File size: 7,176 Bytes
a1233e2 cdeae57 a1233e2 7b4a2f8 687bc6f 7b4a2f8 687bc6f 7b4a2f8 a1233e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
---
library_name: transformers
base_model: shibing624/chinese-text-correction-7b
license: apache-2.0
datasets:
- shibing624/chinese_text_correction
language:
- zh
metrics:
- f1
tags:
- text-generation-inference
- TensorBlock
- GGUF
widget:
- text: '文本纠错:
少先队员因该为老人让坐。'
---
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
[](https://tensorblock.co)
[](https://twitter.com/tensorblock_aoi)
[](https://discord.gg/Ej5NmeHFf2)
[](https://github.com/TensorBlock)
[](https://t.me/TensorBlock)
## shibing624/chinese-text-correction-7b - GGUF
This repo contains GGUF format model files for [shibing624/chinese-text-correction-7b](https://huggingface.co/shibing624/chinese-text-correction-7b).
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
## Our projects
<table border="1" cellspacing="0" cellpadding="10">
<tr>
<th colspan="2" style="font-size: 25px;">Forge</th>
</tr>
<tr>
<th colspan="2">
<img src="https://imgur.com/faI5UKh.jpeg" alt="Forge Project" width="900"/>
</th>
</tr>
<tr>
<th colspan="2">An OpenAI-compatible multi-provider routing layer.</th>
</tr>
<tr>
<th colspan="2">
<a href="https://github.com/TensorBlock/forge" target="_blank" style="
display: inline-block;
padding: 8px 16px;
background-color: #FF7F50;
color: white;
text-decoration: none;
border-radius: 6px;
font-weight: bold;
font-family: sans-serif;
">🚀 Try it now! 🚀</a>
</th>
</tr>
<tr>
<th style="font-size: 25px;">Awesome MCP Servers</th>
<th style="font-size: 25px;">TensorBlock Studio</th>
</tr>
<tr>
<th><img src="https://imgur.com/2Xov7B7.jpeg" alt="MCP Servers" width="450"/></th>
<th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Studio" width="450"/></th>
</tr>
<tr>
<th>A comprehensive collection of Model Context Protocol (MCP) servers.</th>
<th>A lightweight, open, and extensible multi-LLM interaction studio.</th>
</tr>
<tr>
<th>
<a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style="
display: inline-block;
padding: 8px 16px;
background-color: #FF7F50;
color: white;
text-decoration: none;
border-radius: 6px;
font-weight: bold;
font-family: sans-serif;
">👀 See what we built 👀</a>
</th>
<th>
<a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style="
display: inline-block;
padding: 8px 16px;
background-color: #FF7F50;
color: white;
text-decoration: none;
border-radius: 6px;
font-weight: bold;
font-family: sans-serif;
">👀 See what we built 👀</a>
</th>
</tr>
</table>
## Prompt template
```
<|im_start|>system
{system_prompt}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
```
## Model file specification
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [chinese-text-correction-7b-Q2_K.gguf](https://huggingface.co/tensorblock/chinese-text-correction-7b-GGUF/blob/main/chinese-text-correction-7b-Q2_K.gguf) | Q2_K | 3.016 GB | smallest, significant quality loss - not recommended for most purposes |
| [chinese-text-correction-7b-Q3_K_S.gguf](https://huggingface.co/tensorblock/chinese-text-correction-7b-GGUF/blob/main/chinese-text-correction-7b-Q3_K_S.gguf) | Q3_K_S | 3.492 GB | very small, high quality loss |
| [chinese-text-correction-7b-Q3_K_M.gguf](https://huggingface.co/tensorblock/chinese-text-correction-7b-GGUF/blob/main/chinese-text-correction-7b-Q3_K_M.gguf) | Q3_K_M | 3.808 GB | very small, high quality loss |
| [chinese-text-correction-7b-Q3_K_L.gguf](https://huggingface.co/tensorblock/chinese-text-correction-7b-GGUF/blob/main/chinese-text-correction-7b-Q3_K_L.gguf) | Q3_K_L | 4.088 GB | small, substantial quality loss |
| [chinese-text-correction-7b-Q4_0.gguf](https://huggingface.co/tensorblock/chinese-text-correction-7b-GGUF/blob/main/chinese-text-correction-7b-Q4_0.gguf) | Q4_0 | 4.431 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [chinese-text-correction-7b-Q4_K_S.gguf](https://huggingface.co/tensorblock/chinese-text-correction-7b-GGUF/blob/main/chinese-text-correction-7b-Q4_K_S.gguf) | Q4_K_S | 4.458 GB | small, greater quality loss |
| [chinese-text-correction-7b-Q4_K_M.gguf](https://huggingface.co/tensorblock/chinese-text-correction-7b-GGUF/blob/main/chinese-text-correction-7b-Q4_K_M.gguf) | Q4_K_M | 4.683 GB | medium, balanced quality - recommended |
| [chinese-text-correction-7b-Q5_0.gguf](https://huggingface.co/tensorblock/chinese-text-correction-7b-GGUF/blob/main/chinese-text-correction-7b-Q5_0.gguf) | Q5_0 | 5.315 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [chinese-text-correction-7b-Q5_K_S.gguf](https://huggingface.co/tensorblock/chinese-text-correction-7b-GGUF/blob/main/chinese-text-correction-7b-Q5_K_S.gguf) | Q5_K_S | 5.315 GB | large, low quality loss - recommended |
| [chinese-text-correction-7b-Q5_K_M.gguf](https://huggingface.co/tensorblock/chinese-text-correction-7b-GGUF/blob/main/chinese-text-correction-7b-Q5_K_M.gguf) | Q5_K_M | 5.445 GB | large, very low quality loss - recommended |
| [chinese-text-correction-7b-Q6_K.gguf](https://huggingface.co/tensorblock/chinese-text-correction-7b-GGUF/blob/main/chinese-text-correction-7b-Q6_K.gguf) | Q6_K | 6.254 GB | very large, extremely low quality loss |
| [chinese-text-correction-7b-Q8_0.gguf](https://huggingface.co/tensorblock/chinese-text-correction-7b-GGUF/blob/main/chinese-text-correction-7b-Q8_0.gguf) | Q8_0 | 8.099 GB | very large, extremely low quality loss - not recommended |
## Downloading instruction
### Command line
Firstly, install Huggingface Client
```shell
pip install -U "huggingface_hub[cli]"
```
Then, downoad the individual model file the a local directory
```shell
huggingface-cli download tensorblock/chinese-text-correction-7b-GGUF --include "chinese-text-correction-7b-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
```shell
huggingface-cli download tensorblock/chinese-text-correction-7b-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```
|