File size: 39,060 Bytes
c6831d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 |
---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sparse-encoder
- sparse
- asymmetric
- inference-free
- splade
- generated_from_trainer
- dataset_size:99000
- loss:SpladeLoss
- loss:SparseMultipleNegativesRankingLoss
- loss:FlopsLoss
widget:
- text: Rollin' (Limp Bizkit song) The music video was filmed atop the South Tower
of the former World Trade Center in New York City. The introduction features Ben
Stiller and Stephen Dorff mistaking Fred Durst for the valet and giving him the
keys to their Bentley Azure. Also making a cameo is break dancer Mr. Wiggles.
The rest of the video has several cuts to Durst and his bandmates hanging out
of the Bentley as they drive about Manhattan. The song Ben Stiller is playing
at the beginning is "My Generation" from the same album. The video also features
scenes of Fred Durst with five girls dancing in a room. The video was filmed around
the same time as the film Zoolander, which explains Stiller and Dorff's appearance.
Fred Durst has a small cameo in that film.
- text: document
- text: who played the dj in the movie the warriors
- text: Lionel Messi Born and raised in central Argentina, Messi was diagnosed with
a growth hormone deficiency as a child. At age 13, he relocated to Spain to join
Barcelona, who agreed to pay for his medical treatment. After a fast progression
through Barcelona's youth academy, Messi made his competitive debut aged 17 in
October 2004. Despite being injury-prone during his early career, he established
himself as an integral player for the club within the next three years, finishing
2007 as a finalist for both the Ballon d'Or and FIFA World Player of the Year
award, a feat he repeated the following year. His first uninterrupted campaign
came in the 2008–09 season, during which he helped Barcelona achieve the first
treble in Spanish football. At 22 years old, Messi won the Ballon d'Or and FIFA
World Player of the Year award by record voting margins.
- text: 'Send In the Clowns "Send In the Clowns" is a song written by Stephen Sondheim
for the 1973 musical A Little Night Music, an adaptation of Ingmar Bergman''s
film Smiles of a Summer Night. It is a ballad from Act Two, in which the character
Desirée reflects on the ironies and disappointments of her life. Among other things,
she looks back on an affair years earlier with the lawyer Fredrik, who was deeply
in love with her but whose marriage proposals she had rejected. Meeting him after
so long, she realizes she is in love with him and finally ready to marry him,
but now it is he who rejects her: he is in an unconsummated marriage with a much
younger woman. Desirée proposes marriage to rescue him from this situation, but
he declines, citing his dedication to his bride. Reacting to his rejection, Desirée
sings this song. The song is later reprised as a coda after Fredrik''s young wife
runs away with his son, and Fredrik is finally free to accept Desirée''s offer.[1]'
datasets:
- sentence-transformers/natural-questions
pipeline_tag: feature-extraction
library_name: sentence-transformers
metrics:
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
- query_active_dims
- query_sparsity_ratio
- corpus_active_dims
- corpus_sparsity_ratio
co2_eq_emissions:
emissions: 68.29458484042254
energy_consumed: 0.17569908269168294
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
ram_total_size: 31.777088165283203
hours_used: 0.483
hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: Inference-free SPLADE bert-base-uncased trained on Natural-Questions tuples
results:
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoMSMARCO
type: NanoMSMARCO
metrics:
- type: dot_accuracy@1
value: 0.26
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.62
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.68
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.78
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.26
name: Dot Precision@1
- type: dot_precision@3
value: 0.20666666666666667
name: Dot Precision@3
- type: dot_precision@5
value: 0.136
name: Dot Precision@5
- type: dot_precision@10
value: 0.078
name: Dot Precision@10
- type: dot_recall@1
value: 0.26
name: Dot Recall@1
- type: dot_recall@3
value: 0.62
name: Dot Recall@3
- type: dot_recall@5
value: 0.68
name: Dot Recall@5
- type: dot_recall@10
value: 0.78
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.5307390793273258
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.450047619047619
name: Dot Mrr@10
- type: dot_map@100
value: 0.4590024318818437
name: Dot Map@100
- type: query_active_dims
value: 7.21999979019165
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.999763449322122
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 106.36942291259766
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9965149917137607
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoNFCorpus
type: NanoNFCorpus
metrics:
- type: dot_accuracy@1
value: 0.44
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.54
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.58
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.62
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.44
name: Dot Precision@1
- type: dot_precision@3
value: 0.38
name: Dot Precision@3
- type: dot_precision@5
value: 0.34
name: Dot Precision@5
- type: dot_precision@10
value: 0.274
name: Dot Precision@10
- type: dot_recall@1
value: 0.043133464872628924
name: Dot Recall@1
- type: dot_recall@3
value: 0.07664632573379433
name: Dot Recall@3
- type: dot_recall@5
value: 0.09608957617217664
name: Dot Recall@5
- type: dot_recall@10
value: 0.121568983205876
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.33893766293410243
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.5020238095238095
name: Dot Mrr@10
- type: dot_map@100
value: 0.1460630924219036
name: Dot Map@100
- type: query_active_dims
value: 5.659999847412109
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9998145599945151
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 178.6857452392578
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9941456737684536
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoNQ
type: NanoNQ
metrics:
- type: dot_accuracy@1
value: 0.44
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.6
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.74
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.84
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.44
name: Dot Precision@1
- type: dot_precision@3
value: 0.2
name: Dot Precision@3
- type: dot_precision@5
value: 0.14800000000000002
name: Dot Precision@5
- type: dot_precision@10
value: 0.08599999999999998
name: Dot Precision@10
- type: dot_recall@1
value: 0.43
name: Dot Recall@1
- type: dot_recall@3
value: 0.57
name: Dot Recall@3
- type: dot_recall@5
value: 0.68
name: Dot Recall@5
- type: dot_recall@10
value: 0.78
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.59207822376941
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.5457777777777778
name: Dot Mrr@10
- type: dot_map@100
value: 0.5296003788208009
name: Dot Map@100
- type: query_active_dims
value: 10.319999694824219
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9996618832417657
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 96.61132049560547
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9968346988894697
name: Corpus Sparsity Ratio
- task:
type: sparse-nano-beir
name: Sparse Nano BEIR
dataset:
name: NanoBEIR mean
type: NanoBEIR_mean
metrics:
- type: dot_accuracy@1
value: 0.37999999999999995
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.5866666666666668
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.6666666666666666
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.7466666666666666
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.37999999999999995
name: Dot Precision@1
- type: dot_precision@3
value: 0.2622222222222222
name: Dot Precision@3
- type: dot_precision@5
value: 0.20800000000000005
name: Dot Precision@5
- type: dot_precision@10
value: 0.146
name: Dot Precision@10
- type: dot_recall@1
value: 0.24437782162420962
name: Dot Recall@1
- type: dot_recall@3
value: 0.42221544191126475
name: Dot Recall@3
- type: dot_recall@5
value: 0.4853631920573922
name: Dot Recall@5
- type: dot_recall@10
value: 0.5605229944019586
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.48725165534361276
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.4992830687830687
name: Dot Mrr@10
- type: dot_map@100
value: 0.37822196770818267
name: Dot Map@100
- type: query_active_dims
value: 7.733333110809326
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.999746630852801
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 118.98687776342045
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9961016028516014
name: Corpus Sparsity Ratio
---
# Inference-free SPLADE bert-base-uncased trained on Natural-Questions tuples
This is a [Asymmetric Inference-free SPLADE Sparse Encoder](https://www.sbert.net/docs/sparse_encoder/usage/usage.html) model trained on the [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) dataset using the [sentence-transformers](https://www.SBERT.net) library. It maps sentences & paragraphs to a 30522-dimensional sparse vector space and can be used for semantic search and sparse retrieval.
## Model Details
### Model Description
- **Model Type:** Asymmetric Inference-free SPLADE Sparse Encoder
<!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 30522 dimensions
- **Similarity Function:** Dot Product
- **Training Dataset:**
- [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions)
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Documentation:** [Sparse Encoder Documentation](https://www.sbert.net/docs/sparse_encoder/usage/usage.html)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sparse Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=sparse-encoder)
### Full Model Architecture
```
SparseEncoder(
(0): Router(
(query_0_IDF): IDF ({'frozen': False}, dim:30522, tokenizer: BertTokenizerFast)
(document_0_MLMTransformer): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False}) with MLMTransformer model: BertForMaskedLM
(document_1_SpladePooling): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
)
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("tomaarsen/inference-free-splade-bert-base-uncased-nq-3e-3-lambda-corpus-1e-3-idf-lr-2e-5-lr")
# Run inference
sentences = [
'is send in the clowns from a musical',
'Send In the Clowns "Send In the Clowns" is a song written by Stephen Sondheim for the 1973 musical A Little Night Music, an adaptation of Ingmar Bergman\'s film Smiles of a Summer Night. It is a ballad from Act Two, in which the character Desirée reflects on the ironies and disappointments of her life. Among other things, she looks back on an affair years earlier with the lawyer Fredrik, who was deeply in love with her but whose marriage proposals she had rejected. Meeting him after so long, she realizes she is in love with him and finally ready to marry him, but now it is he who rejects her: he is in an unconsummated marriage with a much younger woman. Desirée proposes marriage to rescue him from this situation, but he declines, citing his dedication to his bride. Reacting to his rejection, Desirée sings this song. The song is later reprised as a coda after Fredrik\'s young wife runs away with his son, and Fredrik is finally free to accept Desirée\'s offer.[1]',
'query',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# (3, 30522)
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Sparse Information Retrieval
* Datasets: `NanoMSMARCO`, `NanoNFCorpus` and `NanoNQ`
* Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator)
| Metric | NanoMSMARCO | NanoNFCorpus | NanoNQ |
|:----------------------|:------------|:-------------|:-----------|
| dot_accuracy@1 | 0.26 | 0.44 | 0.44 |
| dot_accuracy@3 | 0.62 | 0.54 | 0.6 |
| dot_accuracy@5 | 0.68 | 0.58 | 0.74 |
| dot_accuracy@10 | 0.78 | 0.62 | 0.84 |
| dot_precision@1 | 0.26 | 0.44 | 0.44 |
| dot_precision@3 | 0.2067 | 0.38 | 0.2 |
| dot_precision@5 | 0.136 | 0.34 | 0.148 |
| dot_precision@10 | 0.078 | 0.274 | 0.086 |
| dot_recall@1 | 0.26 | 0.0431 | 0.43 |
| dot_recall@3 | 0.62 | 0.0766 | 0.57 |
| dot_recall@5 | 0.68 | 0.0961 | 0.68 |
| dot_recall@10 | 0.78 | 0.1216 | 0.78 |
| **dot_ndcg@10** | **0.5307** | **0.3389** | **0.5921** |
| dot_mrr@10 | 0.45 | 0.502 | 0.5458 |
| dot_map@100 | 0.459 | 0.1461 | 0.5296 |
| query_active_dims | 7.22 | 5.66 | 10.32 |
| query_sparsity_ratio | 0.9998 | 0.9998 | 0.9997 |
| corpus_active_dims | 106.3694 | 178.6857 | 96.6113 |
| corpus_sparsity_ratio | 0.9965 | 0.9941 | 0.9968 |
#### Sparse Nano BEIR
* Dataset: `NanoBEIR_mean`
* Evaluated with [<code>SparseNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters:
```json
{
"dataset_names": [
"msmarco",
"nfcorpus",
"nq"
]
}
```
| Metric | Value |
|:----------------------|:-----------|
| dot_accuracy@1 | 0.38 |
| dot_accuracy@3 | 0.5867 |
| dot_accuracy@5 | 0.6667 |
| dot_accuracy@10 | 0.7467 |
| dot_precision@1 | 0.38 |
| dot_precision@3 | 0.2622 |
| dot_precision@5 | 0.208 |
| dot_precision@10 | 0.146 |
| dot_recall@1 | 0.2444 |
| dot_recall@3 | 0.4222 |
| dot_recall@5 | 0.4854 |
| dot_recall@10 | 0.5605 |
| **dot_ndcg@10** | **0.4873** |
| dot_mrr@10 | 0.4993 |
| dot_map@100 | 0.3782 |
| query_active_dims | 7.7333 |
| query_sparsity_ratio | 0.9997 |
| corpus_active_dims | 118.9869 |
| corpus_sparsity_ratio | 0.9961 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### natural-questions
* Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
* Size: 99,000 training samples
* Columns: <code>query</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
| | query | answer |
|:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 10 tokens</li><li>mean: 11.71 tokens</li><li>max: 26 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 131.81 tokens</li><li>max: 450 tokens</li></ul> |
* Samples:
| query | answer |
|:--------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>who played the father in papa don't preach</code> | <code>Alex McArthur Alex McArthur (born March 6, 1957) is an American actor.</code> |
| <code>where was the location of the battle of hastings</code> | <code>Battle of Hastings The Battle of Hastings[a] was fought on 14 October 1066 between the Norman-French army of William, the Duke of Normandy, and an English army under the Anglo-Saxon King Harold Godwinson, beginning the Norman conquest of England. It took place approximately 7 miles (11 kilometres) northwest of Hastings, close to the present-day town of Battle, East Sussex, and was a decisive Norman victory.</code> |
| <code>how many puppies can a dog give birth to</code> | <code>Canine reproduction The largest litter size to date was set by a Neapolitan Mastiff in Manea, Cambridgeshire, UK on November 29, 2004; the litter was 24 puppies.[22]</code> |
* Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters:
```json
{
"loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')",
"lambda_corpus": 0.003,
"lambda_query": 0
}
```
### Evaluation Dataset
#### natural-questions
* Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
* Size: 1,000 evaluation samples
* Columns: <code>query</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
| | query | answer |
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 10 tokens</li><li>mean: 11.69 tokens</li><li>max: 23 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 134.01 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
| query | answer |
|:-------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>where is the tiber river located in italy</code> | <code>Tiber The Tiber (/ˈtaɪbər/, Latin: Tiberis,[1] Italian: Tevere [ˈteːvere])[2] is the third-longest river in Italy, rising in the Apennine Mountains in Emilia-Romagna and flowing 406 kilometres (252 mi) through Tuscany, Umbria and Lazio, where it is joined by the river Aniene, to the Tyrrhenian Sea, between Ostia and Fiumicino.[3] It drains a basin estimated at 17,375 square kilometres (6,709 sq mi). The river has achieved lasting fame as the main watercourse of the city of Rome, founded on its eastern banks.</code> |
| <code>what kind of car does jay gatsby drive</code> | <code>Jay Gatsby At the Buchanan home, Jordan Baker, Nick, Jay, and the Buchanans decide to visit New York City. Tom borrows Gatsby's yellow Rolls Royce to drive up to the city. On the way to New York City, Tom makes a detour at a gas station in "the Valley of Ashes", a run-down part of Long Island. The owner, George Wilson, shares his concern that his wife, Myrtle, may be having an affair. This unnerves Tom, who has been having an affair with Myrtle, and he leaves in a hurry.</code> |
| <code>who sings if i can dream about you</code> | <code>I Can Dream About You "I Can Dream About You" is a song performed by American singer Dan Hartman on the soundtrack album of the film Streets of Fire. Released in 1984 as a single from the soundtrack, and included on Hartman's album I Can Dream About You, it reached number 6 on the Billboard Hot 100.[1]</code> |
* Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters:
```json
{
"loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')",
"lambda_corpus": 0.003,
"lambda_query": 0
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `fp16`: True
- `batch_sampler`: no_duplicates
- `router_mapping`: ['query', 'document']
- `learning_rate_mapping`: {'IDF\\.weight': 0.001}
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
- `router_mapping`: ['query', 'document']
- `learning_rate_mapping`: {'IDF\\.weight': 0.001}
</details>
### Training Logs
| Epoch | Step | Training Loss | Validation Loss | NanoMSMARCO_dot_ndcg@10 | NanoNFCorpus_dot_ndcg@10 | NanoNQ_dot_ndcg@10 | NanoBEIR_mean_dot_ndcg@10 |
|:------:|:----:|:-------------:|:---------------:|:-----------------------:|:------------------------:|:------------------:|:-------------------------:|
| 0.0323 | 200 | 0.3722 | - | - | - | - | - |
| 0.0646 | 400 | 0.1417 | 0.1266 | 0.5266 | 0.3095 | 0.4259 | 0.4207 |
| 0.0970 | 600 | 0.1152 | - | - | - | - | - |
| 0.1293 | 800 | 0.1099 | 0.1030 | 0.5202 | 0.3405 | 0.5552 | 0.4719 |
| 0.1616 | 1000 | 0.0956 | - | - | - | - | - |
| 0.1939 | 1200 | 0.0832 | 0.0920 | 0.4988 | 0.3432 | 0.5157 | 0.4526 |
| 0.2262 | 1400 | 0.0872 | - | - | - | - | - |
| 0.2586 | 1600 | 0.0915 | 0.0986 | 0.4900 | 0.3412 | 0.5269 | 0.4527 |
| 0.2909 | 1800 | 0.0999 | - | - | - | - | - |
| 0.3232 | 2000 | 0.0993 | 0.1024 | 0.5253 | 0.3405 | 0.5190 | 0.4616 |
| 0.3555 | 2200 | 0.1011 | - | - | - | - | - |
| 0.3878 | 2400 | 0.1046 | 0.0979 | 0.5241 | 0.3397 | 0.5518 | 0.4719 |
| 0.4202 | 2600 | 0.0935 | - | - | - | - | - |
| 0.4525 | 2800 | 0.0953 | 0.0914 | 0.5284 | 0.3362 | 0.5523 | 0.4723 |
| 0.4848 | 3000 | 0.09 | - | - | - | - | - |
| 0.5171 | 3200 | 0.0857 | 0.0910 | 0.5166 | 0.3358 | 0.5555 | 0.4693 |
| 0.5495 | 3400 | 0.086 | - | - | - | - | - |
| 0.5818 | 3600 | 0.0857 | 0.0861 | 0.5058 | 0.3353 | 0.5657 | 0.4689 |
| 0.6141 | 3800 | 0.0857 | - | - | - | - | - |
| 0.6464 | 4000 | 0.0816 | 0.0879 | 0.5228 | 0.3283 | 0.5576 | 0.4696 |
| 0.6787 | 4200 | 0.0835 | - | - | - | - | - |
| 0.7111 | 4400 | 0.0816 | 0.0859 | 0.5458 | 0.3395 | 0.5666 | 0.4840 |
| 0.7434 | 4600 | 0.0778 | - | - | - | - | - |
| 0.7757 | 4800 | 0.0815 | 0.0761 | 0.5514 | 0.3379 | 0.5966 | 0.4953 |
| 0.8080 | 5000 | 0.0758 | - | - | - | - | - |
| 0.8403 | 5200 | 0.0714 | 0.0770 | 0.5335 | 0.3388 | 0.5828 | 0.4850 |
| 0.8727 | 5400 | 0.077 | - | - | - | - | - |
| 0.9050 | 5600 | 0.0741 | 0.0772 | 0.5277 | 0.3398 | 0.5927 | 0.4867 |
| 0.9373 | 5800 | 0.0743 | - | - | - | - | - |
| 0.9696 | 6000 | 0.0787 | 0.0773 | 0.5307 | 0.3393 | 0.5921 | 0.4874 |
| -1 | -1 | - | - | 0.5307 | 0.3389 | 0.5921 | 0.4873 |
### Environmental Impact
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
- **Energy Consumed**: 0.176 kWh
- **Carbon Emitted**: 0.068 kg of CO2
- **Hours Used**: 0.483 hours
### Training Hardware
- **On Cloud**: No
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
- **RAM Size**: 31.78 GB
### Framework Versions
- Python: 3.11.6
- Sentence Transformers: 4.2.0.dev0
- Transformers: 4.52.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.1
- Datasets: 2.21.0
- Tokenizers: 0.21.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### SpladeLoss
```bibtex
@misc{formal2022distillationhardnegativesampling,
title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},
author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},
year={2022},
eprint={2205.04733},
archivePrefix={arXiv},
primaryClass={cs.IR},
url={https://arxiv.org/abs/2205.04733},
}
```
#### SparseMultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
#### FlopsLoss
```bibtex
@article{paria2020minimizing,
title={Minimizing flops to learn efficient sparse representations},
author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{'o}czos, Barnab{'a}s},
journal={arXiv preprint arXiv:2004.05665},
year={2020}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |