File size: 6,738 Bytes
bc1286d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6e1f85
 
 
 
 
 
 
bc1286d
 
 
 
 
 
 
51681b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc1286d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
---
language:
- en
library_name: transformers
pipeline_tag: text-generation
datasets:
- jondurbin/airoboros-2.2
- Open-Orca/OpenOrca
- garage-bAInd/Open-Platypus
- WizardLM/WizardLM_evol_instruct_V2_196k
- TokenBender/python_eval_instruct_51k
tags:
- llama-2
- code
- TensorBlock
- GGUF
license: llama2
base_model: uukuguy/speechless-coding-7b-16k-tora
model-index:
- name: SpeechlessCoder
  results:
  - task:
      type: text-generation
    dataset:
      name: HumanEval
      type: openai_humaneval
    metrics:
    - type: pass@1
      value: 52.439
      name: pass@1
      verified: false
---

<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>

[![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co)
[![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi)
[![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2)
[![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock)
[![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock)


## uukuguy/speechless-coding-7b-16k-tora - GGUF

This repo contains GGUF format model files for [uukuguy/speechless-coding-7b-16k-tora](https://huggingface.co/uukuguy/speechless-coding-7b-16k-tora).

The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).

## Our projects
<table border="1" cellspacing="0" cellpadding="10">
<tr>
  <th style="font-size: 25px;">Awesome MCP Servers</th>
  <th style="font-size: 25px;">TensorBlock Studio</th>
</tr>
  <tr>
    <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th>
    <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th>
  </tr>
  <tr>
    <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th>
    <th>A lightweight, open, and extensible multi-LLM interaction studio.</th>
  </tr>
<tr>
  <th>
    <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style="
      display: inline-block;
      padding: 8px 16px;
      background-color: #FF7F50;
      color: white;
      text-decoration: none;
      border-radius: 6px;
      font-weight: bold;
      font-family: sans-serif;
    ">πŸ‘€ See what we built πŸ‘€</a>
  </th>
  <th>
    <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style="
      display: inline-block;
      padding: 8px 16px;
      background-color: #FF7F50;
      color: white;
      text-decoration: none;
      border-radius: 6px;
      font-weight: bold;
      font-family: sans-serif;
    ">πŸ‘€ See what we built πŸ‘€</a>
  </th>
</tr>
</table>
## Prompt template

```

```

## Model file specification

| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [speechless-coding-7b-16k-tora-Q2_K.gguf](https://huggingface.co/tensorblock/speechless-coding-7b-16k-tora-GGUF/blob/main/speechless-coding-7b-16k-tora-Q2_K.gguf) | Q2_K | 2.533 GB | smallest, significant quality loss - not recommended for most purposes |
| [speechless-coding-7b-16k-tora-Q3_K_S.gguf](https://huggingface.co/tensorblock/speechless-coding-7b-16k-tora-GGUF/blob/main/speechless-coding-7b-16k-tora-Q3_K_S.gguf) | Q3_K_S | 2.948 GB | very small, high quality loss |
| [speechless-coding-7b-16k-tora-Q3_K_M.gguf](https://huggingface.co/tensorblock/speechless-coding-7b-16k-tora-GGUF/blob/main/speechless-coding-7b-16k-tora-Q3_K_M.gguf) | Q3_K_M | 3.298 GB | very small, high quality loss |
| [speechless-coding-7b-16k-tora-Q3_K_L.gguf](https://huggingface.co/tensorblock/speechless-coding-7b-16k-tora-GGUF/blob/main/speechless-coding-7b-16k-tora-Q3_K_L.gguf) | Q3_K_L | 3.597 GB | small, substantial quality loss |
| [speechless-coding-7b-16k-tora-Q4_0.gguf](https://huggingface.co/tensorblock/speechless-coding-7b-16k-tora-GGUF/blob/main/speechless-coding-7b-16k-tora-Q4_0.gguf) | Q4_0 | 3.826 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [speechless-coding-7b-16k-tora-Q4_K_S.gguf](https://huggingface.co/tensorblock/speechless-coding-7b-16k-tora-GGUF/blob/main/speechless-coding-7b-16k-tora-Q4_K_S.gguf) | Q4_K_S | 3.857 GB | small, greater quality loss |
| [speechless-coding-7b-16k-tora-Q4_K_M.gguf](https://huggingface.co/tensorblock/speechless-coding-7b-16k-tora-GGUF/blob/main/speechless-coding-7b-16k-tora-Q4_K_M.gguf) | Q4_K_M | 4.081 GB | medium, balanced quality - recommended |
| [speechless-coding-7b-16k-tora-Q5_0.gguf](https://huggingface.co/tensorblock/speechless-coding-7b-16k-tora-GGUF/blob/main/speechless-coding-7b-16k-tora-Q5_0.gguf) | Q5_0 | 4.652 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [speechless-coding-7b-16k-tora-Q5_K_S.gguf](https://huggingface.co/tensorblock/speechless-coding-7b-16k-tora-GGUF/blob/main/speechless-coding-7b-16k-tora-Q5_K_S.gguf) | Q5_K_S | 4.652 GB | large, low quality loss - recommended |
| [speechless-coding-7b-16k-tora-Q5_K_M.gguf](https://huggingface.co/tensorblock/speechless-coding-7b-16k-tora-GGUF/blob/main/speechless-coding-7b-16k-tora-Q5_K_M.gguf) | Q5_K_M | 4.783 GB | large, very low quality loss - recommended |
| [speechless-coding-7b-16k-tora-Q6_K.gguf](https://huggingface.co/tensorblock/speechless-coding-7b-16k-tora-GGUF/blob/main/speechless-coding-7b-16k-tora-Q6_K.gguf) | Q6_K | 5.529 GB | very large, extremely low quality loss |
| [speechless-coding-7b-16k-tora-Q8_0.gguf](https://huggingface.co/tensorblock/speechless-coding-7b-16k-tora-GGUF/blob/main/speechless-coding-7b-16k-tora-Q8_0.gguf) | Q8_0 | 7.161 GB | very large, extremely low quality loss - not recommended |


## Downloading instruction

### Command line

Firstly, install Huggingface Client

```shell
pip install -U "huggingface_hub[cli]"
```

Then, downoad the individual model file the a local directory

```shell
huggingface-cli download tensorblock/speechless-coding-7b-16k-tora-GGUF --include "speechless-coding-7b-16k-tora-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```

If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:

```shell
huggingface-cli download tensorblock/speechless-coding-7b-16k-tora-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```