--- language: - en license: apache-2.0 base_model: Felladrin/TinyMistral-248M-Chat-v2 datasets: - HuggingFaceH4/ultrachat_200k - Felladrin/ChatML-ultrachat_200k - Open-Orca/OpenOrca - Felladrin/ChatML-OpenOrca - hkust-nlp/deita-10k-v0 - Felladrin/ChatML-deita-10k-v0 - LDJnr/Capybara - Felladrin/ChatML-Capybara - databricks/databricks-dolly-15k - Felladrin/ChatML-databricks-dolly-15k - euclaise/reddit-instruct-curated - Felladrin/ChatML-reddit-instruct-curated - CohereForAI/aya_dataset - Felladrin/ChatML-aya_dataset - HuggingFaceH4/ultrafeedback_binarized pipeline_tag: text-generation widget: - messages: - role: system content: You are a highly knowledgeable and friendly assistant. Your goal is to understand and respond to user inquiries with clarity. Your interactions are always respectful, helpful, and focused on delivering the most accurate information to the user. - role: user content: Hey! Got a question for you! - role: assistant content: Sure! What's it? - role: user content: What are some potential applications for quantum computing? - messages: - role: user content: Heya! - role: assistant content: Hi! How may I help you? - role: user content: I'm interested in developing a career in software engineering. What would you recommend me to do? - messages: - role: user content: Morning! - role: assistant content: Good morning! How can I help you today? - role: user content: Could you give me some tips for becoming a healthier person? - messages: - role: system content: You are a very creative assistant. User will give you a task, which you should complete with all your knowledge. - role: user content: Hello! Can you please elaborate a background story of an RPG game about wizards and dragons in a sci-fi world? tags: - TensorBlock - GGUF ---
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

## Felladrin/TinyMistral-248M-Chat-v2 - GGUF This repo contains GGUF format model files for [Felladrin/TinyMistral-248M-Chat-v2](https://huggingface.co/Felladrin/TinyMistral-248M-Chat-v2). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects
Awesome MCP Servers TensorBlock Studio
Project A Project B
A comprehensive collection of Model Context Protocol (MCP) servers. A lightweight, open, and extensible multi-LLM interaction studio.
👀 See what we built 👀 👀 See what we built 👀
## Prompt template ``` <|im_start|>system {system_prompt}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [TinyMistral-248M-Chat-v2-Q2_K.gguf](https://huggingface.co/tensorblock/Felladrin_TinyMistral-248M-Chat-v2-GGUF/blob/main/TinyMistral-248M-Chat-v2-Q2_K.gguf) | Q2_K | 0.105 GB | smallest, significant quality loss - not recommended for most purposes | | [TinyMistral-248M-Chat-v2-Q3_K_S.gguf](https://huggingface.co/tensorblock/Felladrin_TinyMistral-248M-Chat-v2-GGUF/blob/main/TinyMistral-248M-Chat-v2-Q3_K_S.gguf) | Q3_K_S | 0.120 GB | very small, high quality loss | | [TinyMistral-248M-Chat-v2-Q3_K_M.gguf](https://huggingface.co/tensorblock/Felladrin_TinyMistral-248M-Chat-v2-GGUF/blob/main/TinyMistral-248M-Chat-v2-Q3_K_M.gguf) | Q3_K_M | 0.129 GB | very small, high quality loss | | [TinyMistral-248M-Chat-v2-Q3_K_L.gguf](https://huggingface.co/tensorblock/Felladrin_TinyMistral-248M-Chat-v2-GGUF/blob/main/TinyMistral-248M-Chat-v2-Q3_K_L.gguf) | Q3_K_L | 0.137 GB | small, substantial quality loss | | [TinyMistral-248M-Chat-v2-Q4_0.gguf](https://huggingface.co/tensorblock/Felladrin_TinyMistral-248M-Chat-v2-GGUF/blob/main/TinyMistral-248M-Chat-v2-Q4_0.gguf) | Q4_0 | 0.149 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [TinyMistral-248M-Chat-v2-Q4_K_S.gguf](https://huggingface.co/tensorblock/Felladrin_TinyMistral-248M-Chat-v2-GGUF/blob/main/TinyMistral-248M-Chat-v2-Q4_K_S.gguf) | Q4_K_S | 0.149 GB | small, greater quality loss | | [TinyMistral-248M-Chat-v2-Q4_K_M.gguf](https://huggingface.co/tensorblock/Felladrin_TinyMistral-248M-Chat-v2-GGUF/blob/main/TinyMistral-248M-Chat-v2-Q4_K_M.gguf) | Q4_K_M | 0.156 GB | medium, balanced quality - recommended | | [TinyMistral-248M-Chat-v2-Q5_0.gguf](https://huggingface.co/tensorblock/Felladrin_TinyMistral-248M-Chat-v2-GGUF/blob/main/TinyMistral-248M-Chat-v2-Q5_0.gguf) | Q5_0 | 0.176 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [TinyMistral-248M-Chat-v2-Q5_K_S.gguf](https://huggingface.co/tensorblock/Felladrin_TinyMistral-248M-Chat-v2-GGUF/blob/main/TinyMistral-248M-Chat-v2-Q5_K_S.gguf) | Q5_K_S | 0.176 GB | large, low quality loss - recommended | | [TinyMistral-248M-Chat-v2-Q5_K_M.gguf](https://huggingface.co/tensorblock/Felladrin_TinyMistral-248M-Chat-v2-GGUF/blob/main/TinyMistral-248M-Chat-v2-Q5_K_M.gguf) | Q5_K_M | 0.179 GB | large, very low quality loss - recommended | | [TinyMistral-248M-Chat-v2-Q6_K.gguf](https://huggingface.co/tensorblock/Felladrin_TinyMistral-248M-Chat-v2-GGUF/blob/main/TinyMistral-248M-Chat-v2-Q6_K.gguf) | Q6_K | 0.204 GB | very large, extremely low quality loss | | [TinyMistral-248M-Chat-v2-Q8_0.gguf](https://huggingface.co/tensorblock/Felladrin_TinyMistral-248M-Chat-v2-GGUF/blob/main/TinyMistral-248M-Chat-v2-Q8_0.gguf) | Q8_0 | 0.264 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Felladrin_TinyMistral-248M-Chat-v2-GGUF --include "TinyMistral-248M-Chat-v2-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Felladrin_TinyMistral-248M-Chat-v2-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```