---
license: apache-2.0
language:
- en
- zh
base_model: prithivMLmods/Gauss-Opus-14B-R999
pipeline_tag: text-generation
library_name: transformers
tags:
- text-generation-inference
- trl
- vlm
- sft
- code
- math
- TensorBlock
- GGUF
model-index:
- name: Gauss-Opus-14B-R999
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: wis-k/instruction-following-eval
split: train
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 39.07
name: averaged accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FGauss-Opus-14B-R999
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: SaylorTwift/bbh
split: test
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 44.94
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FGauss-Opus-14B-R999
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: lighteval/MATH-Hard
split: test
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 57.55
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FGauss-Opus-14B-R999
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
split: train
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 18.9
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FGauss-Opus-14B-R999
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 27.83
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FGauss-Opus-14B-R999
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 44.53
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FGauss-Opus-14B-R999
name: Open LLM Leaderboard
---
[](https://tensorblock.co)
[](https://twitter.com/tensorblock_aoi)
[](https://discord.gg/Ej5NmeHFf2)
[](https://github.com/TensorBlock)
[](https://t.me/TensorBlock)
## prithivMLmods/Gauss-Opus-14B-R999 - GGUF
This repo contains GGUF format model files for [prithivMLmods/Gauss-Opus-14B-R999](https://huggingface.co/prithivMLmods/Gauss-Opus-14B-R999).
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4882](https://github.com/ggml-org/llama.cpp/commit/be7c3034108473beda214fd1d7c98fd6a7a3bdf5).
## Our projects
Forge |
|
An OpenAI-compatible multi-provider routing layer. |
🚀 Try it now! 🚀
|
Awesome MCP Servers |
TensorBlock Studio |
 |
 |
A comprehensive collection of Model Context Protocol (MCP) servers. |
A lightweight, open, and extensible multi-LLM interaction studio. |
👀 See what we built 👀
|
👀 See what we built 👀
|
## Prompt template
```
<|begin▁of▁sentence|>{system_prompt}<|User|>{prompt}<|Assistant|>
```
## Model file specification
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [Gauss-Opus-14B-R999-Q2_K.gguf](https://huggingface.co/tensorblock/Gauss-Opus-14B-R999-GGUF/blob/main/Gauss-Opus-14B-R999-Q2_K.gguf) | Q2_K | 0.006 GB | smallest, significant quality loss - not recommended for most purposes |
| [Gauss-Opus-14B-R999-Q3_K_S.gguf](https://huggingface.co/tensorblock/Gauss-Opus-14B-R999-GGUF/blob/main/Gauss-Opus-14B-R999-Q3_K_S.gguf) | Q3_K_S | 0.006 GB | very small, high quality loss |
| [Gauss-Opus-14B-R999-Q3_K_M.gguf](https://huggingface.co/tensorblock/Gauss-Opus-14B-R999-GGUF/blob/main/Gauss-Opus-14B-R999-Q3_K_M.gguf) | Q3_K_M | 0.006 GB | very small, high quality loss |
| [Gauss-Opus-14B-R999-Q3_K_L.gguf](https://huggingface.co/tensorblock/Gauss-Opus-14B-R999-GGUF/blob/main/Gauss-Opus-14B-R999-Q3_K_L.gguf) | Q3_K_L | 0.006 GB | small, substantial quality loss |
| [Gauss-Opus-14B-R999-Q4_0.gguf](https://huggingface.co/tensorblock/Gauss-Opus-14B-R999-GGUF/blob/main/Gauss-Opus-14B-R999-Q4_0.gguf) | Q4_0 | 0.006 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [Gauss-Opus-14B-R999-Q4_K_S.gguf](https://huggingface.co/tensorblock/Gauss-Opus-14B-R999-GGUF/blob/main/Gauss-Opus-14B-R999-Q4_K_S.gguf) | Q4_K_S | 0.006 GB | small, greater quality loss |
| [Gauss-Opus-14B-R999-Q4_K_M.gguf](https://huggingface.co/tensorblock/Gauss-Opus-14B-R999-GGUF/blob/main/Gauss-Opus-14B-R999-Q4_K_M.gguf) | Q4_K_M | 0.006 GB | medium, balanced quality - recommended |
| [Gauss-Opus-14B-R999-Q5_0.gguf](https://huggingface.co/tensorblock/Gauss-Opus-14B-R999-GGUF/blob/main/Gauss-Opus-14B-R999-Q5_0.gguf) | Q5_0 | 0.006 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [Gauss-Opus-14B-R999-Q5_K_S.gguf](https://huggingface.co/tensorblock/Gauss-Opus-14B-R999-GGUF/blob/main/Gauss-Opus-14B-R999-Q5_K_S.gguf) | Q5_K_S | 0.006 GB | large, low quality loss - recommended |
| [Gauss-Opus-14B-R999-Q5_K_M.gguf](https://huggingface.co/tensorblock/Gauss-Opus-14B-R999-GGUF/blob/main/Gauss-Opus-14B-R999-Q5_K_M.gguf) | Q5_K_M | 0.006 GB | large, very low quality loss - recommended |
| [Gauss-Opus-14B-R999-Q6_K.gguf](https://huggingface.co/tensorblock/Gauss-Opus-14B-R999-GGUF/blob/main/Gauss-Opus-14B-R999-Q6_K.gguf) | Q6_K | 0.006 GB | very large, extremely low quality loss |
| [Gauss-Opus-14B-R999-Q8_0.gguf](https://huggingface.co/tensorblock/Gauss-Opus-14B-R999-GGUF/blob/main/Gauss-Opus-14B-R999-Q8_0.gguf) | Q8_0 | 0.006 GB | very large, extremely low quality loss - not recommended |
## Downloading instruction
### Command line
Firstly, install Huggingface Client
```shell
pip install -U "huggingface_hub[cli]"
```
Then, downoad the individual model file the a local directory
```shell
huggingface-cli download tensorblock/Gauss-Opus-14B-R999-GGUF --include "Gauss-Opus-14B-R999-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
```shell
huggingface-cli download tensorblock/Gauss-Opus-14B-R999-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```