Create train_script.py
Browse files- train_script.py +100 -0
train_script.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datasets import load_dataset
|
2 |
+
from sentence_transformers import (
|
3 |
+
SparseEncoder,
|
4 |
+
SparseEncoderTrainer,
|
5 |
+
SparseEncoderTrainingArguments,
|
6 |
+
SparseEncoderModelCardData,
|
7 |
+
)
|
8 |
+
from sentence_transformers.sparse_encoder.losses import SpladeLoss, SparseMultipleNegativesRankingLoss
|
9 |
+
from sentence_transformers.training_args import BatchSamplers
|
10 |
+
from sentence_transformers.sparse_encoder.evaluation import SparseNanoBEIREvaluator
|
11 |
+
from sentence_transformers.sparse_encoder.models import SpladePooling, MLMTransformer, IDF
|
12 |
+
from sentence_transformers.models import Asym
|
13 |
+
|
14 |
+
import logging
|
15 |
+
|
16 |
+
logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO)
|
17 |
+
|
18 |
+
# 1. Load a model to finetune with 2. (Optional) model card data
|
19 |
+
mlm_transformer = MLMTransformer("bert-base-uncased", tokenizer_args={"model_max_length": 512})
|
20 |
+
splade_pooling = SpladePooling(pooling_strategy="max", word_embedding_dimension=mlm_transformer.get_sentence_embedding_dimension())
|
21 |
+
|
22 |
+
asym = Asym({
|
23 |
+
"query": [IDF(tokenizer=mlm_transformer.tokenizer, frozen=False)],
|
24 |
+
"document": [mlm_transformer, splade_pooling],
|
25 |
+
})
|
26 |
+
|
27 |
+
model = SparseEncoder(
|
28 |
+
modules=[asym],
|
29 |
+
model_card_data=SparseEncoderModelCardData(
|
30 |
+
language="en",
|
31 |
+
license="apache-2.0",
|
32 |
+
model_name="Inference-free SPLADE bert-base-uncased trained on Natural-Questions tuples",
|
33 |
+
)
|
34 |
+
)
|
35 |
+
|
36 |
+
# 3. Load a dataset to finetune on
|
37 |
+
full_dataset = load_dataset("sentence-transformers/natural-questions", split="train").select(range(100_000))
|
38 |
+
# full_dataset = full_dataset.map(lambda sample: {"query": {"query": sample["query"]}, "corpus": {"corpus": sample["answer"]}}, remove_columns=["query", "answer"])
|
39 |
+
dataset_dict = full_dataset.train_test_split(test_size=1_000, seed=12)
|
40 |
+
train_dataset = dataset_dict["train"]
|
41 |
+
eval_dataset = dataset_dict["test"]
|
42 |
+
print(train_dataset)
|
43 |
+
print(train_dataset[0])
|
44 |
+
|
45 |
+
# 4. Define a loss function
|
46 |
+
loss = SpladeLoss(
|
47 |
+
model=model,
|
48 |
+
loss=SparseMultipleNegativesRankingLoss(model=model),
|
49 |
+
lambda_query=0,
|
50 |
+
lambda_corpus=3e-3,
|
51 |
+
)
|
52 |
+
|
53 |
+
# 5. (Optional) Specify training arguments
|
54 |
+
run_name = "inference-free-splade-bert-base-uncased-nq-3e-3-lambda-corpus-1e-3-idf-lr-2e-5-lr"
|
55 |
+
args = SparseEncoderTrainingArguments(
|
56 |
+
# Required parameter:
|
57 |
+
output_dir=f"models/{run_name}",
|
58 |
+
# Optional training parameters:
|
59 |
+
num_train_epochs=1,
|
60 |
+
per_device_train_batch_size=16,
|
61 |
+
per_device_eval_batch_size=16,
|
62 |
+
learning_rate=2e-5,
|
63 |
+
learning_rate_mapping={"IDF\.weight": 1e-3}, # Set a higher learning rate for the IDF module
|
64 |
+
warmup_ratio=0.1,
|
65 |
+
fp16=True, # Set to False if you get an error that your GPU can't run on FP16
|
66 |
+
bf16=False, # Set to True if you have a GPU that supports BF16
|
67 |
+
batch_sampler=BatchSamplers.NO_DUPLICATES, # MultipleNegativesRankingLoss benefits from no duplicate samples in a batch
|
68 |
+
router_mapping=["query", "document"],
|
69 |
+
# Optional tracking/debugging parameters:
|
70 |
+
eval_strategy="steps",
|
71 |
+
eval_steps=400,
|
72 |
+
save_strategy="steps",
|
73 |
+
save_steps=400,
|
74 |
+
save_total_limit=2,
|
75 |
+
logging_steps=200,
|
76 |
+
run_name=run_name, # Will be used in W&B if `wandb` is installed
|
77 |
+
)
|
78 |
+
|
79 |
+
# 6. (Optional) Create an evaluator & evaluate the base model
|
80 |
+
dev_evaluator = SparseNanoBEIREvaluator(dataset_names=["msmarco", "nfcorpus", "nq"], batch_size=16)
|
81 |
+
|
82 |
+
# 7. Create a trainer & train
|
83 |
+
trainer = SparseEncoderTrainer(
|
84 |
+
model=model,
|
85 |
+
args=args,
|
86 |
+
train_dataset=train_dataset,
|
87 |
+
eval_dataset=eval_dataset,
|
88 |
+
loss=loss,
|
89 |
+
evaluator=dev_evaluator,
|
90 |
+
)
|
91 |
+
trainer.train()
|
92 |
+
|
93 |
+
# 8. Evaluate the model performance again after training
|
94 |
+
dev_evaluator(model)
|
95 |
+
|
96 |
+
# 9. Save the trained model
|
97 |
+
model.save_pretrained(f"models/{run_name}/final")
|
98 |
+
|
99 |
+
# 10. (Optional) Push it to the Hugging Face Hub
|
100 |
+
model.push_to_hub(run_name)
|