--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - argilla/distilabeled-Marcoro14-7B-slerp - mlabonne/NeuralMarcoro14-7B - TensorBlock - GGUF datasets: - mlabonne/chatml_dpo_pairs - argilla/distilabel-intel-orca-dpo-pairs base_model: flemmingmiguel/NeuDist-Ro-7B ---
TensorBlock
[![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## flemmingmiguel/NeuDist-Ro-7B - GGUF This repo contains GGUF format model files for [flemmingmiguel/NeuDist-Ro-7B](https://huggingface.co/flemmingmiguel/NeuDist-Ro-7B). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects
Forge
Forge Project
An OpenAI-compatible multi-provider routing layer.
🚀 Try it now! 🚀
Awesome MCP Servers TensorBlock Studio
MCP Servers Studio
A comprehensive collection of Model Context Protocol (MCP) servers. A lightweight, open, and extensible multi-LLM interaction studio.
👀 See what we built 👀 👀 See what we built 👀
## Prompt template ``` <|im_start|>system {system_prompt}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [NeuDist-Ro-7B-Q2_K.gguf](https://huggingface.co/tensorblock/NeuDist-Ro-7B-GGUF/blob/main/NeuDist-Ro-7B-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [NeuDist-Ro-7B-Q3_K_S.gguf](https://huggingface.co/tensorblock/NeuDist-Ro-7B-GGUF/blob/main/NeuDist-Ro-7B-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [NeuDist-Ro-7B-Q3_K_M.gguf](https://huggingface.co/tensorblock/NeuDist-Ro-7B-GGUF/blob/main/NeuDist-Ro-7B-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [NeuDist-Ro-7B-Q3_K_L.gguf](https://huggingface.co/tensorblock/NeuDist-Ro-7B-GGUF/blob/main/NeuDist-Ro-7B-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [NeuDist-Ro-7B-Q4_0.gguf](https://huggingface.co/tensorblock/NeuDist-Ro-7B-GGUF/blob/main/NeuDist-Ro-7B-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [NeuDist-Ro-7B-Q4_K_S.gguf](https://huggingface.co/tensorblock/NeuDist-Ro-7B-GGUF/blob/main/NeuDist-Ro-7B-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [NeuDist-Ro-7B-Q4_K_M.gguf](https://huggingface.co/tensorblock/NeuDist-Ro-7B-GGUF/blob/main/NeuDist-Ro-7B-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [NeuDist-Ro-7B-Q5_0.gguf](https://huggingface.co/tensorblock/NeuDist-Ro-7B-GGUF/blob/main/NeuDist-Ro-7B-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [NeuDist-Ro-7B-Q5_K_S.gguf](https://huggingface.co/tensorblock/NeuDist-Ro-7B-GGUF/blob/main/NeuDist-Ro-7B-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [NeuDist-Ro-7B-Q5_K_M.gguf](https://huggingface.co/tensorblock/NeuDist-Ro-7B-GGUF/blob/main/NeuDist-Ro-7B-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [NeuDist-Ro-7B-Q6_K.gguf](https://huggingface.co/tensorblock/NeuDist-Ro-7B-GGUF/blob/main/NeuDist-Ro-7B-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [NeuDist-Ro-7B-Q8_0.gguf](https://huggingface.co/tensorblock/NeuDist-Ro-7B-GGUF/blob/main/NeuDist-Ro-7B-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/NeuDist-Ro-7B-GGUF --include "NeuDist-Ro-7B-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/NeuDist-Ro-7B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```