--- license: apache-2.0 base_model: google/bert_uncased_L-2_H-128_A-2 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: kd-bertBase-bertTiny results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: sst2 split: validation args: sst2 metrics: - name: Accuracy type: accuracy value: 0.8268348623853211 --- # kd-bertBase-bertTiny This model is a fine-tuned version of [google/bert_uncased_L-2_H-128_A-2](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 1.0591 - Accuracy: 0.8268 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 33 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.4776 | 1.0 | 527 | 1.1240 | 0.8062 | | 0.8442 | 2.0 | 1054 | 1.0475 | 0.8165 | | 0.6568 | 3.0 | 1581 | 1.0529 | 0.8131 | | 0.5623 | 4.0 | 2108 | 1.0503 | 0.8188 | | 0.5066 | 5.0 | 2635 | 1.0471 | 0.8303 | | 0.4736 | 6.0 | 3162 | 1.0711 | 0.8280 | | 0.4603 | 7.0 | 3689 | 1.0591 | 0.8268 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3