tlttl commited on
Commit
950d2a8
·
1 Parent(s): b42bfb9

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +68 -0
README.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ model-index:
8
+ - name: test-results-concat
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # test-results-concat
16
+
17
+ This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.9408
20
+ - Accuracy: 0.6012
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 2e-05
40
+ - train_batch_size: 8
41
+ - eval_batch_size: 8
42
+ - seed: 123
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_type: linear
45
+ - num_epochs: 3
46
+ - mixed_precision_training: Native AMP
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
51
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|
52
+ | 1.0408 | 0.33 | 5000 | 0.9773 | 0.5697 |
53
+ | 0.9442 | 0.67 | 10000 | 0.9701 | 0.5853 |
54
+ | 0.9579 | 1.0 | 15000 | 0.9502 | 0.5895 |
55
+ | 0.8867 | 1.33 | 20000 | 0.9467 | 0.5897 |
56
+ | 0.8819 | 1.67 | 25000 | 0.9371 | 0.5893 |
57
+ | 0.8748 | 2.0 | 30000 | 0.9408 | 0.6012 |
58
+ | 0.7759 | 2.33 | 35000 | 0.9734 | 0.5968 |
59
+ | 0.7599 | 2.67 | 40000 | 0.9722 | 0.5948 |
60
+ | 0.7626 | 3.0 | 45000 | 0.9654 | 0.5975 |
61
+
62
+
63
+ ### Framework versions
64
+
65
+ - Transformers 4.23.1
66
+ - Pytorch 1.12.1+cu113
67
+ - Datasets 2.6.1
68
+ - Tokenizers 0.13.1