File size: 6,477 Bytes
581bdc2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
---
library_name: transformers
pipeline_tag: text-generation
base_model: aisingapore/Llama-SEA-LION-v3-70B-IT
language:
- en
- zh
- vi
- id
- th
- fil
- ta
- ms
- km
- lo
- my
- jv
- su
license: llama3.1
base_model_relation: finetune
tags:
- TensorBlock
- GGUF
---

<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
    <div style="display: flex; flex-direction: column; align-items: flex-start;">
        <p style="margin-top: 0.5em; margin-bottom: 0em;">
            Feedback and support: TensorBlock's  <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a>
        </p>
    </div>
</div>

## aisingapore/Llama-SEA-LION-v3-70B-IT - GGUF

This repo contains GGUF format model files for [aisingapore/Llama-SEA-LION-v3-70B-IT](https://huggingface.co/aisingapore/Llama-SEA-LION-v3-70B-IT).

The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985).

## Our projects
<table border="1" cellspacing="0" cellpadding="10">
<tr>
  <th style="font-size: 25px;">Awesome MCP Servers</th>
  <th style="font-size: 25px;">TensorBlock Studio</th>
</tr>
  <tr>
    <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th>
    <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th>
  </tr>
  <tr>
    <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th>
    <th>A lightweight, open, and extensible multi-LLM interaction studio.</th>
  </tr>
<tr>
  <th>
    <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style="
      display: inline-block;
      padding: 8px 16px;
      background-color: #FF7F50;
      color: white;
      text-decoration: none;
      border-radius: 6px;
      font-weight: bold;
      font-family: sans-serif;
    ">πŸ‘€ See what we built πŸ‘€</a>
  </th>
  <th>
    <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style="
      display: inline-block;
      padding: 8px 16px;
      background-color: #FF7F50;
      color: white;
      text-decoration: none;
      border-radius: 6px;
      font-weight: bold;
      font-family: sans-serif;
    ">πŸ‘€ See what we built πŸ‘€</a>
  </th>
</tr>
</table>

## Prompt template

```
<|begin_of_text|><|start_header_id|>system<|end_header_id|>

Cutting Knowledge Date: December 2023
Today Date: 26 Jul 2024

{system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|>

{prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
```

## Model file specification

| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [Llama-SEA-LION-v3-70B-IT-Q2_K.gguf](https://huggingface.co/tensorblock/aisingapore_Llama-SEA-LION-v3-70B-IT-GGUF/blob/main/Llama-SEA-LION-v3-70B-IT-Q2_K.gguf) | Q2_K | 26.375 GB | smallest, significant quality loss - not recommended for most purposes |
| [Llama-SEA-LION-v3-70B-IT-Q3_K_S.gguf](https://huggingface.co/tensorblock/aisingapore_Llama-SEA-LION-v3-70B-IT-GGUF/blob/main/Llama-SEA-LION-v3-70B-IT-Q3_K_S.gguf) | Q3_K_S | 30.912 GB | very small, high quality loss |
| [Llama-SEA-LION-v3-70B-IT-Q3_K_M.gguf](https://huggingface.co/tensorblock/aisingapore_Llama-SEA-LION-v3-70B-IT-GGUF/blob/main/Llama-SEA-LION-v3-70B-IT-Q3_K_M.gguf) | Q3_K_M | 34.267 GB | very small, high quality loss |
| [Llama-SEA-LION-v3-70B-IT-Q3_K_L.gguf](https://huggingface.co/tensorblock/aisingapore_Llama-SEA-LION-v3-70B-IT-GGUF/blob/main/Llama-SEA-LION-v3-70B-IT-Q3_K_L.gguf) | Q3_K_L | 37.141 GB | small, substantial quality loss |
| [Llama-SEA-LION-v3-70B-IT-Q4_0.gguf](https://huggingface.co/tensorblock/aisingapore_Llama-SEA-LION-v3-70B-IT-GGUF/blob/main/Llama-SEA-LION-v3-70B-IT-Q4_0.gguf) | Q4_0 | 39.970 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [Llama-SEA-LION-v3-70B-IT-Q4_K_S.gguf](https://huggingface.co/tensorblock/aisingapore_Llama-SEA-LION-v3-70B-IT-GGUF/blob/main/Llama-SEA-LION-v3-70B-IT-Q4_K_S.gguf) | Q4_K_S | 40.347 GB | small, greater quality loss |
| [Llama-SEA-LION-v3-70B-IT-Q4_K_M.gguf](https://huggingface.co/tensorblock/aisingapore_Llama-SEA-LION-v3-70B-IT-GGUF/blob/main/Llama-SEA-LION-v3-70B-IT-Q4_K_M.gguf) | Q4_K_M | 42.520 GB | medium, balanced quality - recommended |
| [Llama-SEA-LION-v3-70B-IT-Q5_0.gguf](https://huggingface.co/tensorblock/aisingapore_Llama-SEA-LION-v3-70B-IT-GGUF/blob/main/Llama-SEA-LION-v3-70B-IT-Q5_0.gguf) | Q5_0 | 48.657 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [Llama-SEA-LION-v3-70B-IT-Q5_K_S.gguf](https://huggingface.co/tensorblock/aisingapore_Llama-SEA-LION-v3-70B-IT-GGUF/blob/main/Llama-SEA-LION-v3-70B-IT-Q5_K_S.gguf) | Q5_K_S | 48.657 GB | large, low quality loss - recommended |
| [Llama-SEA-LION-v3-70B-IT-Q5_K_M.gguf](https://huggingface.co/tensorblock/aisingapore_Llama-SEA-LION-v3-70B-IT-GGUF/blob/main/Llama-SEA-LION-v3-70B-IT-Q5_K_M.gguf) | Q5_K_M | 49.950 GB | large, very low quality loss - recommended |
| [Llama-SEA-LION-v3-70B-IT-Q6_K](https://huggingface.co/tensorblock/aisingapore_Llama-SEA-LION-v3-70B-IT-GGUF/blob/main/Llama-SEA-LION-v3-70B-IT-Q6_K) | Q6_K | 57.888 GB | very large, extremely low quality loss |
| [Llama-SEA-LION-v3-70B-IT-Q8_0](https://huggingface.co/tensorblock/aisingapore_Llama-SEA-LION-v3-70B-IT-GGUF/blob/main/Llama-SEA-LION-v3-70B-IT-Q8_0) | Q8_0 | 74.975 GB | very large, extremely low quality loss - not recommended |


## Downloading instruction

### Command line

Firstly, install Huggingface Client

```shell
pip install -U "huggingface_hub[cli]"
```

Then, downoad the individual model file the a local directory

```shell
huggingface-cli download tensorblock/aisingapore_Llama-SEA-LION-v3-70B-IT-GGUF --include "Llama-SEA-LION-v3-70B-IT-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```

If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:

```shell
huggingface-cli download tensorblock/aisingapore_Llama-SEA-LION-v3-70B-IT-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```