File size: 2,060 Bytes
ab0ab12
 
 
 
 
 
 
341dd28
ab0ab12
 
 
b67f269
d60e221
ab0ab12
 
 
 
 
 
 
 
d60e221
 
 
6b306b2
 
 
d60e221
ab0ab12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
tags:
- merge
- mergekit
- lazymergekit
- nbeerbower/bophades-mistral-truthy-DPO-7B
- mlabonne/NeuralMonarch-7B
- unsloth
base_model:
- nbeerbower/bophades-mistral-truthy-DPO-7B
- mlabonne/NeuralMonarch-7B
license: apache-2.0
pipeline_tag: text-generation
---

# Boptruth-NeuralMonarch-7B

Boptruth-NeuralMonarch-7B is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [nbeerbower/bophades-mistral-truthy-DPO-7B](https://huggingface.co/nbeerbower/bophades-mistral-truthy-DPO-7B)
* [mlabonne/NeuralMonarch-7B](https://huggingface.co/mlabonne/NeuralMonarch-7B)

## 🚨 Use the alpaca prompt format
If you use standard ChatML, you may end up with <|im_end|> tokens at the end of responses. 

## 👀 Looking for GGUF?
Find quantized versions of this model [right here](https://huggingface.co/mradermacher/Boptruth-NeuralMonarch-7B-GGUF).


## 🧩 Configuration

```yaml
slices:
  - sources:
      - model: nbeerbower/bophades-mistral-truthy-DPO-7B
        layer_range: [0, 32]
      - model: mlabonne/NeuralMonarch-7B
        layer_range: [0, 32]
merge_method: slerp
base_model: nbeerbower/bophades-mistral-truthy-DPO-7B
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16
```

## 💻 Usage

```python
!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "theprint/Boptruth-NeuralMonarch-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```