model update
Browse files- README.md +23 -23
- config.json +1 -1
- eval/metric.json +1 -1
- eval/metric_span.json +1 -1
- eval/prediction.validation.json +0 -0
- pytorch_model.bin +2 -2
- tokenizer_config.json +1 -1
README.md
CHANGED
@@ -18,31 +18,31 @@ model-index:
|
|
18 |
metrics:
|
19 |
- name: F1
|
20 |
type: f1
|
21 |
-
value: 0.
|
22 |
- name: Precision
|
23 |
type: precision
|
24 |
-
value: 0.
|
25 |
- name: Recall
|
26 |
type: recall
|
27 |
-
value: 0.
|
28 |
- name: F1 (macro)
|
29 |
type: f1_macro
|
30 |
-
value: 0.
|
31 |
- name: Precision (macro)
|
32 |
type: precision_macro
|
33 |
-
value: 0.
|
34 |
- name: Recall (macro)
|
35 |
type: recall_macro
|
36 |
-
value: 0.
|
37 |
- name: F1 (entity span)
|
38 |
type: f1_entity_span
|
39 |
-
value: 0.
|
40 |
- name: Precision (entity span)
|
41 |
type: precision_entity_span
|
42 |
-
value: 0.
|
43 |
- name: Recall (entity span)
|
44 |
type: recall_entity_span
|
45 |
-
value: 0.
|
46 |
|
47 |
pipeline_tag: token-classification
|
48 |
widget:
|
@@ -55,26 +55,26 @@ This model is a fine-tuned version of [roberta-large](https://huggingface.co/rob
|
|
55 |
[tner/fin](https://huggingface.co/datasets/tner/fin) dataset.
|
56 |
Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository
|
57 |
for more detail). It achieves the following results on the test set:
|
58 |
-
- F1 (micro): 0.
|
59 |
-
- Precision (micro): 0.
|
60 |
-
- Recall (micro): 0.
|
61 |
-
- F1 (macro): 0.
|
62 |
-
- Precision (macro): 0.
|
63 |
-
- Recall (macro): 0.
|
64 |
|
65 |
The per-entity breakdown of the F1 score on the test set are below:
|
66 |
-
-
|
67 |
-
-
|
68 |
-
-
|
69 |
-
-
|
70 |
|
71 |
For F1 scores, the confidence interval is obtained by bootstrap as below:
|
72 |
- F1 (micro):
|
73 |
-
- 90%: [0.
|
74 |
-
- 95%: [0.
|
75 |
- F1 (macro):
|
76 |
-
- 90%: [0.
|
77 |
-
- 95%: [0.
|
78 |
|
79 |
Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/roberta-large-fin/raw/main/eval/metric.json)
|
80 |
and [metric file of entity span](https://huggingface.co/tner/roberta-large-fin/raw/main/eval/metric_span.json).
|
|
|
18 |
metrics:
|
19 |
- name: F1
|
20 |
type: f1
|
21 |
+
value: 0.6988727858293075
|
22 |
- name: Precision
|
23 |
type: precision
|
24 |
+
value: 0.7161716171617162
|
25 |
- name: Recall
|
26 |
type: recall
|
27 |
+
value: 0.6823899371069182
|
28 |
- name: F1 (macro)
|
29 |
type: f1_macro
|
30 |
+
value: 0.45636958249281745
|
31 |
- name: Precision (macro)
|
32 |
type: precision_macro
|
33 |
+
value: 0.4519134760270864
|
34 |
- name: Recall (macro)
|
35 |
type: recall_macro
|
36 |
+
value: 0.4705942205942206
|
37 |
- name: F1 (entity span)
|
38 |
type: f1_entity_span
|
39 |
+
value: 0.7087378640776698
|
40 |
- name: Precision (entity span)
|
41 |
type: precision_entity_span
|
42 |
+
value: 0.7227722772277227
|
43 |
- name: Recall (entity span)
|
44 |
type: recall_entity_span
|
45 |
+
value: 0.6952380952380952
|
46 |
|
47 |
pipeline_tag: token-classification
|
48 |
widget:
|
|
|
55 |
[tner/fin](https://huggingface.co/datasets/tner/fin) dataset.
|
56 |
Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository
|
57 |
for more detail). It achieves the following results on the test set:
|
58 |
+
- F1 (micro): 0.6988727858293075
|
59 |
+
- Precision (micro): 0.7161716171617162
|
60 |
+
- Recall (micro): 0.6823899371069182
|
61 |
+
- F1 (macro): 0.45636958249281745
|
62 |
+
- Precision (macro): 0.4519134760270864
|
63 |
+
- Recall (macro): 0.4705942205942206
|
64 |
|
65 |
The per-entity breakdown of the F1 score on the test set are below:
|
66 |
+
- location: 0.5121951219512196
|
67 |
+
- organization: 0.49624060150375937
|
68 |
+
- other: 0.0
|
69 |
+
- person: 0.8170426065162907
|
70 |
|
71 |
For F1 scores, the confidence interval is obtained by bootstrap as below:
|
72 |
- F1 (micro):
|
73 |
+
- 90%: [0.6355508274231678, 0.7613829748047737]
|
74 |
+
- 95%: [0.624150263185174, 0.7724430709173716]
|
75 |
- F1 (macro):
|
76 |
+
- 90%: [0.6355508274231678, 0.7613829748047737]
|
77 |
+
- 95%: [0.624150263185174, 0.7724430709173716]
|
78 |
|
79 |
Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/roberta-large-fin/raw/main/eval/metric.json)
|
80 |
and [metric file of entity span](https://huggingface.co/tner/roberta-large-fin/raw/main/eval/metric_span.json).
|
config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "tner_ckpt/fin_roberta_large/
|
3 |
"architectures": [
|
4 |
"RobertaForTokenClassification"
|
5 |
],
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "tner_ckpt/fin_roberta_large/model_rcsnba/epoch_5",
|
3 |
"architectures": [
|
4 |
"RobertaForTokenClassification"
|
5 |
],
|
eval/metric.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"micro/f1": 0.
|
|
|
1 |
+
{"micro/f1": 0.6988727858293075, "micro/f1_ci": {"90": [0.6355508274231678, 0.7613829748047737], "95": [0.624150263185174, 0.7724430709173716]}, "micro/recall": 0.6823899371069182, "micro/precision": 0.7161716171617162, "macro/f1": 0.45636958249281745, "macro/f1_ci": {"90": [0.41305101617635914, 0.5074221171791465], "95": [0.4040123551318039, 0.5160178907804478]}, "macro/recall": 0.4705942205942206, "macro/precision": 0.4519134760270864, "per_entity_metric": {"location": {"f1": 0.5121951219512196, "f1_ci": {"90": [0.3933107216883362, 0.6522182786157941], "95": [0.36663461538461534, 0.6849957191780824]}, "precision": 0.4883720930232558, "recall": 0.5384615384615384}, "organization": {"f1": 0.49624060150375937, "f1_ci": {"90": [0.38706011730205275, 0.6047002947920078], "95": [0.3694267515923566, 0.6220274390243905]}, "precision": 0.42857142857142855, "recall": 0.5892857142857143}, "other": {"f1": 0.0, "f1_ci": {"90": [NaN, NaN], "95": [NaN, NaN]}, "precision": 0.0, "recall": 0.0}, "person": {"f1": 0.8170426065162907, "f1_ci": {"90": [0.7555181623931624, 0.8732394366197184], "95": [0.7435141509433961, 0.8834370718923105]}, "precision": 0.8907103825136612, "recall": 0.7546296296296297}}}
|
eval/metric_span.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"micro/f1": 0.
|
|
|
1 |
+
{"micro/f1": 0.7087378640776698, "micro/f1_ci": {"90": [0.6446955883397667, 0.7724148983200707], "95": [0.6329228885677585, 0.782443539886519]}, "micro/recall": 0.6952380952380952, "micro/precision": 0.7227722772277227, "macro/f1": 0.7087378640776698, "macro/f1_ci": {"90": [0.6446955883397667, 0.7724148983200707], "95": [0.6329228885677585, 0.782443539886519]}, "macro/recall": 0.6952380952380952, "macro/precision": 0.7227722772277227}
|
eval/prediction.validation.json
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:38a49e6a47f4e1b56c57c12d907d7a710d67b179331f0490b6e6a0ec6b31d83e
|
3 |
+
size 1417414001
|
tokenizer_config.json
CHANGED
@@ -6,7 +6,7 @@
|
|
6 |
"errors": "replace",
|
7 |
"mask_token": "<mask>",
|
8 |
"model_max_length": 512,
|
9 |
-
"name_or_path": "tner_ckpt/fin_roberta_large/
|
10 |
"pad_token": "<pad>",
|
11 |
"sep_token": "</s>",
|
12 |
"special_tokens_map_file": "tner_ckpt/fin_roberta_large/model_rcsnba/epoch_5/special_tokens_map.json",
|
|
|
6 |
"errors": "replace",
|
7 |
"mask_token": "<mask>",
|
8 |
"model_max_length": 512,
|
9 |
+
"name_or_path": "tner_ckpt/fin_roberta_large/model_rcsnba/epoch_5",
|
10 |
"pad_token": "<pad>",
|
11 |
"sep_token": "</s>",
|
12 |
"special_tokens_map_file": "tner_ckpt/fin_roberta_large/model_rcsnba/epoch_5/special_tokens_map.json",
|