suyashmittal commited on
Commit
2fc11a9
·
1 Parent(s): 3157ad9

End of training

Browse files
Files changed (1) hide show
  1. README.md +48 -17
README.md CHANGED
@@ -1,13 +1,40 @@
1
  ---
2
- license: apache-2.0
3
- base_model: bert-base-uncased
4
  tags:
5
  - generated_from_trainer
6
  datasets:
7
  - generator
 
 
 
 
 
8
  model-index:
9
  - name: model
10
- results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  ---
12
 
13
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -15,18 +42,13 @@ should probably proofread and complete it, then remove this comment. -->
15
 
16
  # model
17
 
18
- This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the generator dataset.
19
  It achieves the following results on the evaluation set:
20
- - eval_loss: 0.6236
21
- - eval_precision: 0.4599
22
- - eval_recall: 0.7381
23
- - eval_f1: 0.5667
24
- - eval_accuracy: 0.8546
25
- - eval_runtime: 31.2775
26
- - eval_samples_per_second: 21.038
27
- - eval_steps_per_second: 1.343
28
- - epoch: 2.23
29
- - step: 699
30
 
31
  ## Model description
32
 
@@ -46,16 +68,25 @@ More information needed
46
 
47
  The following hyperparameters were used during training:
48
  - learning_rate: 1e-05
49
- - train_batch_size: 16
50
- - eval_batch_size: 16
51
  - seed: 42
52
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
53
  - lr_scheduler_type: linear
54
  - training_steps: 1000
55
 
 
 
 
 
 
 
 
 
 
56
  ### Framework versions
57
 
58
  - Transformers 4.33.2
59
- - Pytorch 2.0.1+cu117
60
  - Datasets 2.14.5
61
  - Tokenizers 0.13.3
 
1
  ---
2
+ license: mit
3
+ base_model: roberta-large
4
  tags:
5
  - generated_from_trainer
6
  datasets:
7
  - generator
8
+ metrics:
9
+ - precision
10
+ - recall
11
+ - f1
12
+ - accuracy
13
  model-index:
14
  - name: model
15
+ results:
16
+ - task:
17
+ name: Token Classification
18
+ type: token-classification
19
+ dataset:
20
+ name: generator
21
+ type: generator
22
+ config: default
23
+ split: train
24
+ args: default
25
+ metrics:
26
+ - name: Precision
27
+ type: precision
28
+ value: 0.5931758530183727
29
+ - name: Recall
30
+ type: recall
31
+ value: 0.7371167645140247
32
+ - name: F1
33
+ type: f1
34
+ value: 0.6573589296102385
35
+ - name: Accuracy
36
+ type: accuracy
37
+ value: 0.896675559203776
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
42
 
43
  # model
44
 
45
+ This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the generator dataset.
46
  It achieves the following results on the evaluation set:
47
+ - Loss: 0.5350
48
+ - Precision: 0.5932
49
+ - Recall: 0.7371
50
+ - F1: 0.6574
51
+ - Accuracy: 0.8967
 
 
 
 
 
52
 
53
  ## Model description
54
 
 
68
 
69
  The following hyperparameters were used during training:
70
  - learning_rate: 1e-05
71
+ - train_batch_size: 8
72
+ - eval_batch_size: 8
73
  - seed: 42
74
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
  - lr_scheduler_type: linear
76
  - training_steps: 1000
77
 
78
+ ### Training results
79
+
80
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | No log | 0.47 | 466 | 0.5513 | 0.5389 | 0.7358 | 0.6222 | 0.8787 |
83
+ | 0.4041 | 1.47 | 932 | 0.5179 | 0.5398 | 0.7613 | 0.6317 | 0.8797 |
84
+ | 0.3968 | 2.07 | 1000 | 0.5350 | 0.5932 | 0.7371 | 0.6574 | 0.8967 |
85
+
86
+
87
  ### Framework versions
88
 
89
  - Transformers 4.33.2
90
+ - Pytorch 2.0.1+cu118
91
  - Datasets 2.14.5
92
  - Tokenizers 0.13.3