset
1555
+
1556
+ #### natural-questions
1557
+
1558
+ * Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
1559
+ * Size: 1,000 evaluation samples
1560
+ * Columns: <code>query</code> and <code>answer</code>
1561
+ * Approximate statistics based on the first 1000 samples:
1562
+ | | query | answer |
1563
+ |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
1564
+ | type | string | string |
1565
+ | details | <ul><li>min: 10 tokens</li><li>mean: 11.69 tokens</li><li>max: 23 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 134.01 tokens</li><li>max: 512 tokens</li></ul> |
1566
+ * Samples:
1567
+ | query | answer |
1568
+ |:-------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
1569
+ | <code>where is the tiber river located in italy</code> | <code>Tiber The Tiber (/ˈtaɪbər/, Latin: Tiberis,[1] Italian: Tevere [ˈteːvere])[2] is the third-longest river in Italy, rising in the Apennine Mountains in Emilia-Romagna and flowing 406 kilometres (252 mi) through Tuscany, Umbria and Lazio, where it is joined by the river Aniene, to the Tyrrhenian Sea, between Ostia and Fiumicino.[3] It drains a basin estimated at 17,375 square kilometres (6,709 sq mi). The river has achieved lasting fame as the main watercourse of the city of Rome, founded on its eastern banks.</code> |
1570
+ | <code>what kind of car does jay gatsby drive</code> | <code>Jay Gatsby At the Buchanan home, Jordan Baker, Nick, Jay, and the Buchanans decide to visit New York City. Tom borrows Gatsby's yellow Rolls Royce to drive up to the city. On the way to New York City, Tom makes a detour at a gas station in "the Valley of Ashes", a run-down part of Long Island. The owner, George Wilson, shares his concern that his wife, Myrtle, may be having an affair. This unnerves Tom, who has been having an affair with Myrtle, and he leaves in a hurry.</code> |
1571
+ | <code>who sings if i can dream about you</code> | <code>I Can Dream About You "I Can Dream About You" is a song performed by American singer Dan Hartman on the soundtrack album of the film Streets of Fire. Released in 1984 as a single from the soundtrack, and included on Hartman's album I Can Dream About You, it reached number 6 on the Billboard Hot 100.[1]</code> |
1572
+ * Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters:
1573
+ ```json
1574
+ {'loss': SparseMultipleNegativesRankingLoss(
1575
+ (model): SparseEncoder(
1576
+ (0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False}) with MLMTransformer model: DistilBertForMaskedLM
1577
+ (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': None})
1578
+ )
1579
+ (cross_entropy_loss): CrossEntropyLoss()
1580
+ ), 'lambda_corpus': 0.003, 'lambda_query': 0.005}
1581
+ ```
1582
+
1583
+ ### Training Hyperparameters
1584
+ #### Non-Default Hyperparameters
1585
+
1586
+ - `eval_strategy`: steps
1587
+ - `per_device_train_batch_size`: 12
1588
+ - `per_device_eval_batch_size`: 12
1589
+ - `learning_rate`: 2e-05
1590
+ - `num_train_epochs`: 1
1591
+ - `bf16`: True
1592
+ - `load_best_model_at_end`: True
1593
+ - `batch_sampler`: no_duplicates
1594
+
1595
+ #### All Hyperparameters
1596
+ <details><summary>Click to expand</summary>
1597
+
1598
+ - `overwrite_output_dir`: False
1599
+ - `do_predict`: False
1600
+ - `eval_strategy`: steps
1601
+ - `prediction_loss_only`: True
1602
+ - `per_device_train_batch_size`: 12
1603
+ - `per_device_eval_batch_size`: 12
1604
+ - `per_gpu_train_batch_size`: None
1605
+ - `per_gpu_eval_batch_size`: None
1606
+ - `gradient_accumulation_steps`: 1
1607
+ - `eval_accumulation_steps`: None
1608
+ - `torch_empty_cache_steps`: None
1609
+ - `learning_rate`: 2e-05
1610
+ - `weight_decay`: 0.0
1611
+ - `adam_beta1`: 0.9
1612
+ - `adam_beta2`: 0.999
1613
+ - `adam_epsilon`: 1e-08
1614
+ - `max_grad_norm`: 1.0
1615
+ - `num_train_epochs`: 1
1616
+ - `max_steps`: -1
1617
+ - `lr_scheduler_type`: linear
1618
+ - `lr_scheduler_kwargs`: {}
1619
+ - `warmup_ratio`: 0.0
1620
+ - `warmup_steps`: 0
1621
+ - `log_level`: passive
1622
+ - `log_level_replica`: warning
1623
+ - `log_on_each_node`: True
1624
+ - `logging_nan_inf_filter`: True
1625
+ - `save_safetensors`: True
1626
+ - `save_on_each_node`: False
1627
+ - `save_only_model`: False
1628
+ - `restore_callback_states_from_checkpoint`: False
1629
+ - `no_cuda`: False
1630
+ - `use_cpu`: False
1631
+ - `use_mps_device`: False
1632
+ - `seed`: 42
1633
+ - `data_seed`: None
1634
+ - `jit_mode_eval`: False
1635
+ - `use_ipex`: False
1636
+ - `bf16`: True
1637
+ - `fp16`: False
1638
+ - `fp16_opt_level`: O1
1639
+ - `half_precision_backend`: auto
1640
+ - `bf16_full_eval`: False
1641
+ - `fp16_full_eval`: False
1642
+ - `tf32`: None
1643
+ - `local_rank`: 0
1644
+ - `ddp_backend`: None
1645
+ - `tpu_num_cores`: None
1646
+ - `tpu_metrics_debug`: False
1647
+ - `debug`: []
1648
+ - `dataloader_drop_last`: False
1649
+ - `dataloader_num_workers`: 0
1650
+ - `dataloader_prefetch_factor`: None
1651
+ - `past_index`: -1
1652
+ - `disable_tqdm`: False
1653
+ - `remove_unused_columns`: True
1654
+ - `label_names`: None
1655
+ - `load_best_model_at_end`: True
1656
+ - `ignore_data_skip`: False
1657
+ - `fsdp`: []
1658
+ - `fsdp_min_num_params`: 0
1659
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
1660
+ - `fsdp_transformer_layer_cls_to_wrap`: None
1661
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
1662
+ - `deepspeed`: None
1663
+ - `label_smoothing_factor`: 0.0
1664
+ - `optim`: adamw_torch
1665
+ - `optim_args`: None
1666
+ - `adafactor`: False
1667
+ - `group_by_length`: False
1668
+ - `length_column_name`: length
1669
+ - `ddp_find_unused_parameters`: None
1670
+ - `ddp_bucket_cap_mb`: None
1671
+ - `ddp_broadcast_buffers`: False
1672
+ - `dataloader_pin_memory`: True
1673
+ - `dataloader_persistent_workers`: False
1674
+ - `skip_memory_metrics`: True
1675
+ - `use_legacy_prediction_loop`: False
1676
+ - `push_to_hub`: False
1677
+ - `resume_from_checkpoint`: None
1678
+ - `hub_model_id`: None
1679
+ - `hub_strategy`: every_save
1680
+ - `hub_private_repo`: None
1681
+ - `hub_always_push`: False
1682
+ - `gradient_checkpointing`: False
1683
+ - `gradient_checkpointing_kwargs`: None
1684
+ - `include_inputs_for_metrics`: False
1685
+ - `include_for_metrics`: []
1686
+ - `eval_do_concat_batches`: True
1687
+ - `fp16_backend`: auto
1688
+ - `push_to_hub_model_id`: None
1689
+ - `push_to_hub_organization`: None
1690
+ - `mp_parameters`:
1691
+ - `auto_find_batch_size`: False
1692
+ - `full_determinism`: False
1693
+ - `torchdynamo`: None
1694
+ - `ray_scope`: last
1695
+ - `ddp_timeout`: 1800
1696
+ - `torch_compile`: False
1697
+ - `torch_compile_backend`: None
1698
+ - `torch_compile_mode`: None
1699
+ - `dispatch_batches`: None
1700
+ - `split_batches`: None
1701
+ - `include_tokens_per_second`: False
1702
+ - `include_num_input_tokens_seen`: False
1703
+ - `neftune_noise_alpha`: None
1704
+ - `optim_target_modules`: None
1705
+ - `batch_eval_metrics`: False
1706
+ - `eval_on_start`: False
1707
+ - `use_liger_kernel`: False
1708
+ - `eval_use_gather_object`: False
1709
+ - `average_tokens_across_devices`: False
1710
+ - `prompts`: None
1711
+ - `batch_sampler`: no_duplicates
1712
+ - `multi_dataset_batch_sampler`: proportional
1713
+
1714
+ </details>
1715
+
1716
+ ### Training Logs
1717
+ | Epoch | Step | Training Loss | Validation Loss | NanoMSMARCO_dot_ndcg@10 | NanoNFCorpus_dot_ndcg@10 | NanoNQ_dot_ndcg@10 | NanoBEIR_mean_dot_ndcg@10 | NanoClimateFEVER_dot_ndcg@10 | NanoDBPedia_dot_ndcg@10 | NanoFEVER_dot_ndcg@10 | NanoFiQA2018_dot_ndcg@10 | NanoHotpotQA_dot_ndcg@10 | NanoQuoraRetrieval_dot_ndcg@10 | NanoSCIDOCS_dot_ndcg@10 | NanoArguAna_dot_ndcg@10 | NanoSciFact_dot_ndcg@10 | NanoTouche2020_dot_ndcg@10 |
1718
+ |:-------:|:--------:|:-------------:|:---------------:|:-----------------------:|:------------------------:|:------------------:|:-------------------------:|:----------------------------:|:-----------------------:|:---------------------:|:------------------------:|:------------------------:|:------------------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:--------------------------:|
1719
+ | 0.0242 | 200 | 4.6206 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1720
+ | 0.0485 | 400 | 0.074 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1721
+ | 0.0727 | 600 | 0.0441 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1722
+ | 0.0970 | 800 | 0.0288 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1723
+ | 0.1212 | 1000 | 0.0395 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1724
+ | 0.1455 | 1200 | 0.0387 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1725
+ | 0.1697 | 1400 | 0.039 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1726
+ | 0.1939 | 1600 | 0.0274 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1727
+ | 0.2 | 1650 | - | 0.0425 | 0.4834 | 0.2578 | 0.4469 | 0.3960 | - | - | - | - | - | - | - | - | - | - |
1728
+ | 0.2182 | 1800 | 0.0317 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1729
+ | 0.2424 | 2000 | 0.0563 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1730
+ | 0.2667 | 2200 | 0.0521 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1731
+ | 0.2909 | 2400 | 0.0481 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1732
+ | 0.3152 | 2600 | 0.0562 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1733
+ | 0.3394 | 2800 | 0.0524 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1734
+ | 0.3636 | 3000 | 0.0477 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1735
+ | 0.3879 | 3200 | 0.0579 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1736
+ | 0.4 | 3300 | - | 0.0544 | 0.4270 | 0.2376 | 0.4740 | 0.3795 | - | - | - | - | - | - | - | - | - | - |
1737
+ | 0.4121 | 3400 | 0.0458 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1738
+ | 0.4364 | 3600 | 0.0477 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1739
+ | 0.4606 | 3800 | 0.0479 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1740
+ | 0.4848 | 4000 | 0.046 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1741
+ | 0.5091 | 4200 | 0.0382 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1742
+ | 0.5333 | 4400 | 0.0442 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1743
+ | 0.5576 | 4600 | 0.0405 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1744
+ | 0.5818 | 4800 | 0.0417 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1745
+ | 0.6 | 4950 | - | 0.0416 | 0.4677 | 0.2401 | 0.4760 | 0.3946 | - | - | - | - | - | - | - | - | - | - |
1746
+ | 0.6061 | 5000 | 0.033 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1747
+ | 0.6303 | 5200 | 0.0437 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1748
+ | 0.6545 | 5400 | 0.0351 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1749
+ | 0.6788 | 5600 | 0.0387 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1750
+ | 0.7030 | 5800 | 0.048 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1751
+ | 0.7273 | 6000 | 0.0498 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1752
+ | 0.7515 | 6200 | 0.0442 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1753
+ | 0.7758 | 6400 | 0.0359 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1754
+ | **0.8** | **6600** | **0.0398** | **0.0403** | **0.4633** | **0.2763** | **0.4797** | **0.4064** | **-** | **-** | **-** | **-** | **-** | **-** | **-** | **-** | **-** | **-** |
1755
+ | 0.8242 | 6800 | 0.0364 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1756
+ | 0.8485 | 7000 | 0.0363 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1757
+ | 0.8727 | 7200 | 0.0344 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1758
+ | 0.8970 | 7400 | 0.0351 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1759
+ | 0.9212 | 7600 | 0.0296 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1760
+ | 0.9455 | 7800 | 0.0363 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1761
+ | 0.9697 | 8000 | 0.0387 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1762
+ | 0.9939 | 8200 | 0.041 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1763
+ | 1.0 | 8250 | - | 0.0413 | 0.4653 | 0.2583 | 0.4681 | 0.3972 | - | - | - | - | - | - | - | - | - | - |
1764
+ | -1 | -1 | - | - | 0.4633 | 0.2763 | 0.4797 | 0.4631 | 0.2161 | 0.4933 | 0.7519 | 0.2932 | 0.6047 | 0.7882 | 0.2935 | 0.4216 | 0.5022 | 0.4366 |
1765
+
1766
+ * The bold row denotes the saved checkpoint.
1767
+
1768
+ ### Environmental Impact
1769
+ Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
1770
+ - **Energy Consumed**: 0.084 kWh
1771
+ - **Carbon Emitted**: 0.033 kg of CO2
1772
+ - **Hours Used**: 0.292 hours
1773
+
1774
+ ### Training Hardware
1775
+ - **On Cloud**: No
1776
+ - **GPU Model**: 1 x NVIDIA GeForce RTX 3090
1777
+ - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
1778
+ - **RAM Size**: 31.78 GB
1779
+
1780
+ ### Framework Versions
1781
+ - Python: 3.11.6
1782
+ - Sentence Transformers: 4.2.0.dev0
1783
+ - Transformers: 4.49.0
1784
+ - PyTorch: 2.6.0+cu124
1785
+ - Accelerate: 1.5.1
1786
+ - Datasets: 2.21.0
1787
+ - Tokenizers: 0.21.1
1788
+
1789
+ ## Citation
1790
+
1791
+ ### BibTeX
1792
+
1793
+ #### Sentence Transformers
1794
+ ```bibtex
1795
+ @inproceedings{reimers-2019-sentence-bert,
1796
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
1797
+ author = "Reimers, Nils and Gurevych, Iryna",
1798
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
1799
+ month = "11",
1800
+ year = "2019",
1801
+ publisher = "Association for Computational Linguistics",
1802
+ url = "https://arxiv.org/abs/1908.10084",
1803
+ }
1804
+ ```
1805
+
1806
+ #### SpladeLoss
1807
+ ```bibtex
1808
+ @misc{formal2022distillationhardnegativesampling,
1809
+ title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},
1810
+ author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},
1811
+ year={2022},
1812
+ eprint={2205.04733},
1813
+ archivePrefix={arXiv},
1814
+ primaryClass={cs.IR},
1815
+ url={https://arxiv.org/abs/2205.04733},
1816
+ }
1817
+ ```
1818
+
1819
+ #### SparseMultipleNegativesRankingLoss
1820
+ ```bibtex
1821
+ @misc{henderson2017efficient,
1822
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
1823
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
1824
+ year={2017},
1825
+ eprint={1705.00652},
1826
+ archivePrefix={arXiv},
1827
+ primaryClass={cs.CL}
1828
+ }
1829
+ ```
1830
+
1831
+ #### FlopsLoss
1832
+ ```bibtex
1833
+ @article{paria2020minimizing,
1834
+ title={Minimizing flops to learn efficient sparse representations},
1835
+ author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{'o}czos, Barnab{'a}s},
1836
+ journal={arXiv preprint arXiv:2004.05665},
1837
+ year={2020}
1838
+ }
1839
+ ```
1840
+
1841
+ <!--
1842
+ ## Glossary
1843
+
1844
+ *Clearly define terms in order to be accessible across audiences.*
1845
+ -->
1846
+
1847
+ <!--
1848
+ ## Model Card Authors
1849
+
1850
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
1851
+ -->
1852
+
1853
+ <!--
1854
+ ## Model Card Contact
1855
+
1856
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
1857
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "distilbert/distilbert-base-uncased",
3
+ "activation": "gelu",
4
+ "architectures": [
5
+ "DistilBertForMaskedLM"
6
+ ],
7
+ "attention_dropout": 0.1,
8
+ "dim": 768,
9
+ "dropout": 0.1,
10
+ "hidden_dim": 3072,
11
+ "initializer_range": 0.02,
12
+ "max_position_embeddings": 512,
13
+ "model_type": "distilbert",
14
+ "n_heads": 12,
15
+ "n_layers": 6,
16
+ "pad_token_id": 0,
17
+ "qa_dropout": 0.1,
18
+ "seq_classif_dropout": 0.2,
19
+ "sinusoidal_pos_embds": false,
20
+ "tie_weights_": true,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.49.0",
23
+ "vocab_size": 30522
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_type": "SparseEncoder",
3
+ "__version__": {
4
+ "sentence_transformers": "4.2.0.dev0",
5
+ "transformers": "4.49.0",
6
+ "pytorch": "2.6.0+cu124"
7
+ },
8
+ "prompts": {},
9
+ "default_prompt_name": null,
10
+ "similarity_fn_name": "dot"
11
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6168fb1a4619f05b7ce9f67077141585eae4ffbc7c76f881cd5f85086128e3f7
3
+ size 267954768
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.sparse_encoder.models.MLMTransformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_SpladePooling",
12
+ "type": "sentence_transformers.sparse_encoder.models.SpladePooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "extra_special_tokens": {},
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "pad_token": "[PAD]",
51
+ "sep_token": "[SEP]",
52
+ "strip_accents": null,
53
+ "tokenize_chinese_chars": true,
54
+ "tokenizer_class": "DistilBertTokenizer",
55
+ "unk_token": "[UNK]"
56
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff