tomaarsen HF Staff commited on
Commit
606b2d3
·
verified ·
1 Parent(s): c6831d8

Create train_script.py

Browse files
Files changed (1) hide show
  1. train_script.py +100 -0
train_script.py ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datasets import load_dataset
2
+ from sentence_transformers import (
3
+ SparseEncoder,
4
+ SparseEncoderTrainer,
5
+ SparseEncoderTrainingArguments,
6
+ SparseEncoderModelCardData,
7
+ )
8
+ from sentence_transformers.sparse_encoder.losses import SpladeLoss, SparseMultipleNegativesRankingLoss
9
+ from sentence_transformers.training_args import BatchSamplers
10
+ from sentence_transformers.sparse_encoder.evaluation import SparseNanoBEIREvaluator
11
+ from sentence_transformers.sparse_encoder.models import SpladePooling, MLMTransformer, IDF
12
+ from sentence_transformers.models import Asym
13
+
14
+ import logging
15
+
16
+ logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO)
17
+
18
+ # 1. Load a model to finetune with 2. (Optional) model card data
19
+ mlm_transformer = MLMTransformer("bert-base-uncased", tokenizer_args={"model_max_length": 512})
20
+ splade_pooling = SpladePooling(pooling_strategy="max", word_embedding_dimension=mlm_transformer.get_sentence_embedding_dimension())
21
+
22
+ asym = Asym({
23
+ "query": [IDF(tokenizer=mlm_transformer.tokenizer, frozen=False)],
24
+ "document": [mlm_transformer, splade_pooling],
25
+ })
26
+
27
+ model = SparseEncoder(
28
+ modules=[asym],
29
+ model_card_data=SparseEncoderModelCardData(
30
+ language="en",
31
+ license="apache-2.0",
32
+ model_name="Inference-free SPLADE bert-base-uncased trained on Natural-Questions tuples",
33
+ )
34
+ )
35
+
36
+ # 3. Load a dataset to finetune on
37
+ full_dataset = load_dataset("sentence-transformers/natural-questions", split="train").select(range(100_000))
38
+ # full_dataset = full_dataset.map(lambda sample: {"query": {"query": sample["query"]}, "corpus": {"corpus": sample["answer"]}}, remove_columns=["query", "answer"])
39
+ dataset_dict = full_dataset.train_test_split(test_size=1_000, seed=12)
40
+ train_dataset = dataset_dict["train"]
41
+ eval_dataset = dataset_dict["test"]
42
+ print(train_dataset)
43
+ print(train_dataset[0])
44
+
45
+ # 4. Define a loss function
46
+ loss = SpladeLoss(
47
+ model=model,
48
+ loss=SparseMultipleNegativesRankingLoss(model=model),
49
+ lambda_query=0,
50
+ lambda_corpus=3e-3,
51
+ )
52
+
53
+ # 5. (Optional) Specify training arguments
54
+ run_name = "inference-free-splade-bert-base-uncased-nq-3e-3-lambda-corpus-1e-3-idf-lr-2e-5-lr"
55
+ args = SparseEncoderTrainingArguments(
56
+ # Required parameter:
57
+ output_dir=f"models/{run_name}",
58
+ # Optional training parameters:
59
+ num_train_epochs=1,
60
+ per_device_train_batch_size=16,
61
+ per_device_eval_batch_size=16,
62
+ learning_rate=2e-5,
63
+ learning_rate_mapping={"IDF\.weight": 1e-3}, # Set a higher learning rate for the IDF module
64
+ warmup_ratio=0.1,
65
+ fp16=True, # Set to False if you get an error that your GPU can't run on FP16
66
+ bf16=False, # Set to True if you have a GPU that supports BF16
67
+ batch_sampler=BatchSamplers.NO_DUPLICATES, # MultipleNegativesRankingLoss benefits from no duplicate samples in a batch
68
+ router_mapping=["query", "document"],
69
+ # Optional tracking/debugging parameters:
70
+ eval_strategy="steps",
71
+ eval_steps=400,
72
+ save_strategy="steps",
73
+ save_steps=400,
74
+ save_total_limit=2,
75
+ logging_steps=200,
76
+ run_name=run_name, # Will be used in W&B if `wandb` is installed
77
+ )
78
+
79
+ # 6. (Optional) Create an evaluator & evaluate the base model
80
+ dev_evaluator = SparseNanoBEIREvaluator(dataset_names=["msmarco", "nfcorpus", "nq"], batch_size=16)
81
+
82
+ # 7. Create a trainer & train
83
+ trainer = SparseEncoderTrainer(
84
+ model=model,
85
+ args=args,
86
+ train_dataset=train_dataset,
87
+ eval_dataset=eval_dataset,
88
+ loss=loss,
89
+ evaluator=dev_evaluator,
90
+ )
91
+ trainer.train()
92
+
93
+ # 8. Evaluate the model performance again after training
94
+ dev_evaluator(model)
95
+
96
+ # 9. Save the trained model
97
+ model.save_pretrained(f"models/{run_name}/final")
98
+
99
+ # 10. (Optional) Push it to the Hugging Face Hub
100
+ model.push_to_hub(run_name)