---
language:
- en
license: apache-2.0
base_model: Felladrin/TinyMistral-248M-Chat-v2
datasets:
- HuggingFaceH4/ultrachat_200k
- Felladrin/ChatML-ultrachat_200k
- Open-Orca/OpenOrca
- Felladrin/ChatML-OpenOrca
- hkust-nlp/deita-10k-v0
- Felladrin/ChatML-deita-10k-v0
- LDJnr/Capybara
- Felladrin/ChatML-Capybara
- databricks/databricks-dolly-15k
- Felladrin/ChatML-databricks-dolly-15k
- euclaise/reddit-instruct-curated
- Felladrin/ChatML-reddit-instruct-curated
- CohereForAI/aya_dataset
- Felladrin/ChatML-aya_dataset
- HuggingFaceH4/ultrafeedback_binarized
pipeline_tag: text-generation
widget:
- messages:
- role: system
content: You are a highly knowledgeable and friendly assistant. Your goal is to
understand and respond to user inquiries with clarity. Your interactions are
always respectful, helpful, and focused on delivering the most accurate information
to the user.
- role: user
content: Hey! Got a question for you!
- role: assistant
content: Sure! What's it?
- role: user
content: What are some potential applications for quantum computing?
- messages:
- role: user
content: Heya!
- role: assistant
content: Hi! How may I help you?
- role: user
content: I'm interested in developing a career in software engineering. What would
you recommend me to do?
- messages:
- role: user
content: Morning!
- role: assistant
content: Good morning! How can I help you today?
- role: user
content: Could you give me some tips for becoming a healthier person?
- messages:
- role: system
content: You are a very creative assistant. User will give you a task, which you
should complete with all your knowledge.
- role: user
content: Hello! Can you please elaborate a background story of an RPG game about
wizards and dragons in a sci-fi world?
tags:
- TensorBlock
- GGUF
---
## Felladrin/TinyMistral-248M-Chat-v2 - GGUF
This repo contains GGUF format model files for [Felladrin/TinyMistral-248M-Chat-v2](https://huggingface.co/Felladrin/TinyMistral-248M-Chat-v2).
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985).
## Our projects
## Prompt template
```
<|im_start|>system
{system_prompt}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
```
## Model file specification
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [TinyMistral-248M-Chat-v2-Q2_K.gguf](https://huggingface.co/tensorblock/Felladrin_TinyMistral-248M-Chat-v2-GGUF/blob/main/TinyMistral-248M-Chat-v2-Q2_K.gguf) | Q2_K | 0.105 GB | smallest, significant quality loss - not recommended for most purposes |
| [TinyMistral-248M-Chat-v2-Q3_K_S.gguf](https://huggingface.co/tensorblock/Felladrin_TinyMistral-248M-Chat-v2-GGUF/blob/main/TinyMistral-248M-Chat-v2-Q3_K_S.gguf) | Q3_K_S | 0.120 GB | very small, high quality loss |
| [TinyMistral-248M-Chat-v2-Q3_K_M.gguf](https://huggingface.co/tensorblock/Felladrin_TinyMistral-248M-Chat-v2-GGUF/blob/main/TinyMistral-248M-Chat-v2-Q3_K_M.gguf) | Q3_K_M | 0.129 GB | very small, high quality loss |
| [TinyMistral-248M-Chat-v2-Q3_K_L.gguf](https://huggingface.co/tensorblock/Felladrin_TinyMistral-248M-Chat-v2-GGUF/blob/main/TinyMistral-248M-Chat-v2-Q3_K_L.gguf) | Q3_K_L | 0.137 GB | small, substantial quality loss |
| [TinyMistral-248M-Chat-v2-Q4_0.gguf](https://huggingface.co/tensorblock/Felladrin_TinyMistral-248M-Chat-v2-GGUF/blob/main/TinyMistral-248M-Chat-v2-Q4_0.gguf) | Q4_0 | 0.149 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [TinyMistral-248M-Chat-v2-Q4_K_S.gguf](https://huggingface.co/tensorblock/Felladrin_TinyMistral-248M-Chat-v2-GGUF/blob/main/TinyMistral-248M-Chat-v2-Q4_K_S.gguf) | Q4_K_S | 0.149 GB | small, greater quality loss |
| [TinyMistral-248M-Chat-v2-Q4_K_M.gguf](https://huggingface.co/tensorblock/Felladrin_TinyMistral-248M-Chat-v2-GGUF/blob/main/TinyMistral-248M-Chat-v2-Q4_K_M.gguf) | Q4_K_M | 0.156 GB | medium, balanced quality - recommended |
| [TinyMistral-248M-Chat-v2-Q5_0.gguf](https://huggingface.co/tensorblock/Felladrin_TinyMistral-248M-Chat-v2-GGUF/blob/main/TinyMistral-248M-Chat-v2-Q5_0.gguf) | Q5_0 | 0.176 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [TinyMistral-248M-Chat-v2-Q5_K_S.gguf](https://huggingface.co/tensorblock/Felladrin_TinyMistral-248M-Chat-v2-GGUF/blob/main/TinyMistral-248M-Chat-v2-Q5_K_S.gguf) | Q5_K_S | 0.176 GB | large, low quality loss - recommended |
| [TinyMistral-248M-Chat-v2-Q5_K_M.gguf](https://huggingface.co/tensorblock/Felladrin_TinyMistral-248M-Chat-v2-GGUF/blob/main/TinyMistral-248M-Chat-v2-Q5_K_M.gguf) | Q5_K_M | 0.179 GB | large, very low quality loss - recommended |
| [TinyMistral-248M-Chat-v2-Q6_K.gguf](https://huggingface.co/tensorblock/Felladrin_TinyMistral-248M-Chat-v2-GGUF/blob/main/TinyMistral-248M-Chat-v2-Q6_K.gguf) | Q6_K | 0.204 GB | very large, extremely low quality loss |
| [TinyMistral-248M-Chat-v2-Q8_0.gguf](https://huggingface.co/tensorblock/Felladrin_TinyMistral-248M-Chat-v2-GGUF/blob/main/TinyMistral-248M-Chat-v2-Q8_0.gguf) | Q8_0 | 0.264 GB | very large, extremely low quality loss - not recommended |
## Downloading instruction
### Command line
Firstly, install Huggingface Client
```shell
pip install -U "huggingface_hub[cli]"
```
Then, downoad the individual model file the a local directory
```shell
huggingface-cli download tensorblock/Felladrin_TinyMistral-248M-Chat-v2-GGUF --include "TinyMistral-248M-Chat-v2-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
```shell
huggingface-cli download tensorblock/Felladrin_TinyMistral-248M-Chat-v2-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```