tomaarsen HF staff commited on
Commit
5e54c1e
1 Parent(s): 096c45e

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,589 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ library_name: sentence-transformers
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - loss:AdaptiveLayerLoss
10
+ - loss:MultipleNegativesRankingLoss
11
+ base_model: distilbert/distilroberta-base
12
+ metrics:
13
+ - pearson_cosine
14
+ - spearman_cosine
15
+ - pearson_manhattan
16
+ - spearman_manhattan
17
+ - pearson_euclidean
18
+ - spearman_euclidean
19
+ - pearson_dot
20
+ - spearman_dot
21
+ - pearson_max
22
+ - spearman_max
23
+ widget:
24
+ - source_sentence: Certainly.
25
+ sentences:
26
+ - '''Of course.'''
27
+ - The idea is a good one.
28
+ - the woman is asleep at home
29
+ - source_sentence: He walked.
30
+ sentences:
31
+ - The man was walking.
32
+ - The people are running.
33
+ - The women are making pizza.
34
+ - source_sentence: Double pig.
35
+ sentences:
36
+ - Ah, triple pig!
37
+ - He had no real answer.
38
+ - Do you not know?
39
+ - source_sentence: Very simply.
40
+ sentences:
41
+ - Not complicatedly.
42
+ - People are on a beach.
43
+ - The man kicks the umpire.
44
+ - source_sentence: Introduction
45
+ sentences:
46
+ - Analytical Perspectives.
47
+ - A man reads the paper.
48
+ - No one wanted Singapore.
49
+ pipeline_tag: sentence-similarity
50
+ co2_eq_emissions:
51
+ emissions: 94.69690706493431
52
+ energy_consumed: 0.24362341090329948
53
+ source: codecarbon
54
+ training_type: fine-tuning
55
+ on_cloud: false
56
+ cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
57
+ ram_total_size: 31.777088165283203
58
+ hours_used: 0.849
59
+ hardware_used: 1 x NVIDIA GeForce RTX 3090
60
+ model-index:
61
+ - name: SentenceTransformer based on distilbert/distilroberta-base
62
+ results:
63
+ - task:
64
+ type: semantic-similarity
65
+ name: Semantic Similarity
66
+ dataset:
67
+ name: sts dev
68
+ type: sts-dev
69
+ metrics:
70
+ - type: pearson_cosine
71
+ value: 0.845554152020916
72
+ name: Pearson Cosine
73
+ - type: spearman_cosine
74
+ value: 0.8486455482928023
75
+ name: Spearman Cosine
76
+ - type: pearson_manhattan
77
+ value: 0.8475103134032791
78
+ name: Pearson Manhattan
79
+ - type: spearman_manhattan
80
+ value: 0.8505660318245544
81
+ name: Spearman Manhattan
82
+ - type: pearson_euclidean
83
+ value: 0.8494883021932786
84
+ name: Pearson Euclidean
85
+ - type: spearman_euclidean
86
+ value: 0.8526835635349959
87
+ name: Spearman Euclidean
88
+ - type: pearson_dot
89
+ value: 0.7866563719943611
90
+ name: Pearson Dot
91
+ - type: spearman_dot
92
+ value: 0.7816258810453734
93
+ name: Spearman Dot
94
+ - type: pearson_max
95
+ value: 0.8494883021932786
96
+ name: Pearson Max
97
+ - type: spearman_max
98
+ value: 0.8526835635349959
99
+ name: Spearman Max
100
+ - task:
101
+ type: semantic-similarity
102
+ name: Semantic Similarity
103
+ dataset:
104
+ name: sts test
105
+ type: sts-test
106
+ metrics:
107
+ - type: pearson_cosine
108
+ value: 0.8182808182081737
109
+ name: Pearson Cosine
110
+ - type: spearman_cosine
111
+ value: 0.8148039503538166
112
+ name: Spearman Cosine
113
+ - type: pearson_manhattan
114
+ value: 0.8132463174874629
115
+ name: Pearson Manhattan
116
+ - type: spearman_manhattan
117
+ value: 0.8088248622918064
118
+ name: Spearman Manhattan
119
+ - type: pearson_euclidean
120
+ value: 0.8148200486691981
121
+ name: Pearson Euclidean
122
+ - type: spearman_euclidean
123
+ value: 0.8105059611031759
124
+ name: Spearman Euclidean
125
+ - type: pearson_dot
126
+ value: 0.7499699563291125
127
+ name: Pearson Dot
128
+ - type: spearman_dot
129
+ value: 0.7350068244681712
130
+ name: Spearman Dot
131
+ - type: pearson_max
132
+ value: 0.8182808182081737
133
+ name: Pearson Max
134
+ - type: spearman_max
135
+ value: 0.8148039503538166
136
+ name: Spearman Max
137
+ ---
138
+
139
+ # SentenceTransformer based on distilbert/distilroberta-base
140
+
141
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base) on the [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
142
+
143
+ ## Model Details
144
+
145
+ ### Model Description
146
+ - **Model Type:** Sentence Transformer
147
+ - **Base model:** [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base) <!-- at revision fb53ab8802853c8e4fbdbcd0529f21fc6f459b2b -->
148
+ - **Maximum Sequence Length:** 512 tokens
149
+ - **Output Dimensionality:** 768 tokens
150
+ - **Similarity Function:** Cosine Similarity
151
+ - **Training Dataset:**
152
+ - [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli)
153
+ - **Language:** en
154
+ <!-- - **License:** Unknown -->
155
+
156
+ ### Model Sources
157
+
158
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
159
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
160
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
161
+
162
+ ### Full Model Architecture
163
+
164
+ ```
165
+ SentenceTransformer(
166
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
167
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
168
+ )
169
+ ```
170
+
171
+ ## Usage
172
+
173
+ ### Direct Usage (Sentence Transformers)
174
+
175
+ First install the Sentence Transformers library:
176
+
177
+ ```bash
178
+ pip install -U sentence-transformers
179
+ ```
180
+
181
+ Then you can load this model and run inference.
182
+ ```python
183
+ from sentence_transformers import SentenceTransformer
184
+
185
+ # Download from the 🤗 Hub
186
+ model = SentenceTransformer("tomaarsen/distilroberta-base-nli-adaptive-layer")
187
+ # Run inference
188
+ sentences = [
189
+ 'Introduction',
190
+ 'Analytical Perspectives.',
191
+ 'A man reads the paper.',
192
+ ]
193
+ embeddings = model.encode(sentences)
194
+ print(embeddings.shape)
195
+ # [3, 768]
196
+
197
+ # Get the similarity scores for the embeddings
198
+ similarities = model.similarity(embeddings)
199
+ print(similarities.shape)
200
+ # [3, 3]
201
+ ```
202
+
203
+ <!--
204
+ ### Direct Usage (Transformers)
205
+
206
+ <details><summary>Click to see the direct usage in Transformers</summary>
207
+
208
+ </details>
209
+ -->
210
+
211
+ <!--
212
+ ### Downstream Usage (Sentence Transformers)
213
+
214
+ You can finetune this model on your own dataset.
215
+
216
+ <details><summary>Click to expand</summary>
217
+
218
+ </details>
219
+ -->
220
+
221
+ <!--
222
+ ### Out-of-Scope Use
223
+
224
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
225
+ -->
226
+
227
+ ## Evaluation
228
+
229
+ ### Metrics
230
+
231
+ #### Semantic Similarity
232
+ * Dataset: `sts-dev`
233
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
234
+
235
+ | Metric | Value |
236
+ |:--------------------|:-----------|
237
+ | pearson_cosine | 0.8456 |
238
+ | **spearman_cosine** | **0.8486** |
239
+ | pearson_manhattan | 0.8475 |
240
+ | spearman_manhattan | 0.8506 |
241
+ | pearson_euclidean | 0.8495 |
242
+ | spearman_euclidean | 0.8527 |
243
+ | pearson_dot | 0.7867 |
244
+ | spearman_dot | 0.7816 |
245
+ | pearson_max | 0.8495 |
246
+ | spearman_max | 0.8527 |
247
+
248
+ #### Semantic Similarity
249
+ * Dataset: `sts-test`
250
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
251
+
252
+ | Metric | Value |
253
+ |:--------------------|:-----------|
254
+ | pearson_cosine | 0.8183 |
255
+ | **spearman_cosine** | **0.8148** |
256
+ | pearson_manhattan | 0.8132 |
257
+ | spearman_manhattan | 0.8088 |
258
+ | pearson_euclidean | 0.8148 |
259
+ | spearman_euclidean | 0.8105 |
260
+ | pearson_dot | 0.75 |
261
+ | spearman_dot | 0.735 |
262
+ | pearson_max | 0.8183 |
263
+ | spearman_max | 0.8148 |
264
+
265
+ <!--
266
+ ## Bias, Risks and Limitations
267
+
268
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
269
+ -->
270
+
271
+ <!--
272
+ ### Recommendations
273
+
274
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
275
+ -->
276
+
277
+ ## Training Details
278
+
279
+ ### Training Dataset
280
+
281
+ #### sentence-transformers/all-nli
282
+
283
+ * Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [e587f0c](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/e587f0c494c20fb9a1853cdfb43d42576d60a7e5)
284
+ * Size: 557,850 training samples
285
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
286
+ * Approximate statistics based on the first 1000 samples:
287
+ | | anchor | positive | negative |
288
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
289
+ | type | string | string | string |
290
+ | details | <ul><li>min: 7 tokens</li><li>mean: 10.38 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.8 tokens</li><li>max: 39 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 13.4 tokens</li><li>max: 50 tokens</li></ul> |
291
+ * Samples:
292
+ | anchor | positive | negative |
293
+ |:---------------------------------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------------|
294
+ | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>A person is at a diner, ordering an omelette.</code> |
295
+ | <code>Children smiling and waving at camera</code> | <code>There are children present</code> | <code>The kids are frowning</code> |
296
+ | <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> | <code>The boy skates down the sidewalk.</code> |
297
+ * Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/losses.html#adaptivelayerloss) with these parameters:
298
+ ```json
299
+ {
300
+ "loss": "MultipleNegativesRankingLoss",
301
+ "n_layers_per_step": 1,
302
+ "last_layer_weight": 1.0,
303
+ "prior_layers_weight": 1.0,
304
+ "kl_div_weight": 1.0,
305
+ "kl_temperature": 0.3
306
+ }
307
+ ```
308
+
309
+ ### Evaluation Dataset
310
+
311
+ #### sentence-transformers/all-nli
312
+
313
+ * Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [e587f0c](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/e587f0c494c20fb9a1853cdfb43d42576d60a7e5)
314
+ * Size: 6,584 evaluation samples
315
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
316
+ * Approximate statistics based on the first 1000 samples:
317
+ | | anchor | positive | negative |
318
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
319
+ | type | string | string | string |
320
+ | details | <ul><li>min: 6 tokens</li><li>mean: 18.02 tokens</li><li>max: 66 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 9.81 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.37 tokens</li><li>max: 29 tokens</li></ul> |
321
+ * Samples:
322
+ | anchor | positive | negative |
323
+ |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------|:--------------------------------------------------------|
324
+ | <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> | <code>The men are fighting outside a deli.</code> |
325
+ | <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>Two kids in numbered jerseys wash their hands.</code> | <code>Two kids in jackets walk to school.</code> |
326
+ | <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code> | <code>A man selling donuts to a customer.</code> | <code>A woman drinks her coffee in a small cafe.</code> |
327
+ * Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/losses.html#adaptivelayerloss) with these parameters:
328
+ ```json
329
+ {
330
+ "loss": "MultipleNegativesRankingLoss",
331
+ "n_layers_per_step": 1,
332
+ "last_layer_weight": 1.0,
333
+ "prior_layers_weight": 1.0,
334
+ "kl_div_weight": 1.0,
335
+ "kl_temperature": 0.3
336
+ }
337
+ ```
338
+
339
+ ### Training Hyperparameters
340
+ #### Non-Default Hyperparameters
341
+
342
+ - `eval_strategy`: steps
343
+ - `per_device_train_batch_size`: 128
344
+ - `per_device_eval_batch_size`: 128
345
+ - `num_train_epochs`: 1
346
+ - `warmup_ratio`: 0.1
347
+ - `fp16`: True
348
+ - `batch_sampler`: no_duplicates
349
+
350
+ #### All Hyperparameters
351
+ <details><summary>Click to expand</summary>
352
+
353
+ - `overwrite_output_dir`: False
354
+ - `do_predict`: False
355
+ - `eval_strategy`: steps
356
+ - `prediction_loss_only`: False
357
+ - `per_device_train_batch_size`: 128
358
+ - `per_device_eval_batch_size`: 128
359
+ - `per_gpu_train_batch_size`: None
360
+ - `per_gpu_eval_batch_size`: None
361
+ - `gradient_accumulation_steps`: 1
362
+ - `eval_accumulation_steps`: None
363
+ - `learning_rate`: 5e-05
364
+ - `weight_decay`: 0.0
365
+ - `adam_beta1`: 0.9
366
+ - `adam_beta2`: 0.999
367
+ - `adam_epsilon`: 1e-08
368
+ - `max_grad_norm`: 1.0
369
+ - `num_train_epochs`: 1
370
+ - `max_steps`: -1
371
+ - `lr_scheduler_type`: linear
372
+ - `lr_scheduler_kwargs`: {}
373
+ - `warmup_ratio`: 0.1
374
+ - `warmup_steps`: 0
375
+ - `log_level`: passive
376
+ - `log_level_replica`: warning
377
+ - `log_on_each_node`: True
378
+ - `logging_nan_inf_filter`: True
379
+ - `save_safetensors`: True
380
+ - `save_on_each_node`: False
381
+ - `save_only_model`: False
382
+ - `no_cuda`: False
383
+ - `use_cpu`: False
384
+ - `use_mps_device`: False
385
+ - `seed`: 42
386
+ - `data_seed`: None
387
+ - `jit_mode_eval`: False
388
+ - `use_ipex`: False
389
+ - `bf16`: False
390
+ - `fp16`: True
391
+ - `fp16_opt_level`: O1
392
+ - `half_precision_backend`: auto
393
+ - `bf16_full_eval`: False
394
+ - `fp16_full_eval`: False
395
+ - `tf32`: None
396
+ - `local_rank`: 0
397
+ - `ddp_backend`: None
398
+ - `tpu_num_cores`: None
399
+ - `tpu_metrics_debug`: False
400
+ - `debug`: []
401
+ - `dataloader_drop_last`: False
402
+ - `dataloader_num_workers`: 0
403
+ - `dataloader_prefetch_factor`: None
404
+ - `past_index`: -1
405
+ - `disable_tqdm`: False
406
+ - `remove_unused_columns`: True
407
+ - `label_names`: None
408
+ - `load_best_model_at_end`: False
409
+ - `ignore_data_skip`: False
410
+ - `fsdp`: []
411
+ - `fsdp_min_num_params`: 0
412
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
413
+ - `fsdp_transformer_layer_cls_to_wrap`: None
414
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
415
+ - `deepspeed`: None
416
+ - `label_smoothing_factor`: 0.0
417
+ - `optim`: adamw_torch
418
+ - `optim_args`: None
419
+ - `adafactor`: False
420
+ - `group_by_length`: False
421
+ - `length_column_name`: length
422
+ - `ddp_find_unused_parameters`: None
423
+ - `ddp_bucket_cap_mb`: None
424
+ - `ddp_broadcast_buffers`: None
425
+ - `dataloader_pin_memory`: True
426
+ - `dataloader_persistent_workers`: False
427
+ - `skip_memory_metrics`: True
428
+ - `use_legacy_prediction_loop`: False
429
+ - `push_to_hub`: False
430
+ - `resume_from_checkpoint`: None
431
+ - `hub_model_id`: None
432
+ - `hub_strategy`: every_save
433
+ - `hub_private_repo`: False
434
+ - `hub_always_push`: False
435
+ - `gradient_checkpointing`: False
436
+ - `gradient_checkpointing_kwargs`: None
437
+ - `include_inputs_for_metrics`: False
438
+ - `eval_do_concat_batches`: True
439
+ - `fp16_backend`: auto
440
+ - `push_to_hub_model_id`: None
441
+ - `push_to_hub_organization`: None
442
+ - `mp_parameters`:
443
+ - `auto_find_batch_size`: False
444
+ - `full_determinism`: False
445
+ - `torchdynamo`: None
446
+ - `ray_scope`: last
447
+ - `ddp_timeout`: 1800
448
+ - `torch_compile`: False
449
+ - `torch_compile_backend`: None
450
+ - `torch_compile_mode`: None
451
+ - `dispatch_batches`: None
452
+ - `split_batches`: None
453
+ - `include_tokens_per_second`: False
454
+ - `include_num_input_tokens_seen`: False
455
+ - `neftune_noise_alpha`: None
456
+ - `optim_target_modules`: None
457
+ - `batch_sampler`: no_duplicates
458
+ - `multi_dataset_batch_sampler`: proportional
459
+
460
+ </details>
461
+
462
+ ### Training Logs
463
+ | Epoch | Step | Training Loss | loss | sts-dev_spearman_cosine | sts-test_spearman_cosine |
464
+ |:------:|:----:|:-------------:|:------:|:-----------------------:|:------------------------:|
465
+ | 0.0229 | 100 | 7.0517 | 3.9378 | 0.7889 | - |
466
+ | 0.0459 | 200 | 4.4877 | 3.8105 | 0.7906 | - |
467
+ | 0.0688 | 300 | 4.0315 | 3.6401 | 0.7966 | - |
468
+ | 0.0918 | 400 | 3.822 | 3.3537 | 0.7883 | - |
469
+ | 0.1147 | 500 | 3.0608 | 2.5975 | 0.7973 | - |
470
+ | 0.1376 | 600 | 2.6304 | 2.3956 | 0.7943 | - |
471
+ | 0.1606 | 700 | 2.7723 | 2.0379 | 0.8009 | - |
472
+ | 0.1835 | 800 | 2.3556 | 1.9645 | 0.7984 | - |
473
+ | 0.2065 | 900 | 2.4998 | 1.9086 | 0.8017 | - |
474
+ | 0.2294 | 1000 | 2.1834 | 1.8400 | 0.7973 | - |
475
+ | 0.2524 | 1100 | 2.2793 | 1.5831 | 0.8102 | - |
476
+ | 0.2753 | 1200 | 2.1042 | 1.6485 | 0.8004 | - |
477
+ | 0.2982 | 1300 | 2.1365 | 1.7084 | 0.8013 | - |
478
+ | 0.3212 | 1400 | 2.0096 | 1.5520 | 0.8064 | - |
479
+ | 0.3441 | 1500 | 2.0492 | 1.4917 | 0.8084 | - |
480
+ | 0.3671 | 1600 | 1.8764 | 1.5447 | 0.8018 | - |
481
+ | 0.3900 | 1700 | 1.8611 | 1.5480 | 0.8046 | - |
482
+ | 0.4129 | 1800 | 1.972 | 1.5353 | 0.8075 | - |
483
+ | 0.4359 | 1900 | 1.8062 | 1.4633 | 0.8039 | - |
484
+ | 0.4588 | 2000 | 1.8565 | 1.4213 | 0.8027 | - |
485
+ | 0.4818 | 2100 | 1.8852 | 1.3860 | 0.8002 | - |
486
+ | 0.5047 | 2200 | 1.7939 | 1.5468 | 0.7910 | - |
487
+ | 0.5276 | 2300 | 1.7398 | 1.6041 | 0.7888 | - |
488
+ | 0.5506 | 2400 | 1.8535 | 1.5791 | 0.7949 | - |
489
+ | 0.5735 | 2500 | 1.8486 | 1.4871 | 0.7951 | - |
490
+ | 0.5965 | 2600 | 1.7379 | 1.5427 | 0.8019 | - |
491
+ | 0.6194 | 2700 | 1.7325 | 1.4585 | 0.8087 | - |
492
+ | 0.6423 | 2800 | 1.7664 | 1.5264 | 0.7965 | - |
493
+ | 0.6653 | 2900 | 1.7517 | 1.6344 | 0.7930 | - |
494
+ | 0.6882 | 3000 | 1.8329 | 1.4947 | 0.8008 | - |
495
+ | 0.7112 | 3100 | 1.7206 | 1.4917 | 0.8089 | - |
496
+ | 0.7341 | 3200 | 1.7138 | 1.4185 | 0.8065 | - |
497
+ | 0.7571 | 3300 | 1.3705 | 1.2040 | 0.8446 | - |
498
+ | 0.7800 | 3400 | 1.1289 | 1.1363 | 0.8447 | - |
499
+ | 0.8029 | 3500 | 1.0174 | 1.1049 | 0.8464 | - |
500
+ | 0.8259 | 3600 | 1.0188 | 1.0362 | 0.8466 | - |
501
+ | 0.8488 | 3700 | 0.9841 | 1.1391 | 0.8470 | - |
502
+ | 0.8718 | 3800 | 0.8466 | 1.0116 | 0.8485 | - |
503
+ | 0.8947 | 3900 | 0.9268 | 1.1323 | 0.8488 | - |
504
+ | 0.9176 | 4000 | 0.8686 | 1.0296 | 0.8495 | - |
505
+ | 0.9406 | 4100 | 0.9255 | 1.1737 | 0.8484 | - |
506
+ | 0.9635 | 4200 | 0.7991 | 1.0609 | 0.8486 | - |
507
+ | 0.9865 | 4300 | 0.8431 | 0.9976 | 0.8486 | - |
508
+ | 1.0 | 4359 | - | - | - | 0.8148 |
509
+
510
+
511
+ ### Environmental Impact
512
+ Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
513
+ - **Energy Consumed**: 0.244 kWh
514
+ - **Carbon Emitted**: 0.095 kg of CO2
515
+ - **Hours Used**: 0.849 hours
516
+
517
+ ### Training Hardware
518
+ - **On Cloud**: No
519
+ - **GPU Model**: 1 x NVIDIA GeForce RTX 3090
520
+ - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
521
+ - **RAM Size**: 31.78 GB
522
+
523
+ ### Framework Versions
524
+ - Python: 3.11.6
525
+ - Sentence Transformers: 2.8.0.dev0
526
+ - Transformers: 4.41.0.dev0
527
+ - PyTorch: 2.3.0+cu121
528
+ - Accelerate: 0.26.1
529
+ - Datasets: 2.18.0
530
+ - Tokenizers: 0.19.1
531
+
532
+ ## Citation
533
+
534
+ ### BibTeX
535
+
536
+ #### Sentence Transformers
537
+ ```bibtex
538
+ @inproceedings{reimers-2019-sentence-bert,
539
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
540
+ author = "Reimers, Nils and Gurevych, Iryna",
541
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
542
+ month = "11",
543
+ year = "2019",
544
+ publisher = "Association for Computational Linguistics",
545
+ url = "https://arxiv.org/abs/1908.10084",
546
+ }
547
+ ```
548
+
549
+ #### AdaptiveLayerLoss
550
+ ```bibtex
551
+ @misc{li20242d,
552
+ title={2D Matryoshka Sentence Embeddings},
553
+ author={Xianming Li and Zongxi Li and Jing Li and Haoran Xie and Qing Li},
554
+ year={2024},
555
+ eprint={2402.14776},
556
+ archivePrefix={arXiv},
557
+ primaryClass={cs.CL}
558
+ }
559
+ ```
560
+
561
+ #### MultipleNegativesRankingLoss
562
+ ```bibtex
563
+ @misc{henderson2017efficient,
564
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
565
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
566
+ year={2017},
567
+ eprint={1705.00652},
568
+ archivePrefix={arXiv},
569
+ primaryClass={cs.CL}
570
+ }
571
+ ```
572
+
573
+ <!--
574
+ ## Glossary
575
+
576
+ *Clearly define terms in order to be accessible across audiences.*
577
+ -->
578
+
579
+ <!--
580
+ ## Model Card Authors
581
+
582
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
583
+ -->
584
+
585
+ <!--
586
+ ## Model Card Contact
587
+
588
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
589
+ -->
config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "distilroberta-base",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 3072,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 514,
17
+ "model_type": "roberta",
18
+ "num_attention_heads": 12,
19
+ "num_hidden_layers": 6,
20
+ "pad_token_id": 1,
21
+ "position_embedding_type": "absolute",
22
+ "torch_dtype": "float32",
23
+ "transformers_version": "4.41.0.dev0",
24
+ "type_vocab_size": 1,
25
+ "use_cache": true,
26
+ "vocab_size": 50265
27
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.8.0.dev0",
4
+ "transformers": "4.41.0.dev0",
5
+ "pytorch": "2.3.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f3adfb442d77419b9e21f5f9e217b84e0f8618b1ff9359db68c5db55f4d8fefe
3
+ size 328485128
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "cls_token": "<s>",
4
+ "eos_token": "</s>",
5
+ "mask_token": {
6
+ "content": "<mask>",
7
+ "lstrip": true,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "pad_token": "<pad>",
13
+ "sep_token": "</s>",
14
+ "unk_token": "<unk>"
15
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<s>",
6
+ "lstrip": false,
7
+ "normalized": true,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<pad>",
14
+ "lstrip": false,
15
+ "normalized": true,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": true,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": true,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "50264": {
37
+ "content": "<mask>",
38
+ "lstrip": true,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ }
44
+ },
45
+ "bos_token": "<s>",
46
+ "clean_up_tokenization_spaces": true,
47
+ "cls_token": "<s>",
48
+ "eos_token": "</s>",
49
+ "errors": "replace",
50
+ "mask_token": "<mask>",
51
+ "model_max_length": 512,
52
+ "pad_token": "<pad>",
53
+ "sep_token": "</s>",
54
+ "tokenizer_class": "RobertaTokenizer",
55
+ "trim_offsets": true,
56
+ "unk_token": "<unk>"
57
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff