File size: 2,971 Bytes
fa88151
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
---
library_name: transformers
tags:
- generated_from_trainer
model-index:
- name: raw-xlstm
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# raw-xlstm

This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 7.0517

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 40.8489       | 0.32   | 100  | 7.6418          |
| 28.299        | 0.64   | 200  | 6.9708          |
| 26.2015       | 0.96   | 300  | 6.6436          |
| 24.2679       | 1.2784 | 400  | 6.4288          |
| 23.5321       | 1.5984 | 500  | 6.2644          |
| 22.9093       | 1.9184 | 600  | 6.1378          |
| 20.9784       | 2.2368 | 700  | 6.0831          |
| 20.5525       | 2.5568 | 800  | 6.0163          |
| 20.3495       | 2.8768 | 900  | 5.9544          |
| 18.685        | 3.1952 | 1000 | 5.9836          |
| 17.8091       | 3.5152 | 1100 | 5.9750          |
| 17.8559       | 3.8352 | 1200 | 5.9472          |
| 16.4337       | 4.1536 | 1300 | 6.0460          |
| 15.1001       | 4.4736 | 1400 | 6.0802          |
| 15.291        | 4.7936 | 1500 | 6.0832          |
| 14.2383       | 5.112  | 1600 | 6.2050          |
| 12.4653       | 5.432  | 1700 | 6.3012          |
| 12.6628       | 5.752  | 1800 | 6.3316          |
| 12.1045       | 6.0704 | 1900 | 6.4283          |
| 10.2247       | 6.3904 | 2000 | 6.5635          |
| 10.395        | 6.7104 | 2100 | 6.6127          |
| 10.1929       | 7.0288 | 2200 | 6.6716          |
| 8.5996        | 7.3488 | 2300 | 6.8063          |
| 8.6853        | 7.6688 | 2400 | 6.8550          |
| 8.7377        | 7.9888 | 2500 | 6.8878          |
| 7.5955        | 8.3072 | 2600 | 6.9726          |
| 7.6375        | 8.6272 | 2700 | 7.0046          |
| 7.6833        | 8.9472 | 2800 | 7.0211          |
| 7.2457        | 9.2656 | 2900 | 7.0432          |
| 7.2003        | 9.5856 | 3000 | 7.0503          |
| 7.2109        | 9.9056 | 3100 | 7.0517          |


### Framework versions

- Transformers 4.47.1
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0