--- library_name: transformers language: - zhc license: apache-2.0 base_model: openai/whisper-base tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Base zh-CN - fzuhyz results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: zhc split: test args: 'config: zhc, split: test' metrics: - name: Wer type: wer value: 85.85000000000001 --- # Whisper Base zh-CN - fzuhyz This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.5922 - Wer: 85.8500 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 1 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.6972 | 0.8 | 1000 | 0.6448 | 88.8 | | 0.5154 | 1.6 | 2000 | 0.6052 | 87.45 | | 0.4207 | 2.4 | 3000 | 0.5945 | 86.3 | | 0.353 | 3.2 | 4000 | 0.5935 | 85.45 | | 0.3437 | 4.0 | 5000 | 0.5922 | 85.8500 | ### Framework versions - Transformers 4.52.3 - Pytorch 2.6.0+cu118 - Datasets 2.16.0 - Tokenizers 0.21.1