tinybee commited on
Commit
fffaf5d
·
1 Parent(s): 10fb10d

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +86 -0
README.md ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ model-index:
6
+ - name: gopdataset_base_fadam
7
+ results: []
8
+ ---
9
+
10
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
+ should probably proofread and complete it, then remove this comment. -->
12
+
13
+ # gopdataset_base_fadam
14
+
15
+ This model is a fine-tuned version of [facebook/wav2vec2-base-960h](https://huggingface.co/facebook/wav2vec2-base-960h) on the None dataset.
16
+ It achieves the following results on the evaluation set:
17
+ - Loss: 0.1001
18
+ - Wer: 0.1662
19
+
20
+ ## Model description
21
+
22
+ More information needed
23
+
24
+ ## Intended uses & limitations
25
+
26
+ More information needed
27
+
28
+ ## Training and evaluation data
29
+
30
+ More information needed
31
+
32
+ ## Training procedure
33
+
34
+ ### Training hyperparameters
35
+
36
+ The following hyperparameters were used during training:
37
+ - learning_rate: 0.0001
38
+ - train_batch_size: 8
39
+ - eval_batch_size: 8
40
+ - seed: 42
41
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
42
+ - lr_scheduler_type: linear
43
+ - lr_scheduler_warmup_steps: 1000
44
+ - num_epochs: 30
45
+ - mixed_precision_training: Native AMP
46
+
47
+ ### Training results
48
+
49
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
50
+ |:-------------:|:-----:|:-----:|:---------------:|:------:|
51
+ | 4.9033 | 1.05 | 500 | 3.0006 | 1.0 |
52
+ | 2.1655 | 2.11 | 1000 | 0.3024 | 0.3575 |
53
+ | 0.582 | 3.16 | 1500 | 0.2045 | 0.2566 |
54
+ | 0.3618 | 4.21 | 2000 | 0.1377 | 0.2188 |
55
+ | 0.3297 | 5.26 | 2500 | 0.1551 | 0.2232 |
56
+ | 0.2847 | 6.32 | 3000 | 0.1742 | 0.2486 |
57
+ | 0.2488 | 7.37 | 3500 | 0.2328 | 0.2036 |
58
+ | 0.1996 | 8.42 | 4000 | 0.1379 | 0.2079 |
59
+ | 0.2165 | 9.47 | 4500 | 0.1183 | 0.1924 |
60
+ | 0.189 | 10.53 | 5000 | 0.1295 | 0.1956 |
61
+ | 0.1817 | 11.58 | 5500 | 0.1198 | 0.1888 |
62
+ | 0.1682 | 12.63 | 6000 | 0.1270 | 0.1887 |
63
+ | 0.1246 | 13.68 | 6500 | 0.1211 | 0.1867 |
64
+ | 0.1442 | 14.74 | 7000 | 0.1301 | 0.1805 |
65
+ | 0.1732 | 15.79 | 7500 | 0.1107 | 0.1801 |
66
+ | 0.1142 | 16.84 | 8000 | 0.1096 | 0.1848 |
67
+ | 0.1485 | 17.89 | 8500 | 0.1075 | 0.1790 |
68
+ | 0.1037 | 18.95 | 9000 | 0.1109 | 0.1778 |
69
+ | 0.1155 | 20.0 | 9500 | 0.1120 | 0.1736 |
70
+ | 0.1162 | 21.05 | 10000 | 0.1053 | 0.1740 |
71
+ | 0.0874 | 22.11 | 10500 | 0.1157 | 0.1739 |
72
+ | 0.0797 | 23.16 | 11000 | 0.1128 | 0.1735 |
73
+ | 0.0726 | 24.21 | 11500 | 0.1089 | 0.1745 |
74
+ | 0.0691 | 25.26 | 12000 | 0.1084 | 0.1696 |
75
+ | 0.0677 | 26.32 | 12500 | 0.1059 | 0.1696 |
76
+ | 0.0582 | 27.37 | 13000 | 0.1065 | 0.1696 |
77
+ | 0.0669 | 28.42 | 13500 | 0.1001 | 0.1701 |
78
+ | 0.0956 | 29.47 | 14000 | 0.1017 | 0.1687 |
79
+
80
+
81
+ ### Framework versions
82
+
83
+ - Transformers 4.17.0
84
+ - Pytorch 2.5.1+cu121
85
+ - Datasets 1.18.3
86
+ - Tokenizers 0.20.3