File size: 4,755 Bytes
ce6edad 62276d6 ce6edad 8dbb27c ce6edad db4eb5f ce6edad dedc27c ce6edad dc42c36 ce6edad dc42c36 ce6edad dedc27c ce6edad db4eb5f 8c5c63a ce6edad db4eb5f ce6edad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
---
library_name: transformers
language:
- ar
- cs
- de
- en
- es
- fr
- hi
- it
- ja
- ko
- nl
- pl
- pt
- ro
- ru
- sv
- ur
- zh
tags:
- falcon-h1
license: other
license_name: falcon-llm-license
license_link: https://falconllm.tii.ae/falcon-terms-and-conditions.html
---
<img src="https://huggingface.co/datasets/tiiuae/documentation-images/resolve/main/falcon_mamba/falcon-h1-logo.png" alt="drawing" width="800"/>
# Table of Contents
0. [TL;DR](#TL;DR)
1. [Model Details](#model-details)
2. [Training Details](#training-details)
3. [Usage](#usage)
4. [Evaluation](#evaluation)
5. [Citation](#citation)
# TL;DR
# Model Details
## Model Description
- **Developed by:** [https://www.tii.ae](https://www.tii.ae)
- **Model type:** Causal decoder-only
- **Architecture:** Hybrid Transformers + Mamba architecture
- **Language(s) (NLP):** English, Multilingual
- **License:** Falcon-LLM License
# Training details
For more details about the training protocol of this model, please refer to the [Falcon-H1 technical blogpost](https://falcon-lm.github.io/blog/falcon-h1/) and [Technical Report](https://arxiv.org/abs/2507.22448).
# Usage
Currently to use this model you can either rely on Hugging Face `transformers`, `vLLM` or `llama.cpp` library.
## Inference
Make sure to install the latest version of `transformers` or `vllm`, eventually install these packages from source:
```bash
pip install git+https://github.com/huggingface/transformers.git
```
For vLLM, make sure to install `vllm>=0.9.0`:
```bash
pip install "vllm>=0.9.0"
```
### 🤗 transformers
Refer to the snippet below to run H1 models using 🤗 transformers:
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "tiiuae/Falcon-H1-1B-Base"
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto"
)
# Perform text generation
```
### vLLM
For vLLM, simply start a server by executing the command below:
```
# pip install vllm>=0.9.0
vllm serve tiiuae/Falcon-H1-1B-Instruct --tensor-parallel-size 2 --data-parallel-size 1
```
### `llama.cpp`
You can find all GGUF files under [our official collection](https://huggingface.co/collections/tiiuae/falcon-h1-6819f2795bc406da60fab8df)
# Evaluation
Falcon-H1 series perform very well on a variety of tasks, including reasoning tasks.
| Tasks | Falcon-H1-34B | Qwen2.5-72B | Qwen2.5-32B | Gemma3-27B | Llama3.1-70B | Llama4-scout |
| --- | --- | --- | --- | --- | --- | --- |
| **General** | | | | | |
| BBH | **69.36** | 67.77 | 67.45 | 61.6 | 62.78 | 61.71 |
| MMLU | 83.46 | **85.96** | 83.18 | 78.32 | 78.49 | 77.98 |
| ARC-C | 71.25 | **72.44** | 70.48 | 70.31 | 69.2 | 62.97 |
| HellaSwag | 85.68 | 87.57 | 85.13 | 86.19 | **87.78** | 84.01 |
| Winogrande | 82.72 | 83.74 | 82.32 | 82.4 | **85.32** | 78.93 |
| **Math** | | | | | |
| GSM8k | 76.5 | 89.76 | **90.14** | 81.35 | 80.52 | 83.24 |
| MATH lvl5 | **40.71** | 38.14 | 36.4 | 25.38 | 18.81 | 27.19 |
| **Science** | | | | | |
| GPQA | **42.7** | 42.28 | 39.68 | 35.82 | 36.49 | 35.99 |
| MMLU-Pro | 57.18 | **60.22** | 58.05 | 49.64 | 47.07 | 50.16 |
| MMLU-stem | 83.82 | **84.81** | 82.81 | 76.59 | 70.35 | 72.57 |
| **Code** | | | | | |
| HumanEval | **70.12** | 59.15 | 59.76 | 48.78 | 57.32 | 57.32 |
| HumanEval+ | **64.63** | 51.22 | 51.83 | 40.85 | 50.61 | 48.78 |
| MBPP | 83.33 | **87.04** | 83.07 | 76.19 | 78.84 | 77.78 |
| MBPP+ | 70.37 | **70.63** | 68.78 | 61.64 | 66.67 | 64.29 |
You can check more in detail on our [our release blogpost](https://falcon-lm.github.io/blog/falcon-h1/), detailed benchmarks.
# Useful links
- View [our release blogpost](https://falcon-lm.github.io/blog/falcon-h1/).
- View [our technical report](https://arxiv.org/abs/2507.22448).
- Feel free to join [our discord server](https://discord.gg/trwMYP9PYm) if you have any questions or to interact with our researchers and developers.
# Citation
If the Falcon-H1 family of models were helpful to your work, feel free to give us a cite.
```
@article{falconh1,
title={Falcon-H1: A Family of Hybrid-Head Language Models Redefining Efficiency and Performance},
author={Jingwei Zuo and Maksim Velikanov and Ilyas Chahed and Younes Belkada and Dhia Eddine Rhayem and Guillaume Kunsch and Hakim Hacid and Hamza Yous and Brahim Farhat and Ibrahim Khadraoui and Mugariya Farooq and Giulia Campesan and Ruxandra Cojocaru and Yasser Djilali and Shi Hu and Iheb Chaabane and Puneesh Khanna and Mohamed El Amine Seddik and Ngoc Dung Huynh and Phuc Le Khac and Leen AlQadi and Billel Mokeddem and Mohamed Chami and Abdalgader Abubaker and Mikhail Lubinets and Kacper Piskorski and Slim Frikha},
journal = {arXiv preprint arXiv:2507.22448},
year={2025}
}
``` |