File size: 97,856 Bytes
13d7f9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dense
- generated_from_trainer
- dataset_size:10000
- loss:MarginMSELoss
base_model: answerdotai/ModernBERT-base
widget:
- source_sentence: driving distance miami to fort lauderdale
  sentences:
  - "This Distance calculator provides both the by air, and by road distance between\
    \ cities in both miles and kms, along with a map and driving directions â\x80\x93\
    \ please scroll down to see it, and a little further for the city to city driving\
    \ directions. This is the by air, as the crow flies distance between the two cities."
  - Driving distance from Fort Lauderdale, FL to Miami, FL. The total driving distance
    from Fort Lauderdale, FL to Miami, FL is 27 miles or 43 kilometers. Your trip
    begins in Fort Lauderdale, Florida. It ends in Miami, Florida. If you are planning
    a road trip, you might also want to calculate the total driving time from Fort
    Lauderdale, FL to Miami, FL so you can see when you'll arrive at your destination.
  - The total driving distance from Fort Lauderdale to Miami Beach, FL is 32 miles.
    It can take 1 hour to 1.5 hours depending on how bad the traffic is or in rush
    hour. Or 11.30 at night it may be 1 hour, but will be less 1 hour.
  - Distance Between Cordova Tennessee United States and Memphis International Airport
    (MEM) Tennessee United States, flight and driving distances and airport information.
    Distance calculator.
  - Distance Map Info. Optimal route map between New Smyrna Beach, FL and Melbourne,
    FL. This route will be about 75 Miles. The driving route information(distance,
    estimated time, directions), flight route, traffic information and print the map
    features are placed on the top right corner of the map.
  - Driving distance from Fort Lauderdale, FL to Miami, FL. The total driving distance
    from Fort Lauderdale, FL to Miami, FL is 27 miles or 43 kilometers.Your trip begins
    in Fort Lauderdale, Florida. It ends in Miami, Florida.ou can also calculate the
    cost of driving from Fort Lauderdale, FL to Miami, FL based on current local fuel
    prices and an estimate of your car's best gas mileage.
  - There are 25.15 miles from Miami to Fort Lauderdale in north direction and 29.11
    miles (46.85 kilometers) by car, following the I-95 route. Miami and Fort Lauderdale
    are 31 minutes far apart, if you drive non-stop. This is the fastest route from
    Miami, FL to Fort Lauderdale, FL. The halfway point is Aventura, FL.
  - Need to know towns or cities within a specific radius of other places try this
    Towns within a Radius of Treasure Island tool. The distance between Treasure Island
    and St Augustine in a straight line is 172 miles or 276.75 Kilometers.
  - Distance calculator helps you to find the distance between cities and calculate
    the flying and driving distance in both kilometers and miles. Distance Calculator
    Distance calculator is a tool for calculating distance between cities or places
    on map.
- source_sentence: datsun 1200 starter motor diagram
  sentences:
  - Here you will find scans of the original wiring diagram for the 1971, 1972, and
    1973 Datsun 1200. 1971 Datsun 1200 Wiring Diagram. 1972 Datsun 1200 Wiring Diagram.
    1973 Datsun 1200 Wiring Diagram.
  - Free Universal VIN decoder to check vehicle data and history. This is a universal
    VIN decoder. Every car has a unique identifier code called a VIN. This number
    contains vital information about the car, such as its manufacturer, year of production,
    the plant it was produced in, type of engine, model and more.
  - 'This review is from: Powerhorse Portable Generator with Electric Start - 9000
    Surge Watts, 7250 Rated Watts (Misc.) Update Jan. 4, 2012... I found out the motor
    for this generator is manufactured by a company called Ducar. I found this out
    by speaking with a customer Service rep at Northern Tool.'
  - Starter Motor. The engine starter is an electrical motor that is bolted to the
    engine crankcase. The starter turns the engine flywheel teeth with the teeth on
    the starter motor plunger which starts the riding lawnmower engine. Once the battery,
    electrical connectors, wiring and starter solenoid have been tested and are functioning
    properly, the problem likely lies with the engine starter motor.
  - "Datsun is a Japanese car manufacturer that produced a great number of cars, starting\
    \ with the first Datsun model in 1931 and on until the brand was discontinued\
    \ in 1983. The Datsun brand became particularly famous because of one of their\
    \ sports cars, the Fairlady model. Headquartered in Japan, Datsun was absorbed\
    \ by another Japanese carmaker, Nissan, and the Datsun models were rebadged as\
    \ Nissanâ\x80\x99s from 1983 onwards."
  - Datsun is an automobile brand owned by Nissan. Datsun's original production run
    began in 1931. From 1958 to 1986, only vehicles exported by Nissan were identified
    as Datsun. By 1986 Nissan had phased out the Datsun name, but re-launched it in
    2013 as the brand for low-cost vehicles manufactured for emerging markets.
  - The dial reading should be 12 volts or more. Work the starter switch, and the
    reading should fall, but not below 10.5 volts. If the reading does not fall, there
    is a fault in the ignition-switch circuit or in the solenoid.
  - echo dot. Controls lights, fans, switches, thermostats, garage doors, sprinklers,
    and more with compatible connected devices. Connects to speakers or headphones
    through Bluetooth or 3.5 mm stereo cable to play music.
  - Acura TSX vs Honda Accord. Compare price, expert/user reviews, mpg, engines, safety,
    cargo capacity and other specs at a glance.
- source_sentence: what primary plant tissue is involved in transport of minerals
  sentences:
  - The ground tissue comprises the bulk of the primary plant body. Parenchyma, collenchyma,
    and sclerenchyma cells are common in the ground tissue. Vascular tissue transports
    food, water, hormones and minerals within the plant. Vascular tissue includes
    xylem, phloem, parenchyma, and cambium cells. Two views of the structure of the
    root and root meristem.
  - · just now. Report Abuse. 1.Water transport-in xylem from the roots up the plant.
    A passive process = transpiration 2.Sugar transport-sucrose is the main sugar
    transported in phloem from leaves up and down the plant. An active process-needs
    ATP.Process called translocation Look up transpiration and translocation Discuss
    the cells used in each, the direction and the mechanism. Peter S · 6 years ago.ugar
    i.e. glucose is produced in leaves (green parts of the plant) and it is transported
    to other parts of the plants such as reproductive organs, fruits and seeds, roots
    and stem (growing tips etc) through phloem tissue. Xylems are made up of dead
    cells while phloem tissue is made up of living cells.
  - 1 of 6. Plants have tissues to transport water, nutrients and minerals. Xylem
    transports water and mineral salts from the roots up to other parts of the plant,
    while phloem transports sucrose and amino acids between the leaves and other parts
    of the plant. Xylem and phloem in the centre of the plant root.
  - Xylem is one of two types of vascular tissues found in plant (the other being
    Phloem). The word Xylem is derived from the Greek for wood. The xylem is responsible
    for the transport (translocation) of water and soluble mineral nutrients from
    the roots throughout the plant, this facilitates the replacement of water lost
    during transpiration and photosynthesis.
  - Various vascular tissues in the root allow for transportation of water and nutrients
    to the rest of theplant.Plant cells have a cell wall to provide support, a large
    vacuole for storage of minerals, food, andchloroplasts where photosynthesis takes
    place.
  - The function of the phloem tissue is to transport food nutrients such as glucose
    and amino acids from the leaves and to all other cells of the plant, this is called
    translocation.
  - Plants have tissues to transport water, nutrients and minerals. Xylem transports
    water and mineral salts from the roots up to other parts of the plant, while phloem
    transports sucrose and amino acids between the leaves and other parts of the plant.
    Xylem and phloem in the centre of the plant root
  - Seed plants contain 2 types of vascular tissue (xylem & phloem) to help transport
    water, minerals, & food throughout the root & shoot systems.Plant cells have several
    specialized structures including a central vacuole for storage, plastids for storage
    of pigments, and a thick cell wall of cellulose.lants have 3 tissue systems ---
    ground, dermal, and vascular tissues. Plant tissues make up the main organs of
    a plant --- root, stem, leaf, & flower.
  - 'This article is about vascular tissue in plants. For transport in animals, see
    Circulatory system. Vascular tissue is a complex conducting tissue, formed of
    more than one cell type, found in vascular plants. The primary components of vascular
    tissue are the xylem and phloem. These two tissues transport fluid and nutrients
    internally. There are also two meristems associated with vascular tissue: the
    vascular cambium and the cork cambium. All the vascular tissues within a particular
    plant together constitute the vascular tissue system of that plant. The cells
    in vascular tissue are typically long and slender. Since the xylem and phloem
    function in the conduction of water, minerals, and nutrients throughout the plant,
    it is not surprising that their form should be similar to pipes.'
- source_sentence: Julia name meaning
  sentences:
  - 'In American the meaning of the name Julie is: Young. French Meaning: The name
    Julie is a French baby name. In French the meaning of the name Julie is: Downy.
    French form of Julia. Also can be a feminine form of Julian: Youthful.'
  - Jelisa Name Meaning. You are honest, benevolent, brilliant and often inventive,
    full of high inspirations. You are courageous, honest, determined, original and
    creative. You are a leader, especially for a cause.
  - The name Julius is of Latin and Greek origin. The meaning of Julius is downy-bearded,
    soft haired, implying youthful. Julius is generally used as a boy's name. It consists
    of 6 letters and 3 syllables and is pronounced Ju-li-us.
  - 'The name Julia is a Greek baby name. In Greek the meaning of the name Julia is:
    Downy. Hairy. Derived from the clan name of Roman dictator Gaius Julius Caesar.
    Latin Meaning: The name Julia is a Latin baby name.'
  - 'The name Julia is an American baby name. In American the meaning of the name
    Julia is: Youthful. Swedish Meaning: The name Julia is a Swedish baby name. In
    Swedish the meaning of the name Julia is: Youth.Greek Meaning: The name Julia
    is a Greek baby name. In Greek the meaning of the name Julia is: Downy. Hairy.
    Derived from the clan name of Roman dictator Gaius Julius Caesar.Latin Meaning:
    The name Julia is a Latin baby name.In Latin the meaning of the name Julia is:
    Young. The feminine form of Julius. A character in Shakespeare''s play ''Two Gentlemen
    of Verona''. Shakespearean Meaning: The name Julia is a Shakespearean baby name.he
    name Julia is a Latin baby name. In Latin the meaning of the name Julia is: Young.
    The feminine form of Julius. A character in Shakespeare''s play ''Two Gentlemen
    of Verona''.'
  - The meaning of Julius is Downy-bearded youth. Its origin is Variant of the Roman
    name Iulius. Julius is a form of Iulius and is generally pronounced like JOO lee
    es. This name is mostly being used as a boys name. Last year it ranked 312th in
    the U.S. Social Security Administration list of most popular baby boy names. Show
    popularity chart.
  - "What does Julianna mean? Julianna [ju-lian-na] as a name for girls is a Latin\
    \ name, and Julianna means youthful; Jove's child. Julianna is a version of Juliana\
    \ (Latin): feminine of Julius. Associated with: youthful. Juliannaâ\x96² has 1\
    \ variant: Julieanna."
  - 'The name Jelena is a Russian baby name. In Russian the meaning of the name Jelena
    is: Shining light. SoulUrge Number: 11. Expression Number: 2. People with this
    name have a deep inner desire to inspire others in a higher cause, and to share
    their own strongly held views on spiritual matters.'
  - 'The name Julia is a Latin baby name. In Latin the meaning of the name Julia is:
    Young. The feminine form of Julius. A character in Shakespeare''s play ''Two Gentlemen
    of Verona''.he name Julia is a Latin baby name. In Latin the meaning of the name
    Julia is: Young. The feminine form of Julius. A character in Shakespeare''s play
    ''Two Gentlemen of Verona''.'
- source_sentence: what does ly mean in a blood test
  sentences:
  - According to the Hormone-Refractory Prostate Cancer Association, LY on a blood
    test stands for lymphocytes. The number in the results represents the percentage
    of lymphocytes in the white blood count. Lymphocytes should count for 15 to 46.8
    percent of white blood cells. Continue Reading.
  - FROM OUR EXPERTS. Trace lysed blood refers to a finding that is usually reported
    from a urinary dip stick analysis. It implies that there is a small quantity of
    red cells in the urine that have broken open. The developer on the dip stick reacts
    with the hemoglobin that is released when the red cells are lysed.
  - Does anybody know what LM and TFT in blood testing is please? Does anybody know
    what LM and TFT in blood testing is please? TFT is Thyroid Function Tests , usually
    done as a series of tests for TSH (Thyroid-stimulating hormone) and for the T3
    (Triiodothyronine) and T4 ( Thyroxine), which are the hormones produced by the
    thyroid gland.
  - Uses. A blood lipid test measures the levels of HDL (high-density lipoprotein)
    cholesterol and LDL (low-density lipoprotein) cholesterol in the blood as well
    as triglycerides. These results can help doctors determine patients' health status.
  - It is found in almost all body tissues and can be measured by a simple blood test.
    Normal LDH levels are generally low and range between 140 IU/liter to 333 IU/
    liter. Low LDH levels are usually no cause for concern. However, elevated LDH
    levels may indicate cell damage.
  - Usually, an LFT blood test measures the amount of bilirubin in the blood. Bilirubin
    is released when red blood cells breakdown, and it is the liver that detoxifies
    the bilirubin and helps to eliminate it from the body. Bilirubin is a part of
    the digestive juice, bile, which the liver produces.
  - 'Medical Definition of LYE. 1. : a strong alkaline liquor rich in potassium carbonate
    leached from wood ashes and used especially in making soap and washing; broadly:
    a strong alkaline solution (as of sodium hydroxide or potassium hydroxide). 2.:
    a solid caustic (as sodium hydroxide).edical Definition of LYE. 1. : a strong
    alkaline liquor rich in potassium carbonate leached from wood ashes and used especially
    in making soap and washing; broadly: a strong alkaline solution (as of sodium
    hydroxide or potassium hydroxide). 2. : a solid caustic (as sodium hydroxide).'
  - FROM OUR COMMUNITY. Hi Terry, The LY (Lymphocytes) in your blood test is; the
    type of white blood cell found in the blood and lymph systems; part of the immune
    system. BUN/CREAT - Bun and Creatinine are tests done to monitor kidney function.
    I'm sorry, but I've never heard of the other 2.
  - The Lactic Acid Plasma Test, or Lactate Test, measures the amount of lactate in
    the blood to determine if a patient has lactic acidosis.he test may be ordered
    at prescribed intervals to monitor lactate levels. The Lactate Test is also known
    as Lactic Acid, Plasma Lactate, and L-Lactate. Patients will be instructed to
    fast prior to this blood test and be in a resting state.
datasets:
- tomaarsen/msmarco-Qwen3-Reranker-0.6B
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: ModernBERT-base finetuned on MSMARCO via distillation
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: msmarco eval 1kq 1kd
      type: msmarco-eval-1kq-1kd
    metrics:
    - type: cosine_accuracy@1
      value: 0.781
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.887
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.917
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.943
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.781
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.29566666666666663
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.18340000000000004
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09430000000000001
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.781
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.887
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.917
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.943
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8655823808772907
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.8404488095238101
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8423984809497023
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoMSMARCO
      type: NanoMSMARCO
    metrics:
    - type: cosine_accuracy@1
      value: 0.1
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.28
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.36
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.56
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.1
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.09333333333333332
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.07200000000000001
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.05600000000000001
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.1
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.28
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.36
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.56
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.3024724428473199
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.22331746031746025
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.23964016128375398
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoNFCorpus
      type: NanoNFCorpus
    metrics:
    - type: cosine_accuracy@1
      value: 0.12
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.16
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.24
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.34
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.12
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.05999999999999999
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.068
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.068
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.002236456626220743
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.002789859912543284
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.010512144339555038
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.03263772196662673
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.07431301845929561
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.16880158730158734
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.021674198565261597
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoNQ
      type: NanoNQ
    metrics:
    - type: cosine_accuracy@1
      value: 0.06
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.1
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.16
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.24
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.06
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.039999999999999994
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.036000000000000004
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.026000000000000006
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.04
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.08
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.13
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.21
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.11989547330112625
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.10407936507936508
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.10392112551414794
      name: Cosine Map@100
  - task:
      type: nano-beir
      name: Nano BEIR
    dataset:
      name: NanoBEIR mean
      type: NanoBEIR_mean
    metrics:
    - type: cosine_accuracy@1
      value: 0.09333333333333334
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.18000000000000002
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.25333333333333335
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.38000000000000006
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.09333333333333334
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.06444444444444443
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.05866666666666667
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.05000000000000001
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.04741215220874025
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.1209299533041811
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.16683738144651836
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.2675459073222089
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.1655603115359139
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.1653994708994709
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.12174516178772117
      name: Cosine Map@100
---

# ModernBERT-base finetuned on MSMARCO via distillation

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the [msmarco-qwen3-reranker-0.6_b](https://huggingface.co/datasets/tomaarsen/msmarco-Qwen3-Reranker-0.6B) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) <!-- at revision 8949b909ec900327062f0ebf497f51aef5e6f0c8 -->
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - [msmarco-qwen3-reranker-0.6_b](https://huggingface.co/datasets/tomaarsen/msmarco-Qwen3-Reranker-0.6B)
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False, 'architecture': 'ModernBertModel'})
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/ModernBERT-base-msmarco-margin-mse")
# Run inference
queries = [
    "what does ly mean in a blood test",
]
documents = [
    'According to the Hormone-Refractory Prostate Cancer Association, LY on a blood test stands for lymphocytes. The number in the results represents the percentage of lymphocytes in the white blood count. Lymphocytes should count for 15 to 46.8 percent of white blood cells. Continue Reading.',
    "FROM OUR COMMUNITY. Hi Terry, The LY (Lymphocytes) in your blood test is; the type of white blood cell found in the blood and lymph systems; part of the immune system. BUN/CREAT - Bun and Creatinine are tests done to monitor kidney function. I'm sorry, but I've never heard of the other 2.",
    'FROM OUR EXPERTS. Trace lysed blood refers to a finding that is usually reported from a urinary dip stick analysis. It implies that there is a small quantity of red cells in the urine that have broken open. The developer on the dip stick reacts with the hemoglobin that is released when the red cells are lysed.',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 768] [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[0.9409, 0.9409, 0.9366]])
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Datasets: `msmarco-eval-1kq-1kd`, `NanoMSMARCO`, `NanoNFCorpus` and `NanoNQ`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | msmarco-eval-1kq-1kd | NanoMSMARCO | NanoNFCorpus | NanoNQ     |
|:--------------------|:---------------------|:------------|:-------------|:-----------|
| cosine_accuracy@1   | 0.781                | 0.1         | 0.12         | 0.06       |
| cosine_accuracy@3   | 0.887                | 0.28        | 0.16         | 0.1        |
| cosine_accuracy@5   | 0.917                | 0.36        | 0.24         | 0.16       |
| cosine_accuracy@10  | 0.943                | 0.56        | 0.34         | 0.24       |
| cosine_precision@1  | 0.781                | 0.1         | 0.12         | 0.06       |
| cosine_precision@3  | 0.2957               | 0.0933      | 0.06         | 0.04       |
| cosine_precision@5  | 0.1834               | 0.072       | 0.068        | 0.036      |
| cosine_precision@10 | 0.0943               | 0.056       | 0.068        | 0.026      |
| cosine_recall@1     | 0.781                | 0.1         | 0.0022       | 0.04       |
| cosine_recall@3     | 0.887                | 0.28        | 0.0028       | 0.08       |
| cosine_recall@5     | 0.917                | 0.36        | 0.0105       | 0.13       |
| cosine_recall@10    | 0.943                | 0.56        | 0.0326       | 0.21       |
| **cosine_ndcg@10**  | **0.8656**           | **0.3025**  | **0.0743**   | **0.1199** |
| cosine_mrr@10       | 0.8404               | 0.2233      | 0.1688       | 0.1041     |
| cosine_map@100      | 0.8424               | 0.2396      | 0.0217       | 0.1039     |

#### Nano BEIR

* Dataset: `NanoBEIR_mean`
* Evaluated with [<code>NanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.NanoBEIREvaluator) with these parameters:
  ```json
  {
      "dataset_names": [
          "msmarco",
          "nfcorpus",
          "nq"
      ]
  }
  ```

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.0933     |
| cosine_accuracy@3   | 0.18       |
| cosine_accuracy@5   | 0.2533     |
| cosine_accuracy@10  | 0.38       |
| cosine_precision@1  | 0.0933     |
| cosine_precision@3  | 0.0644     |
| cosine_precision@5  | 0.0587     |
| cosine_precision@10 | 0.05       |
| cosine_recall@1     | 0.0474     |
| cosine_recall@3     | 0.1209     |
| cosine_recall@5     | 0.1668     |
| cosine_recall@10    | 0.2675     |
| **cosine_ndcg@10**  | **0.1656** |
| cosine_mrr@10       | 0.1654     |
| cosine_map@100      | 0.1217     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### msmarco-qwen3-reranker-0.6_b

* Dataset: [msmarco-qwen3-reranker-0.6_b](https://huggingface.co/datasets/tomaarsen/msmarco-Qwen3-Reranker-0.6B) at [20c25c8](https://huggingface.co/datasets/tomaarsen/msmarco-Qwen3-Reranker-0.6B/tree/20c25c858f80ba96bdb58f1558746e077001303a)
* Size: 10,000 training samples
* Columns: <code>query</code>, <code>positive</code>, <code>negative_1</code>, <code>negative_2</code>, <code>negative_3</code>, <code>negative_4</code>, <code>negative_5</code>, <code>negative_6</code>, <code>negative_7</code>, <code>negative_8</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
  |         | query                                                                            | positive                                                                            | negative_1                                                                          | negative_2                                                                         | negative_3                                                                         | negative_4                                                                          | negative_5                                                                          | negative_6                                                                          | negative_7                                                                          | negative_8                                                                          | score                              |
  |:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:-----------------------------------|
  | type    | string                                                                           | string                                                                              | string                                                                              | string                                                                             | string                                                                             | string                                                                              | string                                                                              | string                                                                              | string                                                                              | string                                                                              | list                               |
  | details | <ul><li>min: 5 tokens</li><li>mean: 9.32 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 81.37 tokens</li><li>max: 288 tokens</li></ul> | <ul><li>min: 16 tokens</li><li>mean: 68.92 tokens</li><li>max: 208 tokens</li></ul> | <ul><li>min: 12 tokens</li><li>mean: 70.8 tokens</li><li>max: 204 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 70.5 tokens</li><li>max: 260 tokens</li></ul> | <ul><li>min: 16 tokens</li><li>mean: 71.64 tokens</li><li>max: 244 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 72.57 tokens</li><li>max: 226 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 72.34 tokens</li><li>max: 198 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 73.57 tokens</li><li>max: 202 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 71.21 tokens</li><li>max: 200 tokens</li></ul> | <ul><li>size: 9 elements</li></ul> |
* Samples:
  | query                                                  | positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | negative_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | negative_2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | negative_3                                                                                                                                                                                                                                                                                                                                                                                                                     | negative_4                                                                                                                                                                                                                                                                                                                                    | negative_5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | negative_6                                                                                                                                                                                                                                                                                                                                                                                                                                               | negative_7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | negative_8                                                                                                                                                                                                                                                                                                                                                                                                                                | score                                                                        |
  |:-------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------|
  | <code>what is clomiphene</code>                        | <code>Uses of This Medicine. Clomiphene is used as a fertility medicine in some women who are unable to become pregnant. Clomiphene probably works by changing the hormone balance of the body. In women, this causes ovulation to occur and prepares the body for pregnancy.ses of This Medicine. Clomiphene is used as a fertility medicine in some women who are unable to become pregnant. Clomiphene probably works by changing the hormone balance of the body. In women, this causes ovulation to occur and prepares the body for pregnancy.</code>                                                | <code>Clomiphene citrate, a synthetic hormone commonly used to induce or regulate ovulation, is the most often prescribed fertility pill. Brand names for clomiphene citrate include Clomid and Serophene. Clomiphene works indirectly to stimulate ovulation.</code>                                                                                                                                                                                                                                                                        | <code>Occasionally, clomiphene can stimulate the ovaries too much, causing multiple eggs to be released, which can result in multiple births, such as twins or triplets (see Clomid and Twins) . Clomiphene is one of the least expensive and easiest-to-use fertility drugs. However, it will not work for all types of infertility. Your healthcare provider needs to try to find your cause of infertility before you try clomiphene.</code>                                            | <code>Clomiphene Citrate offers two benefits to the performance enhancing athlete with one being primary. Most commonly, this SERM is used for post cycle recovery purposes; specifically to stimulate natural testosterone production that has been suppressed due to the use of anabolic steroids.</code>                                                                                                                    | <code>PCOS and ovulation problems and Clomid treatment. Clomid (clomiphene citrate or Serophene) is an oral medication that is commonly used for the treatment of infertility. It is often given to try to induce ovulation in women that do not develop and release an egg (ovulate) on their own.</code>                                    | <code>Indication: Clomid (clomiphene citrate) is often the first choice for treating infertility, because it's effective and been used for more than 40 years.</code>                                                                                                                                                                                                                                                                                                                                                                                             | <code>Clomid Description. 1  Clomid (clomiphene citrate tablets USP) is an orally administered, nonsteroidal, ovulatory stimulant designated chemically as 2-[p-(2-chloro-1,2-diphenylvinyl)phenoxy] triethylamine citrate (1:1). It has the molecular formula of C26H28ClNO • C6H8O7 and a molecular weight of 598.09.</code>                                                                                                                         | <code>PCOS and ovulation problems and Clomid treatment. Clomid (clomiphene citrate or Serophene) is an oral medication that is commonly used for the treatment of infertility. 1  It is often given to try to induce ovulation in women that do not develop and release an egg (ovulate) on their own. Clomid is started early in the menstrual cycle and is taken for five days either from cycle days 3 through 7, or from day 5 through 9. 2  Clomid is usually started at a dose of one tablet (50mg) daily-taken any time of day.</code>                                                                                                                                                                                                                                                                                                                       | <code>Clomid is taken as a pill. This is unlike the stronger fertility drugs, which require injection. Clomid is also very effective, stimulating ovulation 80 percent of the time. Clomid may also be marketed under the name Serophene, or you may see it sold under its generic name, clomiphene citrate. Note: Clomid can also be used as a treatment for male infertility. This article focuses on Clomid treatment in women.</code> | <code>[4.75390625, 6.9375, 3.92578125, 1.0400390625, 5.61328125, ...]</code> |
  | <code>typical accountant cost for it contractor</code> | <code>In the current market, we’ve seen rates as low as £50 +VAT, and as high as £180 +VAT for dedicated contractor accountants. Interestingly, the average cost of contractor accounting has not risen in line with inflation over the past decade.</code>                                                                                                                                                                                                                                                                                                                                           | <code>So, how much does a contractor cost, anywhere from 5% to 25% of the total project cost, with the average ranging 10-15%.ypically the contractor' s crew will be general carpentry trades people, some who may have more specialized skills. Exactly how a general contractor charges for a project depends on the type of contract you agree to. There are three common types of cost contracts, fixed price, time & materials and cost plus a fee.</code>                                                                             | <code>1 Accountants charge $150-$400 or more an hour, depending on the type of work, the size of the firm and its location. 2  You'll pay lower rates for routine work done by a less-experienced associate or lesser-trained employee, such as $30-$50 for bookkeeping services. 3  An accountant's total fee depends on the project. For a simple start-up, expect a minimum of 0.5-1.5 hours of consultation ($75-$600) to go over your business structure and basic tax issues.</code> | <code>So, how much does a contractor cost, anywhere from 5% to 25% of the total project cost, with the average ranging 10-15%.xactly how a general contractor charges for a project depends on the type of contract you agree to. There are three common types of cost contracts, fixed price, time & materials and cost plus a fee. Each contract type has pros and cons for both the consumer and for the contractor.</code> | <code>1 Accountants charge $150-$400 or more an hour, depending on the type of work, the size of the firm and its location. 2  You'll pay lower rates for routine work done by a less-experienced associate or lesser-trained employee, such as $30-$50 for bookkeeping services. 3  An accountant's total fee depends on the project.</code> | <code>average data entry keystrokes per hour salaries the average salary for data entry keystrokes per hour jobs is $ 20000</code>                                                                                                                                                                                                                                                                                                                                                                                                                                | <code>Accounting services are typically $250 to $400 per month, or $350 to $500 per quarter. Sales tax and bank recs included. We do all the processing, filing and tax deposits. 5 employees, bi-weekly payroll, direct deposit, $135 per month.</code>                                                                                                                                                                                                 | <code>The less that is outsourced, the cheaper it will be for you. A bookkeeper should be paid between $15 and $18 per hour. An accountant with a undergraduate degree (4-years) should be paid somewhere around $20/hour but that still depends on what you're having them do. An accountant with a graduate degree (masters) should be paid between $25 and $30 per hour.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <code>Pay by Experience Level for Intelligence Analyst. Median of all compensation (including tips, bonus, and overtime) by years of experience. Intelligence Analysts with a lot of experience tend to enjoy higher earnings.</code>                                                                                                                                                                                                     | <code>[7.44921875, 3.271484375, 5.859375, 3.234375, 5.421875, ...]</code>    |
  | <code>what is mch on a blood test</code>               | <code>What High Levels Mean. MCH levels in blood tests are considered high if they are 35 or higher. A normal hemoglobin level is considered to be in the range between 26 and 33 picograms per red blood cell. High MCH levels can indicate macrocytic anemia, which can be caused by insufficient vitamin B12.acrocytic RBCs are large so tend to have a higher MCH, while microcytic red cells would have a lower value.”. MCH is one of three red blood cell indices (MCHC and MCV are the other two). The measurements are done by machine and can help with diagnosis of medical problems.</code> | <code>MCH stands for mean corpuscular hemoglobin. It estimates the average amount of hemoglobin in each red blood cell, measured in picograms (a trillionth of a gram). Automated cell counters calculate the MCH, which is reported as part of a complete blood count (CBC) test. MCH may be low in iron-deficiency anemia, and may be high in anemia due to vitamin B12 or folate deficiency. Other forms of anemia can also cause MCH to be abnormal. Doctors only use the MCH as supporting information, not to make a diagnosis.</code> | <code>A. MCH stands for mean corpuscular hemoglobin. It estimates the average amount of hemoglobin in each red blood cell, measured in picograms (a trillionth of a gram). Automated cell counters calculate the MCH, which is reported as part of a complete blood count (CBC) test. MCH may be low in iron-deficiency anemia, and may be high in anemia due to vitamin B12 or folate deficiency. Other forms of anemia can also cause MCH to be abnormal.</code>                         | <code>The test used to determine the quantity of hemoglobin in the blood is known as the MCH blood test. The full form of MCH is Mean Corpuscular Hemoglobin. This test is therefore used to determine the average amount of hemoglobin per red blood cell in the body. The results of the MCH blood test are therefore reported in picograms, a tiny measure of weight.</code>                                                | <code>MCH blood test high indicates that there is a poor supply of oxygen to the blood where as MCH blood test low mean that hemoglobin is too little in the cells indicating a lack of iron. It is important that iron is maintained at a certain level as too much or too little iron can be dangerous to your body.</code>                 | <code>slide 1 of 7. What Is MCH? MCH is the initialism for Mean Corpuscular Hemoglobin. Taken from Latin, the term refers to the average amount of hemoglobin found in red blood cells. A CBC (complete blood count) blood test can be used to monitor MCH levels in the blood. Lab Tests Online explains that the MCH aspect of a CBC test “is a measurement of the average amount of oxygen-carrying hemoglobin inside a red blood cell. Macrocytic RBCs are large so tend to have a higher MCH, while microcytic red cells would have a lower value..</code> | <code>The test used to determine the quantity of hemoglobin in the blood is known as the MCH blood test. The full form of MCH is Mean Corpuscular Hemoglobin. This test is therefore used to determine the average amount of hemoglobin per red blood cell in the body. The results of the MCH blood test are therefore reported in picograms, a tiny measure of weight. The normal range of the MCH blood test is between 26 and 33 pg per cell.</code> | <code>A MCHC test is a test that is carried out to test a person for anemia. The MCHC in a MCHC test stands for Mean Corpuscular Hemoglobin Concentration. MCHC is the calculation of the average hemoglobin inside a red blood cell. A MCHC test can be performed along with a MCV test (Mean Corpuscular Volume).Both levels are used to test people for anemia.The MCHC test is also known as the MCH blood test which tests the levels of hemoglobin in the blood. The MCHC test can be ordered as part of a complete blood count (CBC) test.CHC is measured in grams per deciliter. Normal readings for MCHC are 31 grams per deciliter to 35 grams per deciliter. A MCHC blood test may be ordered when a person is showing signs of fatigue or weakness, when there is an infection, is bleeding or bruising easily or when there is an inflammation.</code> | <code>The test looks at the average amount of hemoglobin per red cell. So MCHC = the amount of hemoglobin present in each red blood cell. A MCHC blood test could be ordered for someone who has signs of fatigue or weakness, when there is an infection, is bleeding or bruising easily or when there is noticeable inflammation.</code>                                                                                                | <code>[6.44921875, 7.05078125, 7.2109375, 8.40625, 6.53515625, ...]</code>   |
* Loss: [<code>MarginMSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#marginmseloss)

### Evaluation Dataset

#### msmarco-qwen3-reranker-0.6_b

* Dataset: [msmarco-qwen3-reranker-0.6_b](https://huggingface.co/datasets/tomaarsen/msmarco-Qwen3-Reranker-0.6B) at [20c25c8](https://huggingface.co/datasets/tomaarsen/msmarco-Qwen3-Reranker-0.6B/tree/20c25c858f80ba96bdb58f1558746e077001303a)
* Size: 1,000 evaluation samples
* Columns: <code>query</code>, <code>positive</code>, <code>negative_1</code>, <code>negative_2</code>, <code>negative_3</code>, <code>negative_4</code>, <code>negative_5</code>, <code>negative_6</code>, <code>negative_7</code>, <code>negative_8</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
  |         | query                                                                            | positive                                                                            | negative_1                                                                          | negative_2                                                                         | negative_3                                                                          | negative_4                                                                          | negative_5                                                                          | negative_6                                                                          | negative_7                                                                         | negative_8                                                                          | score                              |
  |:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:-----------------------------------|
  | type    | string                                                                           | string                                                                              | string                                                                              | string                                                                             | string                                                                              | string                                                                              | string                                                                              | string                                                                              | string                                                                             | string                                                                              | list                               |
  | details | <ul><li>min: 4 tokens</li><li>mean: 9.27 tokens</li><li>max: 24 tokens</li></ul> | <ul><li>min: 22 tokens</li><li>mean: 82.29 tokens</li><li>max: 236 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 69.82 tokens</li><li>max: 215 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 69.4 tokens</li><li>max: 209 tokens</li></ul> | <ul><li>min: 16 tokens</li><li>mean: 71.47 tokens</li><li>max: 223 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 70.96 tokens</li><li>max: 225 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 73.09 tokens</li><li>max: 218 tokens</li></ul> | <ul><li>min: 16 tokens</li><li>mean: 69.31 tokens</li><li>max: 215 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 72.3 tokens</li><li>max: 226 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 70.66 tokens</li><li>max: 210 tokens</li></ul> | <ul><li>size: 9 elements</li></ul> |
* Samples:
  | query                                            | positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | negative_1                                                                                                                                                                                                                                                                                                  | negative_2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | negative_3                                                                                                                                                                                                                                                                                     | negative_4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | negative_5                                                                                                                                                                                                                                                                             | negative_6                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | negative_7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | negative_8                                                                                                                                                                                                                                                                                                                                                                                                    | score                                                                        |
  |:-------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------|
  | <code>how many people employed by shell</code>   | <code>Shell worldwide. Royal Dutch Shell was formed in 1907, although our history dates back to the early 19th century, to a small shop in London where the Samuel family sold sea shells. Today, Shell is one of the world’s major energy companies, employing an average of 93,000 people and operating in more than 70 countries. Our headquarters are in The Hague, the Netherlands, and our Chief Executive Officer is Ben van Beurden.</code>                                                                                                                                                     | <code>Show sources information. This statistic shows the number of employees at SeaWorld Entertainment, Inc. in the United States, by type. As of December 2016, SeaWorld employed 5,000 full-time employees and counted approximately 13,000 seasonal employees during their peak operating season.</code> | <code>Jobs, companies, people, and articles for LinkedIn’s Payroll Specialist - Addus Homecare, Inc. members. Insights about Payroll Specialist - Addus Homecare, Inc. members on LinkedIn. Median salary $31,300.</code>                                                                                                                                                                                                                                                                                                                                                                                                    | <code>As of July 2014, there are 139 million people employed in the United States. This number is up by 209,000 employees from June and by 1.47 million from the beginning of 2014.</code>                                                                                                     | <code>average data entry keystrokes per hour salaries the average salary for data entry keystrokes per hour jobs is $ 20000</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <code>Research and review Plano Synergy jobs. Learn more about a career with Plano Synergy including all recent jobs, hiring trends, salaries, work environment and more. Find Jobs Company Reviews Find Salaries Find Resumes Employers / Post Job Upload your resume Sign in</code>  | <code>From millions of real job salary data. 13 Customer Support Specialist salary data. Average Customer Support Specialist salary is $59,032 Detailed Customer Support Specialist starting salary, median salary, pay scale, bonus data report Register & Know how much $ you can earn \| Sign In</code>                                                                                                                                                                            | <code>From millions of real job salary data. 1 Ceo Ally salary data. Average Ceo Ally salary is $55,000 Detailed Ceo Ally starting salary, median salary, pay scale, bonus data report</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <code>HelpSystems benefits and perks, including insurance benefits, retirement benefits, and vacation policy. Reported anonymously by HelpSystems employees. Glassdoor uses cookies to improve your site experience.</code>                                                                                                                                                                                   | <code>[6.265625, -1.3671875, -6.91796875, 1.111328125, -7.96875, ...]</code> |
  | <code>what is a lcsw</code>                      | <code>LCSW is an acronym for licensed clinical social worker, and people with this title are skilled professionals who meet certain requirements and work in a variety of fields. The term social worker is not always synonymous with licensed clinical social worker.</code>                                                                                                                                                                                                                                                                                                                            | <code>LISW means the person is a Licensed Independent Social Worker. LCSW means the person is a Licensed Clinical Social Worker. Source(s): Introduction to Social Work 101 at University of Nevada, Las Vega (UNLV) Dorothy K. · 1 decade ago.</code>                                                     | <code>An LCSW is a licensed clinical social worker. A LMHC is the newest addition to the field of mental health. They are highly similar and can do most of the same things with few exceptions. One thing to keep in mind is that because the LMHC lincense is so new, there are fewer in number in the field.n LCSW is a licensed clinical social worker. A LMHC is the newest addition to the field of mental health. They are highly similar and can do most of the same things with few exceptions. One thing to keep in mind is that because the LMHC lincense is so new, there are fewer in number in the field.</code> | <code>The Licensed Clinical Social Worker or LCSW, is a sub-sector within the field of Social Work. They work with clients in order to help them deal with issues involving their mental and emotional health. This could be related to substance abuse, past trauma or mental illness.</code> | <code>Licensed Clinical Social Worker \| LCSW. The Licensed Clinical Social Worker or LCSW, is a sub-sector within the field of Social Work. LCSW's work with clients in order to help deal with issues involving mental and emotional health. There are a wide variety of specializations the Licensed Clinical Social Worker can focus on.</code>                                                                                                                                                                                                                                                                                                                                                             | <code>The LMSW exam is a computer-based test containing 170 multiple-choice questions designed to measure minimum competencies in four categories of social work practice: Human development, diversity, and behavior in the environment. Assessment and intervention planning.</code> | <code>The Licensed Clinical Social Worker, also known as the LCSW, is a branch of social work that specializes in mental health therapy in a counseling format. Becoming an LCSW requires a significant degree of training, including having earned a Master of Social Work (MSW) degree from a Council on Social Work Education (CSWE) accredited program.</code>                                                                                                                    | <code>a. The examination requirements for licensure as an LCSW include passing the Clinical Examination of the ASWB or the Clinical Social Workers Examination of the State of California. Scope of practice-Limitations. a.To the extent they are prepared through education and training, an LCSW can engage in all acts and practices defined as the practice of clinical social work. Certified Social Work (CSW): CSW means a licensed certified social worker. A CSW must have a master s degree.</code>                                                                                                                                               | <code>The LTCM Client is a way for companies to stay in touch with you, their customers, in a way that is unobtrusive and completely under the users' control. It's an application that runs quietly on the computer. Users can and should customize the client to match their desired preferences.</code>                                                                                                    | <code>[7.34375, 6.046875, 7.09765625, 6.46484375, 7.28515625, ...]</code>    |
  | <code>does oolong tea have much caffeine?</code> | <code>At a given weight, tea contains more caffeine than coffee, but this doesn’t mean that a usual portion of tea contains more caffeine than coffee because tea is usually brewed in a weak way. Some kinds of tea, such as oolong and black tea, contain higher level of caffeine than most other teas. Among six basic teas (green, black, yellow, white, oolong, dark), green tea contains less caffeine than black tea and white tea contains less than green tea. But many studies found that the caffeine content varies more among individual teas than it does among broad categories.</code> | <code>Actually, oolong tea has less caffeine than coffee and black tea. A cup of oolong tea only has about 1/3 of caffeine of a cup of coffee. According to a research conducted by HICKS M.B, the caffeine decreases whenever the tea leaves go through the process of brewing.</code>                     | <code>Oolong tea contains caffeine. Caffeine works by stimulating the central nervous system (CNS), heart, and muscles. Oolong tea also contains theophylline and theobromine, which are chemicals similar to caffeine. Too much oolong tea, more than five cups per day, can cause side effects because of the caffeine.</code>                                                                                                                                                                                                                                                                                               | <code>Oolong tea, made from more mature leaves, usually have less caffeine than green tea. On the flip side, mature leaves contain less theanine, a sweet, natural relaxant that makes a tea much less caffeinated than it actually is. That is the theory, anyway.</code>                     | <code>Oolong tea is a product made from the leaves, buds, and stems of the Camellia sinensis plant. This is the same plant that is also used to make black tea and green tea. The difference is in the processing.Oolong tea is partially fermented, black tea is fully fermented, and green tea is unfermented. Oolong tea is used to sharpen thinking skills and improve mental alertness. It is also used to prevent cancer, tooth decay, osteoporosis, and heart disease.owever, do not drink more than 2 cups a day of oolong tea. That amount of tea contains about 200 mg of caffeine. Too much caffeine during pregnancy might cause premature delivery, low birth weight, and harm to the baby.</code> | <code>A Department of Nutritional Services report provides the following ranges of caffeine content for a cup of tea made with loose leaves: 1  Black Tea: 23 - 110 mg. 2  Oolong Tea: 12 - 55 mg.  Green Tea: 8 - 36 mg.</code>                                                       | <code>Oolong tea is a product made from the leaves, buds, and stems of the Camellia sinensis plant. This is the same plant that is also used to make black tea and green tea. The difference is in the processing. Oolong tea is partially fermented, black tea is fully fermented, and green tea is unfermented. Oolong tea is used to sharpen thinking skills and improve mental alertness. It is also used to prevent cancer, tooth decay, osteoporosis, and heart disease.</code> | <code>Health Effects of Tea – Caffeine. In dry form, a kilogram of black tea has twice the caffeine as a kilogram of coffee…. But one kilogram of black tea makes about 450 cups of tea and one kilogram of coffee makes about 100 cups of coffee, so…. There is less caffeine in a cup of tea than in a cup of coffee. Green teas have less caffeine than black teas, and white teas have even less caffeine than green teas. Oolong teas fall between black and green teas. Herbal tea, because it is not made from the same tea plant, is caffeine-free, naturally. Here is a graphical representation of their respective caffeine content.</code> | <code>The average 8-ounce serving of brewed black tea contains 14 to 70 mg of caffeine. This compares to 24 to 45 mg of caffeine found in green tea. An 8-ounce glass of instant iced tea prepared with water contains 11 to 47 mg of caffeine. Most ready-to-drink bottled teas contain 5 to 40 mg of caffeine. Just as with coffee, decaffeinated tea still contains 5 to 10 mg of caffeine per cup.</code> | <code>[7.60546875, 8.78125, 9.109375, 8.609375, 7.984375, ...]</code>        |
* Loss: [<code>MarginMSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#marginmseloss)

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `learning_rate`: 4e-05
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `bf16`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 4e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `tp_size`: 0
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
- `router_mapping`: {}
- `learning_rate_mapping`: {}

</details>

### Training Logs
| Epoch | Step | Training Loss | Validation Loss | msmarco-eval-1kq-1kd_cosine_ndcg@10 | NanoMSMARCO_cosine_ndcg@10 | NanoNFCorpus_cosine_ndcg@10 | NanoNQ_cosine_ndcg@10 | NanoBEIR_mean_cosine_ndcg@10 |
|:-----:|:----:|:-------------:|:---------------:|:-----------------------------------:|:--------------------------:|:---------------------------:|:---------------------:|:----------------------------:|
| 0.032 | 20   | 626.2853      | -               | -                                   | -                          | -                           | -                     | -                            |
| 0.064 | 40   | 150.4493      | -               | -                                   | -                          | -                           | -                     | -                            |
| 0.096 | 60   | 67.3182       | -               | -                                   | -                          | -                           | -                     | -                            |
| 0.128 | 80   | 53.5684       | -               | -                                   | -                          | -                           | -                     | -                            |
| 0.16  | 100  | 37.7594       | 37.6225         | 0.0996                              | 0.0127                     | 0.0160                      | 0.0                   | 0.0096                       |
| 0.192 | 120  | 34.6859       | -               | -                                   | -                          | -                           | -                     | -                            |
| 0.224 | 140  | 36.1137       | -               | -                                   | -                          | -                           | -                     | -                            |
| 0.256 | 160  | 30.4027       | -               | -                                   | -                          | -                           | -                     | -                            |
| 0.288 | 180  | 29.148        | -               | -                                   | -                          | -                           | -                     | -                            |
| 0.32  | 200  | 33.1368       | 29.7916         | 0.2748                              | 0.0432                     | 0.0228                      | 0.0                   | 0.0220                       |
| 0.352 | 220  | 27.5536       | -               | -                                   | -                          | -                           | -                     | -                            |
| 0.384 | 240  | 27.2182       | -               | -                                   | -                          | -                           | -                     | -                            |
| 0.416 | 260  | 25.0055       | -               | -                                   | -                          | -                           | -                     | -                            |
| 0.448 | 280  | 24.3704       | -               | -                                   | -                          | -                           | -                     | -                            |
| 0.48  | 300  | 23.1422       | 23.1264         | 0.5906                              | 0.1270                     | 0.0205                      | 0.0261                | 0.0579                       |
| 0.512 | 320  | 22.3186       | -               | -                                   | -                          | -                           | -                     | -                            |
| 0.544 | 340  | 24.1421       | -               | -                                   | -                          | -                           | -                     | -                            |
| 0.576 | 360  | 20.9064       | -               | -                                   | -                          | -                           | -                     | -                            |
| 0.608 | 380  | 18.2549       | -               | -                                   | -                          | -                           | -                     | -                            |
| 0.64  | 400  | 19.5288       | 19.2762         | 0.7293                              | 0.2216                     | 0.0404                      | 0.0758                | 0.1126                       |
| 0.672 | 420  | 19.1762       | -               | -                                   | -                          | -                           | -                     | -                            |
| 0.704 | 440  | 17.4021       | -               | -                                   | -                          | -                           | -                     | -                            |
| 0.736 | 460  | 18.0734       | -               | -                                   | -                          | -                           | -                     | -                            |
| 0.768 | 480  | 17.8102       | -               | -                                   | -                          | -                           | -                     | -                            |
| 0.8   | 500  | 18.1116       | 17.3469         | 0.8224                              | 0.2664                     | 0.0576                      | 0.1053                | 0.1431                       |
| 0.832 | 520  | 16.9641       | -               | -                                   | -                          | -                           | -                     | -                            |
| 0.864 | 540  | 17.378        | -               | -                                   | -                          | -                           | -                     | -                            |
| 0.896 | 560  | 16.3021       | -               | -                                   | -                          | -                           | -                     | -                            |
| 0.928 | 580  | 14.9917       | -               | -                                   | -                          | -                           | -                     | -                            |
| 0.96  | 600  | 17.5367       | 16.2952         | 0.8594                              | 0.3014                     | 0.0721                      | 0.1187                | 0.1641                       |
| 0.992 | 620  | 15.6708       | -               | -                                   | -                          | -                           | -                     | -                            |
| -1    | -1   | -             | -               | 0.8656                              | 0.3025                     | 0.0743                      | 0.1199                | 0.1656                       |


### Framework Versions
- Python: 3.11.10
- Sentence Transformers: 5.1.0.dev0
- Transformers: 4.51.2
- PyTorch: 2.5.1+cu124
- Accelerate: 1.5.2
- Datasets: 3.5.0
- Tokenizers: 0.21.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MarginMSELoss
```bibtex
@misc{hofstätter2021improving,
    title={Improving Efficient Neural Ranking Models with Cross-Architecture Knowledge Distillation},
    author={Sebastian Hofstätter and Sophia Althammer and Michael Schröder and Mete Sertkan and Allan Hanbury},
    year={2021},
    eprint={2010.02666},
    archivePrefix={arXiv},
    primaryClass={cs.IR}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->