File size: 2,076 Bytes
61cb626
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
language:
- en
license: mit
base_model: xlm-roberta-large
tags:
- generated_from_trainer
datasets:
- tmnam20/VieGLUE
metrics:
- accuracy
- f1
model-index:
- name: xlm-roberta-large-qqp-10
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: tmnam20/VieGLUE/QQP
      type: tmnam20/VieGLUE
      config: qqp
      split: validation
      args: qqp
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9010140984417512
    - name: F1
      type: f1
      value: 0.8682165437302425
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# xlm-roberta-large-qqp-10

This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on the tmnam20/VieGLUE/QQP dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2671
- Accuracy: 0.9010
- F1: 0.8682
- Combined Score: 0.8846

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 10
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy | F1     | Combined Score |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:|
| 0.2894        | 0.88  | 10000 | 0.2821          | 0.8794   | 0.8402 | 0.8598         |
| 0.2352        | 1.76  | 20000 | 0.2630          | 0.8931   | 0.8566 | 0.8748         |
| 0.1732        | 2.64  | 30000 | 0.2666          | 0.8995   | 0.8656 | 0.8826         |


### Framework versions

- Transformers 4.36.0
- Pytorch 2.1.0+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0