--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: test-results-concat results: [] --- # test-results-concat This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9408 - Accuracy: 0.6012 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 123 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.0408 | 0.33 | 5000 | 0.9773 | 0.5697 | | 0.9442 | 0.67 | 10000 | 0.9701 | 0.5853 | | 0.9579 | 1.0 | 15000 | 0.9502 | 0.5895 | | 0.8867 | 1.33 | 20000 | 0.9467 | 0.5897 | | 0.8819 | 1.67 | 25000 | 0.9371 | 0.5893 | | 0.8748 | 2.0 | 30000 | 0.9408 | 0.6012 | | 0.7759 | 2.33 | 35000 | 0.9734 | 0.5968 | | 0.7599 | 2.67 | 40000 | 0.9722 | 0.5948 | | 0.7626 | 3.0 | 45000 | 0.9654 | 0.5975 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1