File size: 6,327 Bytes
37b1f2d
 
 
 
 
 
 
 
 
 
 
 
 
ed579e6
 
 
 
 
 
 
37b1f2d
 
 
 
 
 
 
90116d7
 
 
d8d9949
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90116d7
 
 
 
 
d8d9949
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90116d7
37b1f2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
---
license: apache-2.0
language:
- en
base_model: PygmalionAI/metharme-1.3b
tags:
- TensorBlock
- GGUF
---

<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>

[![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co)
[![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi)
[![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2)
[![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock)
[![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock)


## PygmalionAI/metharme-1.3b - GGUF

This repo contains GGUF format model files for [PygmalionAI/metharme-1.3b](https://huggingface.co/PygmalionAI/metharme-1.3b).

The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).

## Our projects
<table border="1" cellspacing="0" cellpadding="10">
  <tr>
    <th colspan="2" style="font-size: 25px;">Forge</th>
  </tr>
  <tr>
    <th colspan="2">
      <img src="https://imgur.com/faI5UKh.jpeg" alt="Forge Project" width="900"/>
    </th>
  </tr>
  <tr>
    <th colspan="2">An OpenAI-compatible multi-provider routing layer.</th>
  </tr>
  <tr>
    <th colspan="2">
      <a href="https://github.com/TensorBlock/forge" target="_blank" style="
        display: inline-block;
        padding: 8px 16px;
        background-color: #FF7F50;
        color: white;
        text-decoration: none;
        border-radius: 6px;
        font-weight: bold;
        font-family: sans-serif;
      ">πŸš€ Try it now! πŸš€</a>
    </th>
  </tr>

  <tr>
    <th style="font-size: 25px;">Awesome MCP Servers</th>
    <th style="font-size: 25px;">TensorBlock Studio</th>
  </tr>
  <tr>
    <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="MCP Servers" width="450"/></th>
    <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Studio" width="450"/></th>
  </tr>
  <tr>
    <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th>
    <th>A lightweight, open, and extensible multi-LLM interaction studio.</th>
  </tr>
  <tr>
    <th>
      <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style="
        display: inline-block;
        padding: 8px 16px;
        background-color: #FF7F50;
        color: white;
        text-decoration: none;
        border-radius: 6px;
        font-weight: bold;
        font-family: sans-serif;
      ">πŸ‘€ See what we built πŸ‘€</a>
    </th>
    <th>
      <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style="
        display: inline-block;
        padding: 8px 16px;
        background-color: #FF7F50;
        color: white;
        text-decoration: none;
        border-radius: 6px;
        font-weight: bold;
        font-family: sans-serif;
      ">πŸ‘€ See what we built πŸ‘€</a>
    </th>
  </tr>
</table>
## Prompt template

```

```

## Model file specification

| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [metharme-1.3b-Q2_K.gguf](https://huggingface.co/tensorblock/metharme-1.3b-GGUF/blob/main/metharme-1.3b-Q2_K.gguf) | Q2_K | 0.531 GB | smallest, significant quality loss - not recommended for most purposes |
| [metharme-1.3b-Q3_K_S.gguf](https://huggingface.co/tensorblock/metharme-1.3b-GGUF/blob/main/metharme-1.3b-Q3_K_S.gguf) | Q3_K_S | 0.607 GB | very small, high quality loss |
| [metharme-1.3b-Q3_K_M.gguf](https://huggingface.co/tensorblock/metharme-1.3b-GGUF/blob/main/metharme-1.3b-Q3_K_M.gguf) | Q3_K_M | 0.709 GB | very small, high quality loss |
| [metharme-1.3b-Q3_K_L.gguf](https://huggingface.co/tensorblock/metharme-1.3b-GGUF/blob/main/metharme-1.3b-Q3_K_L.gguf) | Q3_K_L | 0.766 GB | small, substantial quality loss |
| [metharme-1.3b-Q4_0.gguf](https://huggingface.co/tensorblock/metharme-1.3b-GGUF/blob/main/metharme-1.3b-Q4_0.gguf) | Q4_0 | 0.770 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [metharme-1.3b-Q4_K_S.gguf](https://huggingface.co/tensorblock/metharme-1.3b-GGUF/blob/main/metharme-1.3b-Q4_K_S.gguf) | Q4_K_S | 0.775 GB | small, greater quality loss |
| [metharme-1.3b-Q4_K_M.gguf](https://huggingface.co/tensorblock/metharme-1.3b-GGUF/blob/main/metharme-1.3b-Q4_K_M.gguf) | Q4_K_M | 0.853 GB | medium, balanced quality - recommended |
| [metharme-1.3b-Q5_0.gguf](https://huggingface.co/tensorblock/metharme-1.3b-GGUF/blob/main/metharme-1.3b-Q5_0.gguf) | Q5_0 | 0.922 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [metharme-1.3b-Q5_K_S.gguf](https://huggingface.co/tensorblock/metharme-1.3b-GGUF/blob/main/metharme-1.3b-Q5_K_S.gguf) | Q5_K_S | 0.922 GB | large, low quality loss - recommended |
| [metharme-1.3b-Q5_K_M.gguf](https://huggingface.co/tensorblock/metharme-1.3b-GGUF/blob/main/metharme-1.3b-Q5_K_M.gguf) | Q5_K_M | 0.984 GB | large, very low quality loss - recommended |
| [metharme-1.3b-Q6_K.gguf](https://huggingface.co/tensorblock/metharme-1.3b-GGUF/blob/main/metharme-1.3b-Q6_K.gguf) | Q6_K | 1.084 GB | very large, extremely low quality loss |
| [metharme-1.3b-Q8_0.gguf](https://huggingface.co/tensorblock/metharme-1.3b-GGUF/blob/main/metharme-1.3b-Q8_0.gguf) | Q8_0 | 1.403 GB | very large, extremely low quality loss - not recommended |


## Downloading instruction

### Command line

Firstly, install Huggingface Client

```shell
pip install -U "huggingface_hub[cli]"
```

Then, downoad the individual model file the a local directory

```shell
huggingface-cli download tensorblock/metharme-1.3b-GGUF --include "metharme-1.3b-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```

If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:

```shell
huggingface-cli download tensorblock/metharme-1.3b-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```