tlttl commited on
Commit
1ca6f0f
·
1 Parent(s): 78348fb

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +77 -0
README.md ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ model-index:
8
+ - name: tluo_xml_roberta_base_amazon_review_sentiment_v4
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # tluo_xml_roberta_base_amazon_review_sentiment_v4
16
+
17
+ This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.9589
20
+ - Accuracy: 0.6137
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 1.5745609276104923e-05
40
+ - train_batch_size: 4
41
+ - eval_batch_size: 4
42
+ - seed: 25
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_type: linear
45
+ - num_epochs: 3
46
+ - mixed_precision_training: Native AMP
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
51
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|
52
+ | 1.1074 | 0.17 | 5000 | 1.0468 | 0.5493 |
53
+ | 1.0461 | 0.33 | 10000 | 1.0222 | 0.558 |
54
+ | 1.0245 | 0.5 | 15000 | 0.9776 | 0.5793 |
55
+ | 0.9876 | 0.67 | 20000 | 1.0327 | 0.571 |
56
+ | 1.0073 | 0.83 | 25000 | 0.9695 | 0.5807 |
57
+ | 0.9808 | 1.0 | 30000 | 1.0077 | 0.5857 |
58
+ | 0.9399 | 1.17 | 35000 | 1.0113 | 0.6043 |
59
+ | 0.8944 | 1.33 | 40000 | 0.9534 | 0.5947 |
60
+ | 0.908 | 1.5 | 45000 | 1.0155 | 0.5947 |
61
+ | 0.9238 | 1.67 | 50000 | 0.9813 | 0.597 |
62
+ | 0.8699 | 1.83 | 55000 | 0.9646 | 0.6027 |
63
+ | 0.8829 | 2.0 | 60000 | 0.9589 | 0.6137 |
64
+ | 0.8214 | 2.17 | 65000 | 1.0378 | 0.6017 |
65
+ | 0.8052 | 2.33 | 70000 | 1.0080 | 0.6003 |
66
+ | 0.7807 | 2.5 | 75000 | 1.0830 | 0.604 |
67
+ | 0.7927 | 2.67 | 80000 | 1.0225 | 0.6007 |
68
+ | 0.8358 | 2.83 | 85000 | 0.9989 | 0.5997 |
69
+ | 0.7899 | 3.0 | 90000 | 1.0108 | 0.6023 |
70
+
71
+
72
+ ### Framework versions
73
+
74
+ - Transformers 4.24.0
75
+ - Pytorch 1.12.1+cu113
76
+ - Datasets 2.7.1
77
+ - Tokenizers 0.13.2