timm
/

Image Feature Extraction
timm
PyTorch
Safetensors
Transformers
rwightman HF Staff commited on
Commit
1dfc8fc
·
verified ·
1 Parent(s): a99997a
Files changed (4) hide show
  1. README.md +156 -0
  2. config.json +33 -0
  3. model.safetensors +3 -0
  4. pytorch_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,156 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - image-classification
4
+ - timm
5
+ - transformers
6
+ library_name: timm
7
+ license: apache-2.0
8
+ datasets:
9
+ - imagenet-22k
10
+ - text_documents-160gb
11
+ - laion-400m
12
+ - coyo-700m
13
+ - cc15m
14
+ ---
15
+ # Model card for beit3_base_patch16_224.pt
16
+
17
+ A BEiT-3 image classification model. Multimodal model pretrained on ImageNet-22k images, 160GB text documents, and web-scale image-text pairs with masked data modeling. Converted for vision-only classification tasks.
18
+
19
+
20
+ ## Model Details
21
+ - **Model Type:** Image classification / feature backbone
22
+ - **Model Stats:**
23
+ - Params (M): 85.9
24
+ - GMACs: 17.6
25
+ - Activations (M): 23.9
26
+ - Image size: 224 x 224
27
+ - **Papers:**
28
+ - BEiT-3: Image as a Foreign Language: BEiT Pretraining for Vision and Vision-Language Tasks: https://arxiv.org/abs/2208.10442
29
+ - An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale: https://arxiv.org/abs/2010.11929v2
30
+ - **Dataset:**
31
+ - ImageNet-22k
32
+ - Text_documents-160GB
33
+ - LAION-400M
34
+ - COYO-700M
35
+ - CC15M
36
+ - **Original:** https://github.com/microsoft/unilm/tree/master/beit3
37
+
38
+ ## Model Usage
39
+ ### Image Classification
40
+ ```python
41
+ from urllib.request import urlopen
42
+ from PIL import Image
43
+ import timm
44
+
45
+ img = Image.open(urlopen(
46
+ 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
47
+ ))
48
+
49
+ model = timm.create_model('beit3_base_patch16_224.pt', pretrained=True)
50
+ model = model.eval()
51
+
52
+ # get model specific transforms (normalization, resize)
53
+ data_config = timm.data.resolve_model_data_config(model)
54
+ transforms = timm.data.create_transform(**data_config, is_training=False)
55
+
56
+ output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
57
+
58
+ top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
59
+ ```
60
+
61
+ ### Feature Map Extraction
62
+ ```python
63
+ from urllib.request import urlopen
64
+ from PIL import Image
65
+ import timm
66
+
67
+ img = Image.open(urlopen(
68
+ 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
69
+ ))
70
+
71
+ model = timm.create_model(
72
+ 'beit3_base_patch16_224.pt',
73
+ pretrained=True,
74
+ features_only=True,
75
+ )
76
+ model = model.eval()
77
+
78
+ # get model specific transforms (normalization, resize)
79
+ data_config = timm.data.resolve_model_data_config(model)
80
+ transforms = timm.data.create_transform(**data_config, is_training=False)
81
+
82
+ output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
83
+
84
+ for o in output:
85
+ # print shape of each feature map in output
86
+ # e.g.:
87
+ # torch.Size([1, 768, 14, 14])
88
+ # torch.Size([1, 768, 14, 14])
89
+ # torch.Size([1, 768, 14, 14])
90
+
91
+ print(o.shape)
92
+ ```
93
+
94
+ ### Image Embeddings
95
+ ```python
96
+ from urllib.request import urlopen
97
+ from PIL import Image
98
+ import timm
99
+
100
+ img = Image.open(urlopen(
101
+ 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
102
+ ))
103
+
104
+ model = timm.create_model(
105
+ 'beit3_base_patch16_224.pt',
106
+ pretrained=True,
107
+ num_classes=0, # remove classifier nn.Linear
108
+ )
109
+ model = model.eval()
110
+
111
+ # get model specific transforms (normalization, resize)
112
+ data_config = timm.data.resolve_model_data_config(model)
113
+ transforms = timm.data.create_transform(**data_config, is_training=False)
114
+
115
+ output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
116
+
117
+ # or equivalently (without needing to set num_classes=0)
118
+
119
+ output = model.forward_features(transforms(img).unsqueeze(0))
120
+ # output is unpooled, a (1, 197, 768) shaped tensor
121
+
122
+ output = model.forward_head(output, pre_logits=True)
123
+ # output is a (1, num_features) shaped tensor
124
+ ```
125
+
126
+ ## Model Comparison
127
+ Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results).
128
+
129
+ ## Citation
130
+ ```bibtex
131
+ @article{wang2022beit3,
132
+ title={Image as a foreign language: Beit pretraining for vision and vision-language tasks},
133
+ author={Wang, Wenhui and Bao, Hangbo and Dong, Li and Bjorck, Johan and Peng, Zhiliang and Liu, Qiang and Aggarwal, Kriti and Mohammed, Owais Khan and Singhal, Saksham and Som, Subhojit and others},
134
+ journal={arXiv preprint arXiv:2208.10442},
135
+ year={2022}
136
+ }
137
+ ```
138
+ ```bibtex
139
+ @article{dosovitskiy2020vit,
140
+ title={An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale},
141
+ author={Dosovitskiy, Alexey and Beyer, Lucas and Kolesnikov, Alexander and Weissenborn, Dirk and Zhai, Xiaohua and Unterthiner, Thomas and Dehghani, Mostafa and Minderer, Matthias and Heigold, Georg and Gelly, Sylvain and Uszkoreit, Jakob and Houlsby, Neil},
142
+ journal={ICLR},
143
+ year={2021}
144
+ }
145
+ ```
146
+ ```bibtex
147
+ @misc{rw2019timm,
148
+ author = {Ross Wightman},
149
+ title = {PyTorch Image Models},
150
+ year = {2019},
151
+ publisher = {GitHub},
152
+ journal = {GitHub repository},
153
+ doi = {10.5281/zenodo.4414861},
154
+ howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
155
+ }
156
+ ```
config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architecture": "beit3_base_patch16_224",
3
+ "num_classes": 0,
4
+ "num_features": 768,
5
+ "global_pool": "avg",
6
+ "pretrained_cfg": {
7
+ "tag": "pt",
8
+ "custom_load": false,
9
+ "input_size": [
10
+ 3,
11
+ 224,
12
+ 224
13
+ ],
14
+ "fixed_input_size": true,
15
+ "interpolation": "bicubic",
16
+ "crop_pct": 1.0,
17
+ "crop_mode": "center",
18
+ "mean": [
19
+ 0.485,
20
+ 0.456,
21
+ 0.406
22
+ ],
23
+ "std": [
24
+ 0.229,
25
+ 0.224,
26
+ 0.225
27
+ ],
28
+ "num_classes": 0,
29
+ "pool_size": null,
30
+ "first_conv": "patch_embed.proj",
31
+ "classifier": "head"
32
+ }
33
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ff06b61d58210de08234f4744b781c4b68071647ec1207aba56f9f9f80c2a774
3
+ size 343581672
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:79b5034f9fc1a3f8a2859be36d1470874e299d700fd8e20c7d8a1695d29cac48
3
+ size 343634722