File size: 7,384 Bytes
99538a3 25ae95b 99538a3 dd7b5fd eb4d75f 1019482 eb4d75f 1019482 eb4d75f 99538a3 dd7b5fd 99538a3 dd7b5fd 99538a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
---
library_name: transformers
tags:
- TensorBlock
- GGUF
base_model: chuanli11/Llama-3.2-3B-Instruct-uncensored
---
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
[](https://tensorblock.co)
[](https://twitter.com/tensorblock_aoi)
[](https://discord.gg/Ej5NmeHFf2)
[](https://github.com/TensorBlock)
[](https://t.me/TensorBlock)
## chuanli11/Llama-3.2-3B-Instruct-uncensored - GGUF
This repo contains GGUF format model files for [chuanli11/Llama-3.2-3B-Instruct-uncensored](https://huggingface.co/chuanli11/Llama-3.2-3B-Instruct-uncensored).
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
## Our projects
<table border="1" cellspacing="0" cellpadding="10">
<tr>
<th colspan="2" style="font-size: 25px;">Forge</th>
</tr>
<tr>
<th colspan="2">
<img src="https://imgur.com/faI5UKh.jpeg" alt="Forge Project" width="900"/>
</th>
</tr>
<tr>
<th colspan="2">An OpenAI-compatible multi-provider routing layer.</th>
</tr>
<tr>
<th colspan="2">
<a href="https://github.com/TensorBlock/forge" target="_blank" style="
display: inline-block;
padding: 8px 16px;
background-color: #FF7F50;
color: white;
text-decoration: none;
border-radius: 6px;
font-weight: bold;
font-family: sans-serif;
">π Try it now! π</a>
</th>
</tr>
<tr>
<th style="font-size: 25px;">Awesome MCP Servers</th>
<th style="font-size: 25px;">TensorBlock Studio</th>
</tr>
<tr>
<th><img src="https://imgur.com/2Xov7B7.jpeg" alt="MCP Servers" width="450"/></th>
<th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Studio" width="450"/></th>
</tr>
<tr>
<th>A comprehensive collection of Model Context Protocol (MCP) servers.</th>
<th>A lightweight, open, and extensible multi-LLM interaction studio.</th>
</tr>
<tr>
<th>
<a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style="
display: inline-block;
padding: 8px 16px;
background-color: #FF7F50;
color: white;
text-decoration: none;
border-radius: 6px;
font-weight: bold;
font-family: sans-serif;
">π See what we built π</a>
</th>
<th>
<a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style="
display: inline-block;
padding: 8px 16px;
background-color: #FF7F50;
color: white;
text-decoration: none;
border-radius: 6px;
font-weight: bold;
font-family: sans-serif;
">π See what we built π</a>
</th>
</tr>
</table>
## Prompt template
```
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
Cutting Knowledge Date: December 2023
Today Date: 10 Nov 2024
{system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|>
{prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
```
## Model file specification
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [Llama-3.2-3B-Instruct-uncensored-Q2_K.gguf](https://huggingface.co/tensorblock/Llama-3.2-3B-Instruct-uncensored-GGUF/blob/main/Llama-3.2-3B-Instruct-uncensored-Q2_K.gguf) | Q2_K | 1.391 GB | smallest, significant quality loss - not recommended for most purposes |
| [Llama-3.2-3B-Instruct-uncensored-Q3_K_S.gguf](https://huggingface.co/tensorblock/Llama-3.2-3B-Instruct-uncensored-GGUF/blob/main/Llama-3.2-3B-Instruct-uncensored-Q3_K_S.gguf) | Q3_K_S | 1.595 GB | very small, high quality loss |
| [Llama-3.2-3B-Instruct-uncensored-Q3_K_M.gguf](https://huggingface.co/tensorblock/Llama-3.2-3B-Instruct-uncensored-GGUF/blob/main/Llama-3.2-3B-Instruct-uncensored-Q3_K_M.gguf) | Q3_K_M | 1.729 GB | very small, high quality loss |
| [Llama-3.2-3B-Instruct-uncensored-Q3_K_L.gguf](https://huggingface.co/tensorblock/Llama-3.2-3B-Instruct-uncensored-GGUF/blob/main/Llama-3.2-3B-Instruct-uncensored-Q3_K_L.gguf) | Q3_K_L | 1.848 GB | small, substantial quality loss |
| [Llama-3.2-3B-Instruct-uncensored-Q4_0.gguf](https://huggingface.co/tensorblock/Llama-3.2-3B-Instruct-uncensored-GGUF/blob/main/Llama-3.2-3B-Instruct-uncensored-Q4_0.gguf) | Q4_0 | 1.992 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [Llama-3.2-3B-Instruct-uncensored-Q4_K_S.gguf](https://huggingface.co/tensorblock/Llama-3.2-3B-Instruct-uncensored-GGUF/blob/main/Llama-3.2-3B-Instruct-uncensored-Q4_K_S.gguf) | Q4_K_S | 2.002 GB | small, greater quality loss |
| [Llama-3.2-3B-Instruct-uncensored-Q4_K_M.gguf](https://huggingface.co/tensorblock/Llama-3.2-3B-Instruct-uncensored-GGUF/blob/main/Llama-3.2-3B-Instruct-uncensored-Q4_K_M.gguf) | Q4_K_M | 2.087 GB | medium, balanced quality - recommended |
| [Llama-3.2-3B-Instruct-uncensored-Q5_0.gguf](https://huggingface.co/tensorblock/Llama-3.2-3B-Instruct-uncensored-GGUF/blob/main/Llama-3.2-3B-Instruct-uncensored-Q5_0.gguf) | Q5_0 | 2.366 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [Llama-3.2-3B-Instruct-uncensored-Q5_K_S.gguf](https://huggingface.co/tensorblock/Llama-3.2-3B-Instruct-uncensored-GGUF/blob/main/Llama-3.2-3B-Instruct-uncensored-Q5_K_S.gguf) | Q5_K_S | 2.366 GB | large, low quality loss - recommended |
| [Llama-3.2-3B-Instruct-uncensored-Q5_K_M.gguf](https://huggingface.co/tensorblock/Llama-3.2-3B-Instruct-uncensored-GGUF/blob/main/Llama-3.2-3B-Instruct-uncensored-Q5_K_M.gguf) | Q5_K_M | 2.415 GB | large, very low quality loss - recommended |
| [Llama-3.2-3B-Instruct-uncensored-Q6_K.gguf](https://huggingface.co/tensorblock/Llama-3.2-3B-Instruct-uncensored-GGUF/blob/main/Llama-3.2-3B-Instruct-uncensored-Q6_K.gguf) | Q6_K | 2.763 GB | very large, extremely low quality loss |
| [Llama-3.2-3B-Instruct-uncensored-Q8_0.gguf](https://huggingface.co/tensorblock/Llama-3.2-3B-Instruct-uncensored-GGUF/blob/main/Llama-3.2-3B-Instruct-uncensored-Q8_0.gguf) | Q8_0 | 3.577 GB | very large, extremely low quality loss - not recommended |
## Downloading instruction
### Command line
Firstly, install Huggingface Client
```shell
pip install -U "huggingface_hub[cli]"
```
Then, downoad the individual model file the a local directory
```shell
huggingface-cli download tensorblock/Llama-3.2-3B-Instruct-uncensored-GGUF --include "Llama-3.2-3B-Instruct-uncensored-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
```shell
huggingface-cli download tensorblock/Llama-3.2-3B-Instruct-uncensored-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```
|