asahi417 commited on
Commit
5cc0c18
·
1 Parent(s): 7bf0cd2

model update

Browse files
README.md CHANGED
@@ -18,31 +18,31 @@ model-index:
18
  metrics:
19
  - name: F1
20
  type: f1
21
- value: 0.6655896607431341
22
  - name: Precision
23
  type: precision
24
- value: 0.6843853820598007
25
  - name: Recall
26
  type: recall
27
- value: 0.6477987421383647
28
  - name: F1 (macro)
29
  type: f1_macro
30
- value: 0.41006873243715347
31
  - name: Precision (macro)
32
  type: precision_macro
33
- value: 0.41205729487653564
34
  - name: Recall (macro)
35
  type: recall_macro
36
- value: 0.41564916564916565
37
  - name: F1 (entity span)
38
  type: f1_entity_span
39
- value: 0.6883116883116883
40
  - name: Precision (entity span)
41
  type: precision_entity_span
42
- value: 0.7043189368770764
43
  - name: Recall (entity span)
44
  type: recall_entity_span
45
- value: 0.6730158730158731
46
 
47
  pipeline_tag: token-classification
48
  widget:
@@ -55,26 +55,26 @@ This model is a fine-tuned version of [roberta-large](https://huggingface.co/rob
55
  [tner/fin](https://huggingface.co/datasets/tner/fin) dataset.
56
  Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository
57
  for more detail). It achieves the following results on the test set:
58
- - F1 (micro): 0.6655896607431341
59
- - Precision (micro): 0.6843853820598007
60
- - Recall (micro): 0.6477987421383647
61
- - F1 (macro): 0.41006873243715347
62
- - Precision (macro): 0.41205729487653564
63
- - Recall (macro): 0.41564916564916565
64
 
65
  The per-entity breakdown of the F1 score on the test set are below:
66
- - LOC: nan
67
- - MISC: nan
68
- - ORG: nan
69
- - PER: nan
70
 
71
  For F1 scores, the confidence interval is obtained by bootstrap as below:
72
  - F1 (micro):
73
- - 90%: [0.5896118118382531, 0.7350473550473551]
74
- - 95%: [0.5793739107766132, 0.7500251004016066]
75
  - F1 (macro):
76
- - 90%: [0.5896118118382531, 0.7350473550473551]
77
- - 95%: [0.5793739107766132, 0.7500251004016066]
78
 
79
  Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/roberta-large-fin/raw/main/eval/metric.json)
80
  and [metric file of entity span](https://huggingface.co/tner/roberta-large-fin/raw/main/eval/metric_span.json).
 
18
  metrics:
19
  - name: F1
20
  type: f1
21
+ value: 0.6988727858293075
22
  - name: Precision
23
  type: precision
24
+ value: 0.7161716171617162
25
  - name: Recall
26
  type: recall
27
+ value: 0.6823899371069182
28
  - name: F1 (macro)
29
  type: f1_macro
30
+ value: 0.45636958249281745
31
  - name: Precision (macro)
32
  type: precision_macro
33
+ value: 0.4519134760270864
34
  - name: Recall (macro)
35
  type: recall_macro
36
+ value: 0.4705942205942206
37
  - name: F1 (entity span)
38
  type: f1_entity_span
39
+ value: 0.7087378640776698
40
  - name: Precision (entity span)
41
  type: precision_entity_span
42
+ value: 0.7227722772277227
43
  - name: Recall (entity span)
44
  type: recall_entity_span
45
+ value: 0.6952380952380952
46
 
47
  pipeline_tag: token-classification
48
  widget:
 
55
  [tner/fin](https://huggingface.co/datasets/tner/fin) dataset.
56
  Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository
57
  for more detail). It achieves the following results on the test set:
58
+ - F1 (micro): 0.6988727858293075
59
+ - Precision (micro): 0.7161716171617162
60
+ - Recall (micro): 0.6823899371069182
61
+ - F1 (macro): 0.45636958249281745
62
+ - Precision (macro): 0.4519134760270864
63
+ - Recall (macro): 0.4705942205942206
64
 
65
  The per-entity breakdown of the F1 score on the test set are below:
66
+ - location: 0.5121951219512196
67
+ - organization: 0.49624060150375937
68
+ - other: 0.0
69
+ - person: 0.8170426065162907
70
 
71
  For F1 scores, the confidence interval is obtained by bootstrap as below:
72
  - F1 (micro):
73
+ - 90%: [0.6355508274231678, 0.7613829748047737]
74
+ - 95%: [0.624150263185174, 0.7724430709173716]
75
  - F1 (macro):
76
+ - 90%: [0.6355508274231678, 0.7613829748047737]
77
+ - 95%: [0.624150263185174, 0.7724430709173716]
78
 
79
  Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/roberta-large-fin/raw/main/eval/metric.json)
80
  and [metric file of entity span](https://huggingface.co/tner/roberta-large-fin/raw/main/eval/metric_span.json).
config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "tner_ckpt/fin_roberta_large/best_model",
3
  "architectures": [
4
  "RobertaForTokenClassification"
5
  ],
 
1
  {
2
+ "_name_or_path": "tner_ckpt/fin_roberta_large/model_rcsnba/epoch_5",
3
  "architectures": [
4
  "RobertaForTokenClassification"
5
  ],
eval/metric.json CHANGED
@@ -1 +1 @@
1
- {"micro/f1": 0.6655896607431341, "micro/f1_ci": {"90": [0.5896118118382531, 0.7350473550473551], "95": [0.5793739107766132, 0.7500251004016066]}, "micro/recall": 0.6477987421383647, "micro/precision": 0.6843853820598007, "macro/f1": 0.41006873243715347, "macro/f1_ci": {"90": [0.3622851809142188, 0.47011199188849295], "95": [0.3559337045826972, 0.48143136272532056]}, "macro/recall": 0.41564916564916565, "macro/precision": 0.41205729487653564, "per_entity_metric": {"LOC": {"f1": NaN, "f1_ci": {"90": [NaN, NaN], "95": [NaN, NaN]}, "precision": 0.0, "recall": 0.0}, "MISC": {"f1": NaN, "f1_ci": {"90": [NaN, NaN], "95": [NaN, NaN]}, "precision": 0.0, "recall": 0.0}, "ORG": {"f1": NaN, "f1_ci": {"90": [NaN, NaN], "95": [NaN, NaN]}, "precision": 0.0, "recall": 0.0}, "PER": {"f1": NaN, "f1_ci": {"90": [NaN, NaN], "95": [NaN, NaN]}, "precision": 0.0, "recall": 0.0}}}
 
1
+ {"micro/f1": 0.6988727858293075, "micro/f1_ci": {"90": [0.6355508274231678, 0.7613829748047737], "95": [0.624150263185174, 0.7724430709173716]}, "micro/recall": 0.6823899371069182, "micro/precision": 0.7161716171617162, "macro/f1": 0.45636958249281745, "macro/f1_ci": {"90": [0.41305101617635914, 0.5074221171791465], "95": [0.4040123551318039, 0.5160178907804478]}, "macro/recall": 0.4705942205942206, "macro/precision": 0.4519134760270864, "per_entity_metric": {"location": {"f1": 0.5121951219512196, "f1_ci": {"90": [0.3933107216883362, 0.6522182786157941], "95": [0.36663461538461534, 0.6849957191780824]}, "precision": 0.4883720930232558, "recall": 0.5384615384615384}, "organization": {"f1": 0.49624060150375937, "f1_ci": {"90": [0.38706011730205275, 0.6047002947920078], "95": [0.3694267515923566, 0.6220274390243905]}, "precision": 0.42857142857142855, "recall": 0.5892857142857143}, "other": {"f1": 0.0, "f1_ci": {"90": [NaN, NaN], "95": [NaN, NaN]}, "precision": 0.0, "recall": 0.0}, "person": {"f1": 0.8170426065162907, "f1_ci": {"90": [0.7555181623931624, 0.8732394366197184], "95": [0.7435141509433961, 0.8834370718923105]}, "precision": 0.8907103825136612, "recall": 0.7546296296296297}}}
eval/metric_span.json CHANGED
@@ -1 +1 @@
1
- {"micro/f1": 0.6883116883116883, "micro/f1_ci": {"90": [0.6137984272716044, 0.757765305655086], "95": [0.604156373368873, 0.7718631178707224]}, "micro/recall": 0.6730158730158731, "micro/precision": 0.7043189368770764, "macro/f1": 0.6883116883116883, "macro/f1_ci": {"90": [0.6137984272716044, 0.757765305655086], "95": [0.604156373368873, 0.7718631178707224]}, "macro/recall": 0.6730158730158731, "macro/precision": 0.7043189368770764}
 
1
+ {"micro/f1": 0.7087378640776698, "micro/f1_ci": {"90": [0.6446955883397667, 0.7724148983200707], "95": [0.6329228885677585, 0.782443539886519]}, "micro/recall": 0.6952380952380952, "micro/precision": 0.7227722772277227, "macro/f1": 0.7087378640776698, "macro/f1_ci": {"90": [0.6446955883397667, 0.7724148983200707], "95": [0.6329228885677585, 0.782443539886519]}, "macro/recall": 0.6952380952380952, "macro/precision": 0.7227722772277227}
eval/prediction.validation.json CHANGED
The diff for this file is too large to render. See raw diff
 
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:79c62875ca79122bbf02bfb9383a23c97f89fe594505b5e909184cdfb708f2eb
3
- size 1417408561
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:38a49e6a47f4e1b56c57c12d907d7a710d67b179331f0490b6e6a0ec6b31d83e
3
+ size 1417414001
tokenizer_config.json CHANGED
@@ -6,7 +6,7 @@
6
  "errors": "replace",
7
  "mask_token": "<mask>",
8
  "model_max_length": 512,
9
- "name_or_path": "tner_ckpt/fin_roberta_large/best_model",
10
  "pad_token": "<pad>",
11
  "sep_token": "</s>",
12
  "special_tokens_map_file": "tner_ckpt/fin_roberta_large/model_rcsnba/epoch_5/special_tokens_map.json",
 
6
  "errors": "replace",
7
  "mask_token": "<mask>",
8
  "model_max_length": 512,
9
+ "name_or_path": "tner_ckpt/fin_roberta_large/model_rcsnba/epoch_5",
10
  "pad_token": "<pad>",
11
  "sep_token": "</s>",
12
  "special_tokens_map_file": "tner_ckpt/fin_roberta_large/model_rcsnba/epoch_5/special_tokens_map.json",