File size: 7,183 Bytes
ab71532 4c26f43 ab71532 d8cfc5c 3267dde d8cfc5c 3267dde d8cfc5c ab71532 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
---
base_model: The-matt/llama2_ko-7b_stilted-lion-205_1530
tags:
- TensorBlock
- GGUF
---
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
[](https://tensorblock.co)
[](https://twitter.com/tensorblock_aoi)
[](https://discord.gg/Ej5NmeHFf2)
[](https://github.com/TensorBlock)
[](https://t.me/TensorBlock)
## The-matt/llama2_ko-7b_stilted-lion-205_1530 - GGUF
This repo contains GGUF format model files for [The-matt/llama2_ko-7b_stilted-lion-205_1530](https://huggingface.co/The-matt/llama2_ko-7b_stilted-lion-205_1530).
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
## Our projects
<table border="1" cellspacing="0" cellpadding="10">
<tr>
<th colspan="2" style="font-size: 25px;">Forge</th>
</tr>
<tr>
<th colspan="2">
<img src="https://imgur.com/faI5UKh.jpeg" alt="Forge Project" width="900"/>
</th>
</tr>
<tr>
<th colspan="2">An OpenAI-compatible multi-provider routing layer.</th>
</tr>
<tr>
<th colspan="2">
<a href="https://github.com/TensorBlock/forge" target="_blank" style="
display: inline-block;
padding: 8px 16px;
background-color: #FF7F50;
color: white;
text-decoration: none;
border-radius: 6px;
font-weight: bold;
font-family: sans-serif;
">π Try it now! π</a>
</th>
</tr>
<tr>
<th style="font-size: 25px;">Awesome MCP Servers</th>
<th style="font-size: 25px;">TensorBlock Studio</th>
</tr>
<tr>
<th><img src="https://imgur.com/2Xov7B7.jpeg" alt="MCP Servers" width="450"/></th>
<th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Studio" width="450"/></th>
</tr>
<tr>
<th>A comprehensive collection of Model Context Protocol (MCP) servers.</th>
<th>A lightweight, open, and extensible multi-LLM interaction studio.</th>
</tr>
<tr>
<th>
<a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style="
display: inline-block;
padding: 8px 16px;
background-color: #FF7F50;
color: white;
text-decoration: none;
border-radius: 6px;
font-weight: bold;
font-family: sans-serif;
">π See what we built π</a>
</th>
<th>
<a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style="
display: inline-block;
padding: 8px 16px;
background-color: #FF7F50;
color: white;
text-decoration: none;
border-radius: 6px;
font-weight: bold;
font-family: sans-serif;
">π See what we built π</a>
</th>
</tr>
</table>
## Prompt template
```
```
## Model file specification
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [llama2_ko-7b_stilted-lion-205_1530-Q2_K.gguf](https://huggingface.co/tensorblock/llama2_ko-7b_stilted-lion-205_1530-GGUF/blob/main/llama2_ko-7b_stilted-lion-205_1530-Q2_K.gguf) | Q2_K | 2.601 GB | smallest, significant quality loss - not recommended for most purposes |
| [llama2_ko-7b_stilted-lion-205_1530-Q3_K_S.gguf](https://huggingface.co/tensorblock/llama2_ko-7b_stilted-lion-205_1530-GGUF/blob/main/llama2_ko-7b_stilted-lion-205_1530-Q3_K_S.gguf) | Q3_K_S | 3.022 GB | very small, high quality loss |
| [llama2_ko-7b_stilted-lion-205_1530-Q3_K_M.gguf](https://huggingface.co/tensorblock/llama2_ko-7b_stilted-lion-205_1530-GGUF/blob/main/llama2_ko-7b_stilted-lion-205_1530-Q3_K_M.gguf) | Q3_K_M | 3.372 GB | very small, high quality loss |
| [llama2_ko-7b_stilted-lion-205_1530-Q3_K_L.gguf](https://huggingface.co/tensorblock/llama2_ko-7b_stilted-lion-205_1530-GGUF/blob/main/llama2_ko-7b_stilted-lion-205_1530-Q3_K_L.gguf) | Q3_K_L | 3.671 GB | small, substantial quality loss |
| [llama2_ko-7b_stilted-lion-205_1530-Q4_0.gguf](https://huggingface.co/tensorblock/llama2_ko-7b_stilted-lion-205_1530-GGUF/blob/main/llama2_ko-7b_stilted-lion-205_1530-Q4_0.gguf) | Q4_0 | 3.907 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [llama2_ko-7b_stilted-lion-205_1530-Q4_K_S.gguf](https://huggingface.co/tensorblock/llama2_ko-7b_stilted-lion-205_1530-GGUF/blob/main/llama2_ko-7b_stilted-lion-205_1530-Q4_K_S.gguf) | Q4_K_S | 3.938 GB | small, greater quality loss |
| [llama2_ko-7b_stilted-lion-205_1530-Q4_K_M.gguf](https://huggingface.co/tensorblock/llama2_ko-7b_stilted-lion-205_1530-GGUF/blob/main/llama2_ko-7b_stilted-lion-205_1530-Q4_K_M.gguf) | Q4_K_M | 4.163 GB | medium, balanced quality - recommended |
| [llama2_ko-7b_stilted-lion-205_1530-Q5_0.gguf](https://huggingface.co/tensorblock/llama2_ko-7b_stilted-lion-205_1530-GGUF/blob/main/llama2_ko-7b_stilted-lion-205_1530-Q5_0.gguf) | Q5_0 | 4.741 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [llama2_ko-7b_stilted-lion-205_1530-Q5_K_S.gguf](https://huggingface.co/tensorblock/llama2_ko-7b_stilted-lion-205_1530-GGUF/blob/main/llama2_ko-7b_stilted-lion-205_1530-Q5_K_S.gguf) | Q5_K_S | 4.741 GB | large, low quality loss - recommended |
| [llama2_ko-7b_stilted-lion-205_1530-Q5_K_M.gguf](https://huggingface.co/tensorblock/llama2_ko-7b_stilted-lion-205_1530-GGUF/blob/main/llama2_ko-7b_stilted-lion-205_1530-Q5_K_M.gguf) | Q5_K_M | 4.872 GB | large, very low quality loss - recommended |
| [llama2_ko-7b_stilted-lion-205_1530-Q6_K.gguf](https://huggingface.co/tensorblock/llama2_ko-7b_stilted-lion-205_1530-GGUF/blob/main/llama2_ko-7b_stilted-lion-205_1530-Q6_K.gguf) | Q6_K | 5.626 GB | very large, extremely low quality loss |
| [llama2_ko-7b_stilted-lion-205_1530-Q8_0.gguf](https://huggingface.co/tensorblock/llama2_ko-7b_stilted-lion-205_1530-GGUF/blob/main/llama2_ko-7b_stilted-lion-205_1530-Q8_0.gguf) | Q8_0 | 7.286 GB | very large, extremely low quality loss - not recommended |
## Downloading instruction
### Command line
Firstly, install Huggingface Client
```shell
pip install -U "huggingface_hub[cli]"
```
Then, downoad the individual model file the a local directory
```shell
huggingface-cli download tensorblock/llama2_ko-7b_stilted-lion-205_1530-GGUF --include "llama2_ko-7b_stilted-lion-205_1530-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
```shell
huggingface-cli download tensorblock/llama2_ko-7b_stilted-lion-205_1530-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```
|