|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import warnings | 
					
						
						|  | import random | 
					
						
						|  | from typing import List, Optional, Union, Dict, Any | 
					
						
						|  | from collections import defaultdict | 
					
						
						|  | from copy import deepcopy | 
					
						
						|  |  | 
					
						
						|  | import numpy as np | 
					
						
						|  | import torch | 
					
						
						|  | import torch.nn.functional as F | 
					
						
						|  | from transformers import AutoTokenizer | 
					
						
						|  | from diffusers.utils import BaseOutput | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def default(value, default_value): | 
					
						
						|  | return value if value is not None else default_value | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def ensure_list(value): | 
					
						
						|  | if value is None: | 
					
						
						|  | return [] | 
					
						
						|  | if isinstance(value, (list, tuple)): | 
					
						
						|  | return list(value) | 
					
						
						|  | return [value] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Resolution(object): | 
					
						
						|  | def __init__(self, size, *args): | 
					
						
						|  | if isinstance(size, str): | 
					
						
						|  | if 'x' in size: | 
					
						
						|  | size = size.split('x') | 
					
						
						|  | size = (int(size[0]), int(size[1])) | 
					
						
						|  | else: | 
					
						
						|  | size = int(size) | 
					
						
						|  | if len(args) > 0: | 
					
						
						|  | size = (size, args[0]) | 
					
						
						|  | if isinstance(size, int): | 
					
						
						|  | size = (size, size) | 
					
						
						|  |  | 
					
						
						|  | self.h = self.height = size[0] | 
					
						
						|  | self.w = self.width = size[1] | 
					
						
						|  | self.r = self.ratio = self.height / self.width | 
					
						
						|  |  | 
					
						
						|  | def __getitem__(self, idx): | 
					
						
						|  | if idx == 0: | 
					
						
						|  | return self.h | 
					
						
						|  | elif idx == 1: | 
					
						
						|  | return self.w | 
					
						
						|  | else: | 
					
						
						|  | raise IndexError(f'Index {idx} out of range') | 
					
						
						|  |  | 
					
						
						|  | def __str__(self): | 
					
						
						|  | return f'{self.h}x{self.w}' | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class ResolutionGroup(object): | 
					
						
						|  | def __init__(self, base_size=None, step=None, align=1): | 
					
						
						|  | self.align = align | 
					
						
						|  | self.base_size = base_size | 
					
						
						|  | assert base_size % align == 0, f'base_size {base_size} is not divisible by align {align}' | 
					
						
						|  | if base_size is not None and not isinstance(base_size, int): | 
					
						
						|  | raise ValueError(f'base_size must be None or int, but got {type(base_size)}') | 
					
						
						|  | if step is None: | 
					
						
						|  | step = base_size // 16 | 
					
						
						|  | if step is not None and step > base_size // 2: | 
					
						
						|  | raise ValueError(f'step must be smaller than base_size // 2, but got {step} > {base_size // 2}') | 
					
						
						|  |  | 
					
						
						|  | self.step = step | 
					
						
						|  | self.data = self._calc_by_step() | 
					
						
						|  |  | 
					
						
						|  | self.ratio = np.array([x.ratio for x in self.data]) | 
					
						
						|  | self.attr = ['' for _ in range(len(self.data))] | 
					
						
						|  | self.prefix_space = 0 | 
					
						
						|  |  | 
					
						
						|  | def __len__(self): | 
					
						
						|  | return len(self.data) | 
					
						
						|  |  | 
					
						
						|  | def __getitem__(self, idx): | 
					
						
						|  | return self.data[idx] | 
					
						
						|  |  | 
					
						
						|  | def __repr__(self): | 
					
						
						|  | prefix = self.prefix_space * ' ' | 
					
						
						|  | prefix_close = (self.prefix_space - 4) * ' ' | 
					
						
						|  | res_str = f'ResolutionGroup(base_size={self.base_size}, step={self.step}, data=' | 
					
						
						|  | attr_maxlen = max([len(x) for x in self.attr] + [5]) | 
					
						
						|  | res_str += \ | 
					
						
						|  | f'\n{prefix}ID: height width   ratio {" " * max(0, attr_maxlen - 4)}count  h/16 w/16    tokens\n{prefix}' | 
					
						
						|  | res_str += \ | 
					
						
						|  | ('\n' + prefix).join([f'{i:2d}: ({x.h:4d}, {x.w:4d})  {self.ratio[i]:.4f}  {self.attr[i]:>{attr_maxlen}s}  ' | 
					
						
						|  | f'({x.h // 16:3d}, {x.w // 16:3d})  {x.h // 16 * x.w // 16:6d}' | 
					
						
						|  | for i, x in enumerate(self.data)]) | 
					
						
						|  | res_str += f'\n{prefix_close})' | 
					
						
						|  | return res_str | 
					
						
						|  |  | 
					
						
						|  | def _calc_by_step(self): | 
					
						
						|  | assert self.align <= self.step, f'align {self.align} must be smaller than step {self.step}' | 
					
						
						|  |  | 
					
						
						|  | min_height = self.base_size // 2 | 
					
						
						|  | min_width = self.base_size // 2 | 
					
						
						|  | max_height = self.base_size * 2 | 
					
						
						|  | max_width = self.base_size * 2 | 
					
						
						|  |  | 
					
						
						|  | resolutions = [Resolution(self.base_size, self.base_size)] | 
					
						
						|  |  | 
					
						
						|  | cur_height, cur_width = self.base_size, self.base_size | 
					
						
						|  | while True: | 
					
						
						|  | if cur_height >= max_height and cur_width <= min_width: | 
					
						
						|  | break | 
					
						
						|  |  | 
					
						
						|  | cur_height = min(cur_height + self.step, max_height) | 
					
						
						|  | cur_width = max(cur_width - self.step, min_width) | 
					
						
						|  | resolutions.append(Resolution(cur_height // self.align * self.align, cur_width // self.align * self.align)) | 
					
						
						|  |  | 
					
						
						|  | cur_height, cur_width = self.base_size, self.base_size | 
					
						
						|  | while True: | 
					
						
						|  | if cur_height <= min_height and cur_width >= max_width: | 
					
						
						|  | break | 
					
						
						|  |  | 
					
						
						|  | cur_height = max(cur_height - self.step, min_height) | 
					
						
						|  | cur_width = min(cur_width + self.step, max_width) | 
					
						
						|  | resolutions.append(Resolution(cur_height // self.align * self.align, cur_width // self.align * self.align)) | 
					
						
						|  |  | 
					
						
						|  | resolutions = sorted(resolutions, key=lambda x: x.ratio) | 
					
						
						|  |  | 
					
						
						|  | return resolutions | 
					
						
						|  |  | 
					
						
						|  | def get_target_size(self, width, height): | 
					
						
						|  | ratio = height / width | 
					
						
						|  | idx = np.argmin(np.abs(self.ratio - ratio)) | 
					
						
						|  | reso = self.data[idx] | 
					
						
						|  | return reso.w, reso.h | 
					
						
						|  |  | 
					
						
						|  | def get_base_size_and_ratio_index(self, width, height): | 
					
						
						|  | ratio = height / width | 
					
						
						|  | idx = np.argmin(np.abs(self.ratio - ratio)) | 
					
						
						|  | return self.base_size, idx | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class ImageInfo: | 
					
						
						|  | """ Class to store image information for processing and generation. """ | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | image_type: str = None, | 
					
						
						|  | image_tensor: torch.Tensor = None, | 
					
						
						|  | image_width: int = None, | 
					
						
						|  | image_height: int = None, | 
					
						
						|  | token_width: int = None, | 
					
						
						|  | token_height: int = None, | 
					
						
						|  | image_token_length: int = None, | 
					
						
						|  | base_size: int = None, | 
					
						
						|  | ratio_index: int = None, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | self.image_type = image_type | 
					
						
						|  | self.image_tensor = image_tensor | 
					
						
						|  | self.image_width = image_width | 
					
						
						|  | self.w = image_width | 
					
						
						|  | self.image_height = image_height | 
					
						
						|  | self.h = image_height | 
					
						
						|  | self.token_width = token_width | 
					
						
						|  | self.tk_w = token_width | 
					
						
						|  | self.token_height = token_height | 
					
						
						|  | self.tk_h = token_height | 
					
						
						|  | self.image_token_length = default( | 
					
						
						|  | image_token_length, | 
					
						
						|  | token_width * token_height if token_width is not None and token_height is not None else None | 
					
						
						|  | ) | 
					
						
						|  | self.base_size = base_size | 
					
						
						|  | self.ratio_index = ratio_index | 
					
						
						|  |  | 
					
						
						|  | self.add_timestep_token = kwargs.get("add_timestep_token", True) | 
					
						
						|  | self.add_guidance_token = kwargs.get("add_guidance_token", False) | 
					
						
						|  | self.use_front_boi_token = kwargs.get("use_front_boi_token", True) | 
					
						
						|  | self.add_image_shape_token = kwargs.get("add_image_shape_token", True) | 
					
						
						|  |  | 
					
						
						|  | def __getitem__(self, key: str) -> Any: | 
					
						
						|  | """Allow dictionary-like access to attributes.""" | 
					
						
						|  | if hasattr(self, key): | 
					
						
						|  | return getattr(self, key) | 
					
						
						|  | raise KeyError(f"Key '{key}' not found in ImageInfo") | 
					
						
						|  |  | 
					
						
						|  | def __setitem__(self, key: str, value: Any) -> None: | 
					
						
						|  | """Allow dictionary-like assignment to attributes.""" | 
					
						
						|  | if hasattr(self, key): | 
					
						
						|  | setattr(self, key, value) | 
					
						
						|  | else: | 
					
						
						|  | raise KeyError(f"Key '{key}' not found in ImageInfo") | 
					
						
						|  |  | 
					
						
						|  | def __contains__(self, key: str) -> bool: | 
					
						
						|  | """Check if the key exists in the ImageInfo object.""" | 
					
						
						|  | return hasattr(self, key) | 
					
						
						|  |  | 
					
						
						|  | def __repr__(self): | 
					
						
						|  | return (f"ImageInfo(image_type={self.image_type}, image_tensor={self.image_tensor}, " | 
					
						
						|  | f"image_width={self.image_width}, image_height={self.image_height}, " | 
					
						
						|  | f"token_width={self.token_width}, token_height={self.token_height}, " | 
					
						
						|  | f"image_token_length={self.image_token_length}, " | 
					
						
						|  | f"base_size={self.base_size}, ratio_index={self.ratio_index}") | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def meta_info(self): | 
					
						
						|  |  | 
					
						
						|  | if self.image_type in ["vae", "gen_image"]: | 
					
						
						|  | return dict( | 
					
						
						|  | token_length=self.image_token_length, | 
					
						
						|  | add_timestep_token=self.add_timestep_token, | 
					
						
						|  | add_guidance_token=self.add_guidance_token, | 
					
						
						|  | use_front_boi_token=self.use_front_boi_token, | 
					
						
						|  | add_image_shape_token=self.add_image_shape_token, | 
					
						
						|  | base_size=self.base_size, | 
					
						
						|  | ratio_idx=self.ratio_index, | 
					
						
						|  |  | 
					
						
						|  | token_height=self.token_height, | 
					
						
						|  | token_width=self.token_width, | 
					
						
						|  |  | 
					
						
						|  | image_height=self.image_height, | 
					
						
						|  | image_width=self.image_width, | 
					
						
						|  | ) | 
					
						
						|  | elif self.image_type in ["vit"]: | 
					
						
						|  | return dict( | 
					
						
						|  | token_length=self.image_token_length, | 
					
						
						|  | use_front_boi_token=self.use_front_boi_token, | 
					
						
						|  | add_image_shape_token=self.add_image_shape_token, | 
					
						
						|  |  | 
					
						
						|  | token_height=self.token_height, | 
					
						
						|  | token_width=self.token_width, | 
					
						
						|  |  | 
					
						
						|  | image_height=self.image_height, | 
					
						
						|  | image_width=self.image_width, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError(f"Unknown image type '{self.image_type}'") | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def num_special_tokens(self): | 
					
						
						|  | if self.args is None: | 
					
						
						|  | raise ValueError("meta_info requires `args` attribute to be set.") | 
					
						
						|  | if self.image_type in ["vae", "src_image", "gen_image"]: | 
					
						
						|  | count = ( | 
					
						
						|  | 2 + | 
					
						
						|  | (1 if self.add_timestep_token else 0) + | 
					
						
						|  | (1 if self.add_guidance_token else 0) + | 
					
						
						|  | (2 if self.add_image_shape_token else 0) | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError(f"Unknown image_type: {self.image_type}") | 
					
						
						|  | return count | 
					
						
						|  |  | 
					
						
						|  | def copy(self, copy_image_tensor=True): | 
					
						
						|  | if copy_image_tensor and self.image_tensor is None: | 
					
						
						|  | raise ValueError("image_tensor is None, cannot copy") | 
					
						
						|  | return ImageInfo( | 
					
						
						|  | image_type=self.image_type, | 
					
						
						|  | image_tensor=self.image_tensor.clone() if copy_image_tensor else None, | 
					
						
						|  | image_width=self.image_width, | 
					
						
						|  | image_height=self.image_height, | 
					
						
						|  | token_width=self.token_width, | 
					
						
						|  | token_height=self.token_height, | 
					
						
						|  | image_token_length=self.image_token_length, | 
					
						
						|  | base_size=self.base_size, | 
					
						
						|  | ratio_index=self.ratio_index, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def zeros_(self): | 
					
						
						|  | self.image_tensor = torch.zeros_like(self.image_tensor) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class ImageTensor(torch.Tensor): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | i: ImageInfo | 
					
						
						|  | vision_encoder_kwargs: dict | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class JointImageInfo(object): | 
					
						
						|  | def __init__(self, vae_image_info: ImageInfo, vision_image_info: ImageInfo, vision_encoder_kwargs: dict = None): | 
					
						
						|  | self.vae_image_info = vae_image_info | 
					
						
						|  | self.vision_image_info = vision_image_info | 
					
						
						|  | self.vision_encoder_kwargs = vision_encoder_kwargs | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.image_type = "joint_image" | 
					
						
						|  | self.image_token_length = vae_image_info.image_token_length + vision_image_info.image_token_length | 
					
						
						|  |  | 
					
						
						|  | self.add_timestep_token = vae_image_info.add_timestep_token | 
					
						
						|  | self.use_front_boi_token = vae_image_info.use_front_boi_token | 
					
						
						|  | self.add_image_shape_token = vae_image_info.add_image_shape_token | 
					
						
						|  |  | 
					
						
						|  | def __repr__(self): | 
					
						
						|  | return f"JointImageInfo(vae_image={self.vae_image_info}, vision_image={self.vision_image_info})" | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def meta_info(self): | 
					
						
						|  |  | 
					
						
						|  | return dict( | 
					
						
						|  | token_length=[self.vae_image_info.image_token_length, self.vision_image_info.image_token_length], | 
					
						
						|  | add_timestep_token=self.add_timestep_token, | 
					
						
						|  | use_front_boi_token=self.use_front_boi_token, | 
					
						
						|  | add_image_shape_token=self.add_image_shape_token, | 
					
						
						|  | base_size=self.vae_image_info.base_size, | 
					
						
						|  | ratio_idx=self.vae_image_info.ratio_index, | 
					
						
						|  |  | 
					
						
						|  | token_height=[self.vae_image_info.token_height, self.vision_image_info.token_height], | 
					
						
						|  | token_width=[self.vae_image_info.token_width, self.vision_image_info.token_width], | 
					
						
						|  |  | 
					
						
						|  | image_height=[self.vae_image_info.image_height, self.vision_image_info.image_height], | 
					
						
						|  | image_width=[self.vae_image_info.image_width, self.vision_image_info.image_width], | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def num_special_tokens(self): | 
					
						
						|  | return ( | 
					
						
						|  | 2 + | 
					
						
						|  | (1 if self.add_timestep_token else 0) + | 
					
						
						|  | (2 if self.add_image_shape_token else 0) + | 
					
						
						|  | 1 | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def copy(self, copy_image_tensor=True): | 
					
						
						|  | if copy_image_tensor and ( | 
					
						
						|  | self.vae_image_info.image_tensor is None or self.vision_image_info.image_tensor is None): | 
					
						
						|  | raise ValueError("image_tensor is None, cannot copy") | 
					
						
						|  | return JointImageInfo( | 
					
						
						|  | self.vae_image_info.copy(copy_image_tensor), | 
					
						
						|  | self.vision_image_info.copy(copy_image_tensor), | 
					
						
						|  | self.vision_encoder_kwargs, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def zeros_(self): | 
					
						
						|  | self.vae_image_info.zeros_() | 
					
						
						|  | self.vision_image_info.zeros_() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class JointImage(object): | 
					
						
						|  | def __init__(self, vae_image: ImageTensor, vision_image: ImageTensor): | 
					
						
						|  | self.vae_image = vae_image | 
					
						
						|  | self.vision_image = vision_image | 
					
						
						|  | self.i = JointImageInfo(vae_image.i, vision_image.i) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class TokenizerEncodeOutput(BaseOutput): | 
					
						
						|  | tokens: torch.Tensor = None | 
					
						
						|  | timestep_scatter_index: Optional[torch.Tensor] = None | 
					
						
						|  | guidance_scatter_index: Optional[torch.Tensor] = None | 
					
						
						|  | text_slices: Optional[List[slice]] = None | 
					
						
						|  | gen_image_slices: Optional[List[slice]] = None | 
					
						
						|  | joint_image_slices: Optional[List[slice]] = None | 
					
						
						|  | cond_vae_image_slices: Optional[List[slice]] = None | 
					
						
						|  | cond_vit_image_slices: Optional[List[slice]] = None | 
					
						
						|  | text_mask: Optional[torch.Tensor] = None | 
					
						
						|  | gen_image_mask: Optional[torch.Tensor] = None | 
					
						
						|  | cond_vae_image_mask: Optional[torch.Tensor] = None | 
					
						
						|  | cond_vit_image_mask: Optional[torch.Tensor] = None | 
					
						
						|  | real_pos: Optional[torch.Tensor] = None | 
					
						
						|  | all_image_slices: Optional[List[slice]] = None | 
					
						
						|  | cond_timestep_scatter_index: Optional[torch.Tensor] = None | 
					
						
						|  | gen_timestep_scatter_index: Optional[torch.Tensor] = None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Conversation: | 
					
						
						|  | roles: List[str] = ["User", "Assistant"] | 
					
						
						|  | sep: str = "\n\n" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class TokenizerWrapper(object): | 
					
						
						|  | def __init__(self, tokenizer): | 
					
						
						|  | if isinstance(tokenizer, str): | 
					
						
						|  | self.tokenizer = AutoTokenizer.from_pretrained(tokenizer) | 
					
						
						|  | else: | 
					
						
						|  | self.tokenizer = tokenizer | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.bos_token_id = self.tokenizer.bos_token_id | 
					
						
						|  | self.eos_token_id = self.tokenizer.eos_token_id | 
					
						
						|  | self.pad_token_id = self.tokenizer.pad_token_id | 
					
						
						|  | self.boi_token_id = self.tokenizer.convert_tokens_to_ids("<boi>") | 
					
						
						|  | self.eoi_token_id = self.tokenizer.convert_tokens_to_ids("<eoi>") | 
					
						
						|  | self.img_token_id = self.tokenizer.convert_tokens_to_ids("<img>") | 
					
						
						|  | self.cfg_token_id = self.tokenizer.convert_tokens_to_ids("<cfg>") | 
					
						
						|  | self.end_answer_token_id = self.tokenizer.convert_tokens_to_ids("</answer>") | 
					
						
						|  | self.end_recaption_token_id = self.tokenizer.convert_tokens_to_ids("</recaption>") | 
					
						
						|  | self.ratio_token_offset = self.tokenizer.convert_tokens_to_ids("<img_ratio_0>") | 
					
						
						|  | self.special_token_map = self.tokenizer.added_tokens_encoder | 
					
						
						|  |  | 
					
						
						|  | def pad(self, tensor_list, dim=0, pad_val=None): | 
					
						
						|  | if pad_val is None: | 
					
						
						|  | pad_val = self.pad_token_id | 
					
						
						|  | max_len = max([t.shape[dim] for t in tensor_list]) | 
					
						
						|  | padded_tensor_list = [] | 
					
						
						|  | for t in tensor_list: | 
					
						
						|  | if t.shape[dim] < max_len: | 
					
						
						|  | assert pad_val is not False, "Not allowed pad." | 
					
						
						|  | t = F.pad(t, (0, max_len - t.shape[dim]), value=pad_val) | 
					
						
						|  | padded_tensor_list.append(t) | 
					
						
						|  | return padded_tensor_list | 
					
						
						|  |  | 
					
						
						|  | def encode(self, *args, **kwargs): | 
					
						
						|  | return self.tokenizer.encode(*args, **kwargs) | 
					
						
						|  |  | 
					
						
						|  | def decode(self, *args, **kwargs): | 
					
						
						|  | return self.tokenizer.decode(*args, **kwargs) | 
					
						
						|  |  | 
					
						
						|  | def encode_text( | 
					
						
						|  | self, | 
					
						
						|  | *texts, | 
					
						
						|  | uncond_enabled: Optional[Union[bool, List[bool]]] = None, | 
					
						
						|  | uncond_p: Optional[float] = None, | 
					
						
						|  | max_length: Optional[int] = None, | 
					
						
						|  | pad: Optional[str] = None, | 
					
						
						|  | return_lengths: bool = False, | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | Encode text and image for AR-like model training of the text-to-image/instruction tuning tasks. | 
					
						
						|  | Support encode multiple texts at once. Each text can be separately conditioned or unconditioned | 
					
						
						|  | based on the uncond_flags and a uniform uncond_p. | 
					
						
						|  | **<bos> token is always prepended to the text tokens.** | 
					
						
						|  |  | 
					
						
						|  | Parameters | 
					
						
						|  | ---------- | 
					
						
						|  | texts: str or List[str] | 
					
						
						|  | List of texts to be encoded. | 
					
						
						|  | uncond_enabled: bool or List[bool] | 
					
						
						|  | List of flags to indicate whether the text should be unconditioned. | 
					
						
						|  | If False, the text will never be unconditioned. | 
					
						
						|  | If True, the text will be unconditioned with uncond_p. | 
					
						
						|  | uncond_p: float | 
					
						
						|  | Probability to the unconditional text. Only works when uncond_enabled is True. | 
					
						
						|  | max_length: int | 
					
						
						|  | Maximum length of the encoded text. | 
					
						
						|  | pad: Optional[str] | 
					
						
						|  | Padding method. Can be 'left' or 'right'. | 
					
						
						|  | return_lengths: bool | 
					
						
						|  | Whether to return the length of each encoded text. | 
					
						
						|  | """ | 
					
						
						|  | if pad is not None: | 
					
						
						|  | assert max_length is not None, "max_length should be provided when pad is not None." | 
					
						
						|  |  | 
					
						
						|  | if uncond_enabled is None: | 
					
						
						|  | uncond_enabled = [True] * len(texts) | 
					
						
						|  | elif isinstance(uncond_enabled, bool): | 
					
						
						|  | uncond_enabled = [uncond_enabled] * len(texts) | 
					
						
						|  | if len(uncond_enabled) != len(texts): | 
					
						
						|  | print(uncond_enabled, texts) | 
					
						
						|  | assert len(uncond_enabled) == len(texts), ( | 
					
						
						|  | f"Length of uncond_flags should be equal to the number of texts, " | 
					
						
						|  | f"but got {len(uncond_enabled)} and {len(texts)}." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | do_uncond_drop = (uncond_p is not None) and (random.random() < uncond_p) | 
					
						
						|  | text_tokens, lengths = [], [] | 
					
						
						|  | cum_length = 0 | 
					
						
						|  | for text, uncond_flag in zip(texts, uncond_enabled): | 
					
						
						|  |  | 
					
						
						|  | if max_length is not None and cum_length >= max_length: | 
					
						
						|  | warnings.warn( | 
					
						
						|  | f"Text length exceeds the max_length({max_length}). The remaining texts will be ignored: " | 
					
						
						|  | f"{text[:80]}..." | 
					
						
						|  | ) | 
					
						
						|  | break | 
					
						
						|  |  | 
					
						
						|  | if isinstance(text, str): | 
					
						
						|  | text_token = self.tokenizer.encode(text, add_special_tokens=False) | 
					
						
						|  | else: | 
					
						
						|  | text_token = text | 
					
						
						|  | if uncond_flag and do_uncond_drop: | 
					
						
						|  | text_token = [self.cfg_token_id] * len(text_token) | 
					
						
						|  |  | 
					
						
						|  | if max_length is not None and (cum_length + len(text_token)) > max_length: | 
					
						
						|  | text_token = text_token[:max_length - cum_length] | 
					
						
						|  | text_tokens.extend(text_token) | 
					
						
						|  | lengths.append(len(text_token)) | 
					
						
						|  | cum_length += len(text_token) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if pad is not None and (pad_length := max_length - len(text_tokens)) > 0: | 
					
						
						|  | if pad == 'left': | 
					
						
						|  | text_tokens = [self.pad_token_id] * pad_length + text_tokens | 
					
						
						|  | elif pad == 'right': | 
					
						
						|  | text_tokens = text_tokens + [self.pad_token_id] * pad_length | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError(f"Unsupported padding method: {pad}.") | 
					
						
						|  |  | 
					
						
						|  | if return_lengths: | 
					
						
						|  | return text_tokens, lengths | 
					
						
						|  | return text_tokens | 
					
						
						|  |  | 
					
						
						|  | @staticmethod | 
					
						
						|  | def _check_key_number_matched(keys, data): | 
					
						
						|  |  | 
					
						
						|  | assert set(keys) == set(data.keys()), ( | 
					
						
						|  | f"Keys in the template and token source should be matched, but got {set(keys)} and {list(data.keys())}." | 
					
						
						|  | ) | 
					
						
						|  | key_counts = {k: 0 for k in keys} | 
					
						
						|  | for key in keys: | 
					
						
						|  | key_counts[key] += 1 | 
					
						
						|  | for key, count in key_counts.items(): | 
					
						
						|  | assert len(data[key]) == count, ( | 
					
						
						|  | f"Number of `{key}` in the token source should be matched with the template, but got " | 
					
						
						|  | f"{data[key]}({len(data[key])}) and {count}." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def _add_image_meta_info_token(self, token_seq, token_count, extra_token_pos, add_timestep_token=False, | 
					
						
						|  | add_image_shape_token=False, base_size=None, ratio_idx=None, image_type=None, | 
					
						
						|  | add_guidance_token=False): | 
					
						
						|  | if add_image_shape_token: | 
					
						
						|  | token_seq.extend([ | 
					
						
						|  | self.special_token_map[f"<img_size_{base_size}>"], | 
					
						
						|  | self.special_token_map[f"<img_ratio_{ratio_idx}>"] | 
					
						
						|  | ]) | 
					
						
						|  | token_count += 2 | 
					
						
						|  | if add_timestep_token: | 
					
						
						|  | token_seq.extend([self.special_token_map["<timestep>"]]) | 
					
						
						|  | extra_token_pos['timestep'].append(token_count) | 
					
						
						|  | if image_type is not None: | 
					
						
						|  | if image_type == "gen_image": | 
					
						
						|  | extra_token_pos['gen_timestep'].append(token_count) | 
					
						
						|  | elif image_type in ["joint_image"]: | 
					
						
						|  | extra_token_pos['cond_timestep'].append(token_count) | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError(f"Unsupported image type: {image_type}.") | 
					
						
						|  | token_count += 1 | 
					
						
						|  | if add_guidance_token: | 
					
						
						|  | token_seq.extend([self.special_token_map["<guidance>"]]) | 
					
						
						|  | extra_token_pos['guidance'].append(token_count) | 
					
						
						|  | token_count += 1 | 
					
						
						|  | return token_count | 
					
						
						|  |  | 
					
						
						|  | @staticmethod | 
					
						
						|  | def _shorten_text(text): | 
					
						
						|  | import re | 
					
						
						|  | text = re.sub(r"(<img>)+", lambda m: f"[<img>]{{{len(m.group(0)) // 5}}}", text) | 
					
						
						|  | text = re.sub(r"(<pad>)+", lambda m: f"[<pad>]{{{len(m.group(0)) // 5}}}", text) | 
					
						
						|  | return text | 
					
						
						|  |  | 
					
						
						|  | def encode_sequence( | 
					
						
						|  | self, | 
					
						
						|  | template: str, | 
					
						
						|  | token_source: Dict[str, List], | 
					
						
						|  | total_length=None, | 
					
						
						|  | add_timestep_token=False, | 
					
						
						|  | add_guidance_token=False, | 
					
						
						|  | last_key_only_prefix=False, | 
					
						
						|  | add_eos=True, | 
					
						
						|  | use_front_boi_token=True, | 
					
						
						|  | add_pad=True, | 
					
						
						|  | add_bos=True, | 
					
						
						|  | drop_last: Union[str, bool] = 'auto', | 
					
						
						|  | add_image_shape_token=False, | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | Encode a sequence based on the template (e.g., `text-image` for t2i, `text-image-image` for instruction tuning) | 
					
						
						|  | and token source. | 
					
						
						|  |  | 
					
						
						|  | Parameters | 
					
						
						|  | ---------- | 
					
						
						|  | template: str | 
					
						
						|  | Template of the sequence. E.g., "text-gen_image" means the sequence is composed of text and an image. | 
					
						
						|  | "text-text-gen_image" means the sequence is composed of two sections of text and an image. | 
					
						
						|  | token_source: Dict[str, List] | 
					
						
						|  | Token source for each key in the template, in order. | 
					
						
						|  | - text: List[Dict]. | 
					
						
						|  | - gen_image: List[Dict]. | 
					
						
						|  | - joint_image: List[Dict]. | 
					
						
						|  | total_length: int | 
					
						
						|  | Total length of the encoded sequence, include padding tokens. | 
					
						
						|  | add_timestep_token: bool | 
					
						
						|  | Whether to add timestep token before the image tokens. | 
					
						
						|  | (Right after the <img_ratio_*><img_size_*> tokens) | 
					
						
						|  | add_guidance_token: bool | 
					
						
						|  | Whether to add guidance token before the image tokens. | 
					
						
						|  | last_key_only_prefix: bool | 
					
						
						|  | Whether to only use the modal prefix in the last key. | 
					
						
						|  | add_eos: bool or 'auto' | 
					
						
						|  | Whether to add eos token at the end of the sequence. If True, always add eos token. If 'auto', | 
					
						
						|  | add eos token only when the total_length is not reached and the last token is not <eos>. | 
					
						
						|  | use_front_boi_token: bool: | 
					
						
						|  | Whether to put the <boi> token at the front of iw, ih and timestep tokens. | 
					
						
						|  | add_pad: bool or 'auto' | 
					
						
						|  | Whether to add padding tokens to the sequence. If True and total_length is not reached, add padding tokens. | 
					
						
						|  | add_bos: bool | 
					
						
						|  | Whether to add bos token at the beginning of the sequence. | 
					
						
						|  | drop_last: bool or 'auto' | 
					
						
						|  | - If auto, drop last tokens exceeding the total_length if the total_length is provided. If cut point is | 
					
						
						|  | in the middle of the image tokens, an error will raised. | 
					
						
						|  | - If True, drop last tokens exceeding the total_length. If cut point is in the middle of the image tokens, | 
					
						
						|  | all the successive image tokens will be dropped. | 
					
						
						|  | - If False, keep the last tokens exceeding the total_length, even if the total_length is reached. | 
					
						
						|  | add_image_shape_token: bool | 
					
						
						|  | Whether to add image shape token before the image tokens. (Right before the <timestep> token) | 
					
						
						|  |  | 
					
						
						|  | Returns | 
					
						
						|  | ------- | 
					
						
						|  | token_seq: list | 
					
						
						|  | Encoded token sequence. | 
					
						
						|  | extra_token_pos: dict | 
					
						
						|  | Positions of extra tokens. | 
					
						
						|  | """ | 
					
						
						|  | if last_key_only_prefix: | 
					
						
						|  | assert add_eos is not True, "add_eos should not be True when last_key_only_prefix is True." | 
					
						
						|  | if drop_last is True and total_length is None: | 
					
						
						|  | raise ValueError("total_length should be provided when drop_last is True.") | 
					
						
						|  |  | 
					
						
						|  | keys = template.split('-') | 
					
						
						|  | modal_length = len(keys) | 
					
						
						|  | index_indicator = {k: 0 for k in token_source} | 
					
						
						|  | for k, v in token_source.items(): | 
					
						
						|  | assert isinstance(v, (list, tuple)), ( | 
					
						
						|  | f"Value of `{k}` in the token source should be a list or tuple, but got {type(v)}." | 
					
						
						|  | ) | 
					
						
						|  | self._check_key_number_matched(keys, token_source) | 
					
						
						|  |  | 
					
						
						|  | token_seq = [] | 
					
						
						|  | token_count = 0 | 
					
						
						|  | extra_token_pos = defaultdict(list) | 
					
						
						|  | if add_bos: | 
					
						
						|  | token_seq.append(self.bos_token_id) | 
					
						
						|  | token_count += 1 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | drop_last_break = False | 
					
						
						|  | for i, key in enumerate(keys): | 
					
						
						|  | source = token_source[key][index_indicator[key]] | 
					
						
						|  | if key == "text": | 
					
						
						|  | token_seq.extend(source) | 
					
						
						|  | extra_token_pos["<text>_start"].append(token_count) | 
					
						
						|  | token_count += len(source) | 
					
						
						|  | extra_token_pos["<text>_end"].append(token_count - 1) | 
					
						
						|  |  | 
					
						
						|  | elif key == "gen_image": | 
					
						
						|  | if isinstance(source, int): | 
					
						
						|  | source = {'length': source} | 
					
						
						|  | extra_count = 2 + ( | 
					
						
						|  | 1 if source.get('timestep', add_timestep_token) else 0) + ( | 
					
						
						|  | 1 if source.get('guidance', add_guidance_token) else 0) + ( | 
					
						
						|  | 2 if source.get('image_shape', add_image_shape_token) else 0 | 
					
						
						|  | ) | 
					
						
						|  | if drop_last is True and token_count + extra_count + source['length'] > total_length: | 
					
						
						|  | drop_last_break = True | 
					
						
						|  | break | 
					
						
						|  | if source.get('front_boi', use_front_boi_token): | 
					
						
						|  | token_seq.append(self.boi_token_id) | 
					
						
						|  | extra_token_pos["boi"].append(token_count) | 
					
						
						|  | token_count += 1 | 
					
						
						|  | token_count = self._add_image_meta_info_token( | 
					
						
						|  | token_seq=token_seq, | 
					
						
						|  | token_count=token_count, | 
					
						
						|  | extra_token_pos=extra_token_pos, | 
					
						
						|  | add_timestep_token=source.get('timestep', add_timestep_token), | 
					
						
						|  | add_guidance_token=source.get('guidance', add_guidance_token), | 
					
						
						|  | add_image_shape_token=source.get('image_shape', add_image_shape_token), | 
					
						
						|  | base_size=source.get('base_size'), | 
					
						
						|  | ratio_idx=source.get('ratio_idx'), | 
					
						
						|  | image_type=key, | 
					
						
						|  | ) | 
					
						
						|  | if not source.get('front_boi', use_front_boi_token): | 
					
						
						|  | token_seq.append(self.boi_token_id) | 
					
						
						|  | extra_token_pos["boi"].append(token_count) | 
					
						
						|  | token_count += 1 | 
					
						
						|  | if last_key_only_prefix and i == modal_length - 1: | 
					
						
						|  | pass | 
					
						
						|  | else: | 
					
						
						|  | token_seq.extend( | 
					
						
						|  | [self.img_token_id] * source['length'] + | 
					
						
						|  | [self.eoi_token_id] | 
					
						
						|  | ) | 
					
						
						|  | extra_token_pos["<img>_start"].append(token_count) | 
					
						
						|  | extra_token_pos["<all_img>_start"].append(token_count) | 
					
						
						|  | token_count += source['length'] | 
					
						
						|  | extra_token_pos["<img>_end"].append(token_count - 1) | 
					
						
						|  | extra_token_pos["<all_img>_end"].append(token_count - 1) | 
					
						
						|  | extra_token_pos["eoi"].append(token_count) | 
					
						
						|  | token_count += 1 | 
					
						
						|  |  | 
					
						
						|  | elif key == "joint_image": | 
					
						
						|  | assert isinstance(source['length'], list) and len( | 
					
						
						|  | source['length']) == 2, "joint_image length should be a list of two integers" | 
					
						
						|  | extra_count = 2 + 1 + ( | 
					
						
						|  | 1 if source.get('timestep', add_timestep_token) else 0) + ( | 
					
						
						|  | 2 if source.get('image_shape', add_image_shape_token) else 0 | 
					
						
						|  | ) | 
					
						
						|  | if drop_last is True and token_count + extra_count + sum(source['length']) > total_length: | 
					
						
						|  | drop_last_break = True | 
					
						
						|  | break | 
					
						
						|  | if source.get('front_boi', use_front_boi_token): | 
					
						
						|  | token_seq.append(self.boi_token_id) | 
					
						
						|  | extra_token_pos["boi"].append(token_count) | 
					
						
						|  | token_count += 1 | 
					
						
						|  | token_count = self._add_image_meta_info_token( | 
					
						
						|  | token_seq=token_seq, | 
					
						
						|  | token_count=token_count, | 
					
						
						|  | extra_token_pos=extra_token_pos, | 
					
						
						|  | add_timestep_token=source.get('timestep', add_timestep_token), | 
					
						
						|  | add_image_shape_token=source.get('image_shape', add_image_shape_token), | 
					
						
						|  | base_size=source.get('base_size'), | 
					
						
						|  | ratio_idx=source.get('ratio_idx'), | 
					
						
						|  | image_type=key, | 
					
						
						|  | ) | 
					
						
						|  | if not source.get('front_boi', use_front_boi_token): | 
					
						
						|  | token_seq.append(self.boi_token_id) | 
					
						
						|  | extra_token_pos["boi"].append(token_count) | 
					
						
						|  | token_count += 1 | 
					
						
						|  | if last_key_only_prefix and i == modal_length - 1: | 
					
						
						|  | pass | 
					
						
						|  | else: | 
					
						
						|  | token_seq.extend( | 
					
						
						|  | [self.img_token_id] * source['length'][0] | 
					
						
						|  | ) | 
					
						
						|  | extra_token_pos["<vae_img>_start"].append(token_count) | 
					
						
						|  | extra_token_pos["<joint_img>_start"].append(token_count) | 
					
						
						|  | extra_token_pos["<all_img>_start"].append(token_count) | 
					
						
						|  | token_count += source['length'][0] | 
					
						
						|  | extra_token_pos["<vae_img>_end"].append(token_count - 1) | 
					
						
						|  | extra_token_pos["<all_img>_end"].append(token_count - 1) | 
					
						
						|  |  | 
					
						
						|  | token_seq.extend( | 
					
						
						|  | [self.special_token_map["<joint_img_sep>"]] | 
					
						
						|  | ) | 
					
						
						|  | extra_token_pos["joint_img_sep"].append(token_count) | 
					
						
						|  | token_count += 1 | 
					
						
						|  |  | 
					
						
						|  | token_seq.extend( | 
					
						
						|  | [self.img_token_id] * source['length'][1] | 
					
						
						|  | ) | 
					
						
						|  | extra_token_pos["<vit_img>_start"].append(token_count) | 
					
						
						|  | extra_token_pos["<all_img>_start"].append(token_count) | 
					
						
						|  | token_count += source['length'][1] | 
					
						
						|  | extra_token_pos["<vit_img>_end"].append(token_count - 1) | 
					
						
						|  | extra_token_pos["<joint_img>_end"].append(token_count - 1) | 
					
						
						|  | extra_token_pos["<all_img>_end"].append(token_count - 1) | 
					
						
						|  |  | 
					
						
						|  | token_seq.extend( | 
					
						
						|  | [self.eoi_token_id] | 
					
						
						|  | ) | 
					
						
						|  | extra_token_pos["eoi"].append(token_count) | 
					
						
						|  | token_count += 1 | 
					
						
						|  |  | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError(f"Not supported key: {key}") | 
					
						
						|  | index_indicator[key] += 1 | 
					
						
						|  |  | 
					
						
						|  | if add_eos is True and not drop_last_break: | 
					
						
						|  |  | 
					
						
						|  | token_seq.append(self.eos_token_id) | 
					
						
						|  | extra_token_pos["eos"].append(token_count) | 
					
						
						|  | token_count += 1 | 
					
						
						|  | elif add_eos == 'auto' and not drop_last_break: | 
					
						
						|  |  | 
					
						
						|  | if token_seq[-1] != self.eos_token_id and (total_length is None or token_count < total_length): | 
					
						
						|  | token_seq.append(self.eos_token_id) | 
					
						
						|  | extra_token_pos["eos"].append(token_count) | 
					
						
						|  | token_count += 1 | 
					
						
						|  |  | 
					
						
						|  | if total_length: | 
					
						
						|  |  | 
					
						
						|  | if token_count > total_length and drop_last: | 
					
						
						|  |  | 
					
						
						|  | for start_key, end_key in [ | 
					
						
						|  | ("<img>_start", "<img>_end"), ("<joint_img>_start", "<joint_img>_end"), | 
					
						
						|  | ("<vae_img>_start", "<vae_img>_end"), ("<vit_img>_start", "<vit_img>_end"), | 
					
						
						|  | ]: | 
					
						
						|  | if start_key in extra_token_pos and end_key in extra_token_pos: | 
					
						
						|  | assert all( | 
					
						
						|  | (start > total_length or end + 1 < total_length) | 
					
						
						|  | for start, end in zip(extra_token_pos[start_key], extra_token_pos[end_key]) | 
					
						
						|  | ), ("Clip position should not be in the middle of the image tokens.\n" | 
					
						
						|  | f"Below is the text:\n{self._shorten_text(self.tokenizer.decode(token_seq))}") | 
					
						
						|  | token_seq = token_seq[:total_length] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | pad_num = max(0, total_length - len(token_seq)) | 
					
						
						|  | if add_pad and pad_num: | 
					
						
						|  | token_seq.extend([self.pad_token_id] * pad_num) | 
					
						
						|  | extra_token_pos["first_pad"].append(token_count) | 
					
						
						|  |  | 
					
						
						|  | return token_seq, extra_token_pos | 
					
						
						|  |  | 
					
						
						|  | def batch_gen_infer( | 
					
						
						|  | self, | 
					
						
						|  | infer_fn, | 
					
						
						|  | prompt_list: list, | 
					
						
						|  | negative_prompt_list: list = None, | 
					
						
						|  | infer_fn_kwargs_list: List[Dict[str, int]] = None, | 
					
						
						|  | do_classifier_free_guidance=False, | 
					
						
						|  | condition_repeat_times: int = 1, | 
					
						
						|  | uncondition_repeat_times: int = 1, | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | Batch inference for the AR-like model training of the text-to-image/instruction tuning tasks. | 
					
						
						|  |  | 
					
						
						|  | Parameters | 
					
						
						|  | ---------- | 
					
						
						|  | infer_fn: callable | 
					
						
						|  | Inference function to encode the prompt. | 
					
						
						|  | prompt_list: list | 
					
						
						|  | List of prompts. Each element can be a single prompt or a list of prompts passed to the infer_fn. | 
					
						
						|  | negative_prompt_list: list | 
					
						
						|  | List of negative prompts. Only used when do_classifier_free_guidance is True. If None, will use <cfg> | 
					
						
						|  | token sequence as negative prompt. | 
					
						
						|  | infer_fn_kwargs_list: List[Dict[str, int]] | 
					
						
						|  | List of keyword arguments for the infer_fn. | 
					
						
						|  | do_classifier_free_guidance: bool | 
					
						
						|  | Whether to do classifier-free guidance. | 
					
						
						|  | condition_repeat_times: int | 
					
						
						|  | Support multi-condition. | 
					
						
						|  | uncondition_repeat_times: int | 
					
						
						|  | Support multi-uncondition. | 
					
						
						|  | """ | 
					
						
						|  | if infer_fn_kwargs_list is None: | 
					
						
						|  | infer_fn_kwargs_list = [{} for _ in prompt_list] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | cond_results_list = None | 
					
						
						|  | uncond_results_list = None | 
					
						
						|  | output_type_list = [] | 
					
						
						|  |  | 
					
						
						|  | for prompt_idx, (prompt, infer_fn_kwargs) in enumerate(zip(prompt_list, infer_fn_kwargs_list)): | 
					
						
						|  | if not isinstance(prompt, (list, tuple)): | 
					
						
						|  | prompt = [prompt] | 
					
						
						|  | cond_kwargs = {"uncond_p": 0.0} if do_classifier_free_guidance else {} | 
					
						
						|  | results = infer_fn( | 
					
						
						|  | *prompt, | 
					
						
						|  | **infer_fn_kwargs, | 
					
						
						|  | **cond_kwargs, | 
					
						
						|  | ) | 
					
						
						|  | output_type_list.append((type(results), len(results) if isinstance(results, (list, tuple)) else 1)) | 
					
						
						|  | if isinstance(results, dict): | 
					
						
						|  | raise ValueError("Make batch on dict is not supported. Please return list or tuple for infer_fn.") | 
					
						
						|  | if not isinstance(results, (list, tuple)): | 
					
						
						|  | results = (results,) | 
					
						
						|  | if cond_results_list is None: | 
					
						
						|  | cond_results_list = [[] for _ in results] | 
					
						
						|  | uncond_results_list = [[] for _ in results] | 
					
						
						|  | for i, result in enumerate(results): | 
					
						
						|  | cond_results_list[i].append(result) | 
					
						
						|  |  | 
					
						
						|  | if do_classifier_free_guidance: | 
					
						
						|  | if negative_prompt_list is None: | 
					
						
						|  | uncond_kwargs = {"uncond_p": 1.0} | 
					
						
						|  | uncond_results = infer_fn( | 
					
						
						|  | *prompt, | 
					
						
						|  | **infer_fn_kwargs, | 
					
						
						|  | **uncond_kwargs, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | negative_prompt = negative_prompt_list[prompt_idx] | 
					
						
						|  | if not isinstance(negative_prompt, (list, tuple)): | 
					
						
						|  | negative_prompt = [negative_prompt] | 
					
						
						|  | uncond_results = infer_fn( | 
					
						
						|  | *negative_prompt, | 
					
						
						|  | **infer_fn_kwargs, | 
					
						
						|  | ) | 
					
						
						|  | if isinstance(uncond_results, TokenizerEncodeOutput): | 
					
						
						|  | uncond_results_list.append(uncond_results) | 
					
						
						|  | else: | 
					
						
						|  | for i, result in enumerate(uncond_results): | 
					
						
						|  | uncond_results_list[i].append(result) | 
					
						
						|  |  | 
					
						
						|  | assert all(output_type_list[0] == n for n in output_type_list), \ | 
					
						
						|  | f"Number of outputs should be equal for all samples, but got {output_type_list}." | 
					
						
						|  | output_type, output_num = output_type_list[0] | 
					
						
						|  |  | 
					
						
						|  | def make_batch(batch_cond_item, batch_uncond_item): | 
					
						
						|  |  | 
					
						
						|  | first = batch_cond_item[0] | 
					
						
						|  | if isinstance(first, torch.Tensor): | 
					
						
						|  | stacked_item = torch.stack(self.pad( | 
					
						
						|  | batch_cond_item * condition_repeat_times + batch_uncond_item * uncondition_repeat_times, | 
					
						
						|  | )) | 
					
						
						|  |  | 
					
						
						|  | elif first is None: | 
					
						
						|  | assert all(item is None for item in batch_cond_item + batch_uncond_item), \ | 
					
						
						|  | (f"The first cond item is None, but some items are not None:\n\n" | 
					
						
						|  | f"condition: {batch_cond_item}\n\n" | 
					
						
						|  | f"uncondition: {batch_uncond_item}") | 
					
						
						|  | stacked_item = None | 
					
						
						|  |  | 
					
						
						|  | elif isinstance(first, (list, tuple)): | 
					
						
						|  |  | 
					
						
						|  | stacked_item = batch_cond_item * condition_repeat_times + batch_uncond_item * uncondition_repeat_times | 
					
						
						|  |  | 
					
						
						|  | elif isinstance(first, TokenizerEncodeOutput): | 
					
						
						|  | stacked_item = {} | 
					
						
						|  |  | 
					
						
						|  | for key in list(first.keys()): | 
					
						
						|  | merged_list = [cond_item[key] for cond_item in batch_cond_item] * condition_repeat_times + \ | 
					
						
						|  | [uncond_item[key] for uncond_item in batch_uncond_item] * uncondition_repeat_times | 
					
						
						|  | if isinstance(first[key], torch.Tensor): | 
					
						
						|  | if 'mask' in key: | 
					
						
						|  | pad_val = 0.0 | 
					
						
						|  | elif key == 'tokens': | 
					
						
						|  | pad_val = self.special_token_map["<pad>"] | 
					
						
						|  | else: | 
					
						
						|  | pad_val = False | 
					
						
						|  | stacked_item[key] = torch.stack(self.pad(merged_list, pad_val=pad_val), dim=0) | 
					
						
						|  | elif isinstance(first[key], list): | 
					
						
						|  | stacked_item[key] = merged_list | 
					
						
						|  | elif first[key] is None: | 
					
						
						|  | pass | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError(f"Unsupported type of {key}: {type(first[key])}.") | 
					
						
						|  | stacked_item = TokenizerEncodeOutput(stacked_item) | 
					
						
						|  |  | 
					
						
						|  | else: | 
					
						
						|  | raise TypeError(f"Making batch on type {type(first)} is not supported.") | 
					
						
						|  |  | 
					
						
						|  | return stacked_item | 
					
						
						|  |  | 
					
						
						|  | stacked_outputs = [] | 
					
						
						|  | for cond_results, uncond_results in zip(cond_results_list, uncond_results_list): | 
					
						
						|  | stacked_outputs.append(make_batch(cond_results, uncond_results)) | 
					
						
						|  |  | 
					
						
						|  | if output_type == list: | 
					
						
						|  | return stacked_outputs | 
					
						
						|  | elif output_type == tuple: | 
					
						
						|  | return tuple(stacked_outputs) | 
					
						
						|  | elif output_num == 1: | 
					
						
						|  | return stacked_outputs[0] | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError(f"Unsupported output type: {output_type}.") | 
					
						
						|  |  | 
					
						
						|  | @staticmethod | 
					
						
						|  | def parse_extra_token_pos(extra_token_pos, prefix, tokens, rng=None): | 
					
						
						|  | if rng is None: | 
					
						
						|  | rng = slice(None) | 
					
						
						|  | image_slices = [ | 
					
						
						|  | slice(start, end + 1) | 
					
						
						|  | for start, end in zip(extra_token_pos[f'<{prefix}>_start'][rng], extra_token_pos[f'<{prefix}>_end'][rng]) | 
					
						
						|  | ] if f'<{prefix}>_start' in extra_token_pos and f'<{prefix}>_end' in extra_token_pos else [] | 
					
						
						|  | if image_slices: | 
					
						
						|  | image_mask = torch.zeros_like(tokens, dtype=torch.bool) | 
					
						
						|  | for image_slice in image_slices: | 
					
						
						|  | image_mask[image_slice] = True | 
					
						
						|  | else: | 
					
						
						|  | image_mask = None | 
					
						
						|  | return image_slices, image_mask | 
					
						
						|  |  | 
					
						
						|  | def encode_general( | 
					
						
						|  | self, | 
					
						
						|  | sections: Optional[List[Dict[str, Any]]] = None, | 
					
						
						|  | max_token_length: Optional[int] = None, | 
					
						
						|  | add_eos='auto', | 
					
						
						|  | use_text_mask=True, | 
					
						
						|  | add_pad='auto', | 
					
						
						|  | add_bos=True, | 
					
						
						|  | drop_last='auto', | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | General encode function to encode a sequence with multiple sections of text and images. | 
					
						
						|  | Each section is a dict with a `type` key and other keys depending on the type. | 
					
						
						|  | Supported section types: | 
					
						
						|  | - text: dict with keys: | 
					
						
						|  | - text: str or List[int], text to be encoded. Either `text` or `tokens` should be provided. | 
					
						
						|  | - tokens: List[int], pre-encoded text tokens. Either `text` or `tokens` should be provided. | 
					
						
						|  | - uncond_enabled: bool, whether to enable uncondition for this text section. | 
					
						
						|  | - uncond_p: float, probability to drop the text section for uncondition. | 
					
						
						|  | - max_length: int, maximum length of the text section. | 
					
						
						|  | - ignore: bool, whether to ignore this text section in the text mask. | 
					
						
						|  | - start_offset: int, start offset of the text mask. | 
					
						
						|  | - end_offset: int, end offset of the text mask. | 
					
						
						|  | - gen_image: dict with keys: | 
					
						
						|  | - token_length: int, number of image tokens. | 
					
						
						|  | - add_timestep_token: bool, whether to add timestep token before the image tokens. | 
					
						
						|  | - add_guidance_token: bool, whether to add guidance token before the image tokens. | 
					
						
						|  | - use_front_boi_token: bool, whether to put the <boi> token at the front of size, ratio and timestep tokens. | 
					
						
						|  | - add_image_shape_token: bool, whether to add image shape token before the image tokens. | 
					
						
						|  | - base_size: int, base size of the image. | 
					
						
						|  | - ratio_idx: int, ratio index of the image. | 
					
						
						|  | - joint_image: dict with keys: | 
					
						
						|  | - token_length: List[int], number of image tokens for the two images. | 
					
						
						|  | - add_timestep_token: bool, whether to add timestep token before the image tokens. | 
					
						
						|  | - use_front_boi_token: bool, whether to put the <boi> token at the front of size, ratio and timestep tokens. | 
					
						
						|  | - add_image_shape_token: bool, whether to add image shape token before the image tokens. | 
					
						
						|  | - base_size: int, base size of the image. | 
					
						
						|  | - ratio_idx: int, ratio index of the image. | 
					
						
						|  |  | 
					
						
						|  | Parameters | 
					
						
						|  | ---------- | 
					
						
						|  | sections: List[Dict[str, Any]] | 
					
						
						|  | List of sections to be encoded. | 
					
						
						|  | max_token_length: int | 
					
						
						|  | Maximum length of the encoded token sequence. | 
					
						
						|  | add_eos: bool or 'auto' | 
					
						
						|  | Whether to add eos token at the end of the sequence. If True, always add eos | 
					
						
						|  | token. If 'auto', add eos token only when the total_length is not reached and the last token is not <eos>. | 
					
						
						|  | use_text_mask: bool | 
					
						
						|  | Whether to generate text mask. | 
					
						
						|  | add_pad: bool or 'auto' | 
					
						
						|  | Whether to add padding tokens to the sequence. If True and total_length is not reached, | 
					
						
						|  | add padding tokens. | 
					
						
						|  | add_bos: bool | 
					
						
						|  | Whether to add bos token at the beginning of the sequence. | 
					
						
						|  | drop_last: bool or 'auto' | 
					
						
						|  | - If auto, drop last tokens exceeding the total_length if the total_length is provided. | 
					
						
						|  | If cut point is in the middle of the image tokens, an error will raised. | 
					
						
						|  | - If True, drop last tokens exceeding the total_length. If cut point is in the | 
					
						
						|  | middle of the image tokens, all the successive image tokens will be dropped. | 
					
						
						|  | - If False, keep the last tokens exceeding the total_length, even if the total_length | 
					
						
						|  | is reached. | 
					
						
						|  |  | 
					
						
						|  | Returns | 
					
						
						|  | ------- | 
					
						
						|  | TokenizerEncodeOutput | 
					
						
						|  | Encoded token sequence and extra information. | 
					
						
						|  | """ | 
					
						
						|  | if sections is None: | 
					
						
						|  | raise ValueError("sections must be provided.") | 
					
						
						|  | template = '-'.join([section['type'] for section in sections]) | 
					
						
						|  |  | 
					
						
						|  | sections = deepcopy(sections) | 
					
						
						|  | token_source = defaultdict(list) | 
					
						
						|  | text_mask_specs = [] | 
					
						
						|  | for section in sections: | 
					
						
						|  | if section['type'] == 'text': | 
					
						
						|  | text = self.encode_text( | 
					
						
						|  | section['text'] if 'text' in section else section['tokens'], | 
					
						
						|  | uncond_enabled=section.get('uncond_enabled'), | 
					
						
						|  | uncond_p=section.get('uncond_p'), | 
					
						
						|  | max_length=section.get('max_length'), | 
					
						
						|  | ) | 
					
						
						|  | token_source['text'].append(text) | 
					
						
						|  | text_mask_specs.append(dict( | 
					
						
						|  | ignore=section.get('ignore', False), | 
					
						
						|  | start_offset=section.get('start_offset', 0), | 
					
						
						|  | end_offset=section.get('end_offset', 0), | 
					
						
						|  | )) | 
					
						
						|  | elif section['type'] == 'gen_image': | 
					
						
						|  | token_source['gen_image'].append(dict( | 
					
						
						|  | length=section['token_length'], | 
					
						
						|  | timestep=section.get('add_timestep_token', False), | 
					
						
						|  | guidance=section.get('add_guidance_token', False), | 
					
						
						|  | front_boi=section.get('use_front_boi_token', False), | 
					
						
						|  | image_shape=section.get('add_image_shape_token', False), | 
					
						
						|  | base_size=section.get('base_size'), | 
					
						
						|  | ratio_idx=section.get('ratio_idx'), | 
					
						
						|  | )) | 
					
						
						|  | elif section['type'] == 'joint_image': | 
					
						
						|  | token_source['joint_image'].append(dict( | 
					
						
						|  | length=section['token_length'], | 
					
						
						|  | timestep=section.get('add_timestep_token', False), | 
					
						
						|  | front_boi=section.get('use_front_boi_token', False), | 
					
						
						|  | image_shape=section.get('add_image_shape_token', False), | 
					
						
						|  | base_size=section.get('base_size'), | 
					
						
						|  | ratio_idx=section.get('ratio_idx'), | 
					
						
						|  | )) | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError(f"Invalid section type: {section['type']}") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | full_token_seq, extra_token_pos = self.encode_sequence( | 
					
						
						|  | template=template, | 
					
						
						|  | token_source=dict(token_source), | 
					
						
						|  | total_length=max_token_length, | 
					
						
						|  | add_eos=add_eos, | 
					
						
						|  | add_pad=add_pad, | 
					
						
						|  | add_bos=add_bos, | 
					
						
						|  | drop_last=drop_last, | 
					
						
						|  | ) | 
					
						
						|  | full_seq_token_tensor = torch.tensor(full_token_seq, dtype=torch.long) | 
					
						
						|  |  | 
					
						
						|  | timestep_scatter_index = torch.tensor(extra_token_pos['timestep'], dtype=torch.long) \ | 
					
						
						|  | if 'timestep' in extra_token_pos else None | 
					
						
						|  | guidance_scatter_index = torch.tensor(extra_token_pos['guidance'], dtype=torch.long) \ | 
					
						
						|  | if 'guidance' in extra_token_pos else None | 
					
						
						|  | cond_timestep_scatter_index = torch.tensor(extra_token_pos['cond_timestep'], dtype=torch.long) \ | 
					
						
						|  | if 'cond_timestep' in extra_token_pos else None | 
					
						
						|  | gen_timestep_scatter_index = torch.tensor(extra_token_pos['gen_timestep'], dtype=torch.long) \ | 
					
						
						|  | if 'gen_timestep' in extra_token_pos else None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | gen_image_slices, gen_image_mask = self.parse_extra_token_pos(extra_token_pos, 'img', full_seq_token_tensor) | 
					
						
						|  |  | 
					
						
						|  | joint_image_slices, _ = self.parse_extra_token_pos(extra_token_pos, 'joint_img', full_seq_token_tensor) | 
					
						
						|  |  | 
					
						
						|  | cond_vae_image_slices, cond_vae_image_mask = self.parse_extra_token_pos( | 
					
						
						|  | extra_token_pos, 'vae_img', full_seq_token_tensor) | 
					
						
						|  |  | 
					
						
						|  | cond_vit_image_slices, cond_vit_image_mask = self.parse_extra_token_pos( | 
					
						
						|  | extra_token_pos, 'vit_img', full_seq_token_tensor) | 
					
						
						|  |  | 
					
						
						|  | all_image_slices = [ | 
					
						
						|  | slice(start, end + 1) | 
					
						
						|  | for start, end in zip(extra_token_pos['<all_img>_start'], extra_token_pos['<all_img>_end']) | 
					
						
						|  | ] if '<all_img>_start' in extra_token_pos and '<all_img>_end' in extra_token_pos else [] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | text_slices = [ | 
					
						
						|  | slice(start, end + 1) | 
					
						
						|  | for start, end in zip(extra_token_pos['<text>_start'], extra_token_pos['<text>_end']) | 
					
						
						|  | ] if '<text>_start' in extra_token_pos and '<text>_end' in extra_token_pos else [] | 
					
						
						|  | assert len(text_slices) <= len(text_mask_specs), \ | 
					
						
						|  | (f"Number of text slices ({len(text_slices)}) should be less than or equal to " | 
					
						
						|  | f"number of text mask specs ({len(text_mask_specs)})") | 
					
						
						|  | if use_text_mask: | 
					
						
						|  | text_mask = torch.zeros_like(full_seq_token_tensor, dtype=torch.float32) | 
					
						
						|  | for text_slice, mask_spec in zip(text_slices, text_mask_specs): | 
					
						
						|  | if not mask_spec['ignore']: | 
					
						
						|  | real_slice = slice( | 
					
						
						|  | text_slice.start + mask_spec['start_offset'], | 
					
						
						|  | text_slice.stop + mask_spec['end_offset'] | 
					
						
						|  | ) | 
					
						
						|  | text_mask[real_slice] = 1.0 | 
					
						
						|  | else: | 
					
						
						|  | text_mask = None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | real_pos = torch.tensor(extra_token_pos.get('first_pad', [full_seq_token_tensor.shape[0]]), dtype=torch.long) | 
					
						
						|  |  | 
					
						
						|  | return TokenizerEncodeOutput( | 
					
						
						|  | tokens=full_seq_token_tensor, | 
					
						
						|  | timestep_scatter_index=timestep_scatter_index, | 
					
						
						|  | guidance_scatter_index=guidance_scatter_index, | 
					
						
						|  | text_slices=text_slices, | 
					
						
						|  | gen_image_slices=gen_image_slices, | 
					
						
						|  | joint_image_slices=joint_image_slices, | 
					
						
						|  | cond_vae_image_slices=cond_vae_image_slices, | 
					
						
						|  | cond_vit_image_slices=cond_vit_image_slices, | 
					
						
						|  | text_mask=text_mask, | 
					
						
						|  | gen_image_mask=gen_image_mask, | 
					
						
						|  | cond_vae_image_mask=cond_vae_image_mask, | 
					
						
						|  | cond_vit_image_mask=cond_vit_image_mask, | 
					
						
						|  | real_pos=real_pos, | 
					
						
						|  | all_image_slices=all_image_slices, | 
					
						
						|  | cond_timestep_scatter_index=cond_timestep_scatter_index, | 
					
						
						|  | gen_timestep_scatter_index=gen_timestep_scatter_index, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def get_cot_sections(self, cot_text, uncond_kwargs, cot_max_length=None, drop_think=False): | 
					
						
						|  | if not cot_text: | 
					
						
						|  | return [] | 
					
						
						|  | if '<think>' in cot_text and '</think>' in cot_text: | 
					
						
						|  | before_think_sec = cot_text.split('<think>')[0] | 
					
						
						|  | after_think_sec = cot_text.split('</think>')[1] | 
					
						
						|  | think_sec = cot_text.split('<think>')[1].split('</think>')[0] | 
					
						
						|  | return self.get_cot_sections(before_think_sec, uncond_kwargs, drop_think=drop_think) + \ | 
					
						
						|  | ([ | 
					
						
						|  | dict(type="text", text="<think>"), | 
					
						
						|  | dict(type="text", text=think_sec, max_length=cot_max_length, **uncond_kwargs), | 
					
						
						|  | dict(type="text", text="</think>") | 
					
						
						|  | ] if not drop_think else []) + \ | 
					
						
						|  | self.get_cot_sections(after_think_sec, uncond_kwargs, drop_think=drop_think) | 
					
						
						|  |  | 
					
						
						|  | if '<recaption>' in cot_text and '</recaption>' in cot_text: | 
					
						
						|  | before_recaption_sec = cot_text.split('<recaption>')[0] | 
					
						
						|  | after_recaption_sec = cot_text.split('</recaption>')[1] | 
					
						
						|  | recaption_sec = cot_text.split('<recaption>')[1].split('</recaption>')[0] | 
					
						
						|  | return self.get_cot_sections(before_recaption_sec, uncond_kwargs, drop_think=drop_think) + \ | 
					
						
						|  | [ | 
					
						
						|  | dict(type="text", text="<recaption>"), | 
					
						
						|  | dict(type="text", text=recaption_sec, max_length=cot_max_length, **uncond_kwargs), | 
					
						
						|  | dict(type="text", text="</recaption>") | 
					
						
						|  | ] + \ | 
					
						
						|  | self.get_cot_sections(after_recaption_sec, uncond_kwargs, drop_think=drop_think) | 
					
						
						|  |  | 
					
						
						|  | return [ | 
					
						
						|  | dict(type="text", text=cot_text, **uncond_kwargs), | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | def apply_general_template( | 
					
						
						|  | self, | 
					
						
						|  | message_list, | 
					
						
						|  | max_length=None, | 
					
						
						|  | add_assistant_prefix=False, | 
					
						
						|  | answer="auto", | 
					
						
						|  | bot_task="auto", | 
					
						
						|  | sequence_template="instruct", | 
					
						
						|  | uncond_p=0.0, | 
					
						
						|  | cfg_factor=1, | 
					
						
						|  | batchify=False, | 
					
						
						|  | image_base_size=1024, | 
					
						
						|  | drop_think=False, | 
					
						
						|  | ): | 
					
						
						|  |  | 
					
						
						|  | if batchify: | 
					
						
						|  | assert isinstance(message_list[0], list), \ | 
					
						
						|  | f"When batchify is True, message_list should be a list of list, but got [{type(message_list[0])}, ...]." | 
					
						
						|  | return self.batch_gen_infer( | 
					
						
						|  | infer_fn=self.apply_general_template, | 
					
						
						|  | prompt_list=[[]], | 
					
						
						|  | infer_fn_kwargs_list=[dict( | 
					
						
						|  | message_list=message_list_i, | 
					
						
						|  | max_length=max_length, | 
					
						
						|  | add_assistant_prefix=add_assistant_prefix, | 
					
						
						|  | answer=answer, | 
					
						
						|  | bot_task=bot_task, | 
					
						
						|  | sequence_template=sequence_template, | 
					
						
						|  | image_base_size=image_base_size, | 
					
						
						|  | drop_think=drop_think, | 
					
						
						|  | ) for message_list_i in message_list], | 
					
						
						|  | do_classifier_free_guidance=cfg_factor > 1, | 
					
						
						|  | condition_repeat_times=1, | 
					
						
						|  | uncondition_repeat_times=cfg_factor - 1, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | conv = Conversation() | 
					
						
						|  | uncond_kwargs = dict(uncond_enabled=uncond_p == 1.0, uncond_p=uncond_p) | 
					
						
						|  |  | 
					
						
						|  | def process_successive_message(_message_list, _cur_message_idx, role, prefix, suffix, | 
					
						
						|  | answer_prefix="", answer_suffix=""): | 
					
						
						|  | _sub_sections = [] | 
					
						
						|  | while _cur_message_idx < len(message_list) and _message_list[_cur_message_idx]['role'] == role: | 
					
						
						|  | message = _message_list[_cur_message_idx] | 
					
						
						|  | if message['type'] == 'text': | 
					
						
						|  | text = message['content'] | 
					
						
						|  | if role == "system": | 
					
						
						|  | _sub_sections.append(dict(type="text", text=text)) | 
					
						
						|  | elif role == "assistant": | 
					
						
						|  | if ("<recaption>" in text and "</recaption>" in text) or ( | 
					
						
						|  | "<think>" in text and "</think>" in text): | 
					
						
						|  | _sub_sections.extend(self.get_cot_sections(text, uncond_kwargs, drop_think=drop_think)) | 
					
						
						|  | else: | 
					
						
						|  | _sub_sections.append(dict(type="text", text=text, **uncond_kwargs)) | 
					
						
						|  | else: | 
					
						
						|  | _sub_sections.append(dict( | 
					
						
						|  | type="text", text=f"{answer_prefix}{text}{answer_suffix}", **uncond_kwargs)) | 
					
						
						|  | elif message['type'] == 'gen_image': | 
					
						
						|  | info = message['content'] | 
					
						
						|  | assert isinstance(info, ImageInfo), f"Expected ImageInfo, but got {type(info)}" | 
					
						
						|  | if role == "assistant": | 
					
						
						|  | _sub_sections.append(dict(type="text", text=answer_prefix)) | 
					
						
						|  | _sub_sections.append(dict(type=message['type'], **info.meta_info)) | 
					
						
						|  | if role == "assistant": | 
					
						
						|  | _sub_sections.append(dict(type="text", text=answer_suffix)) | 
					
						
						|  | elif message['type'] == 'joint_image': | 
					
						
						|  | info = message['content'] | 
					
						
						|  | assert isinstance(info, JointImageInfo), f"Expected JointImageInfo, but got {type(info)}" | 
					
						
						|  | _sub_sections.append(dict(type=message['type'], **info.meta_info)) | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError(f"Unknown message type: {message['type']}") | 
					
						
						|  | _cur_message_idx += 1 | 
					
						
						|  | if len(_sub_sections) > 0: | 
					
						
						|  |  | 
					
						
						|  | _sub_sections.insert(0, dict(type='text', text=prefix)) | 
					
						
						|  | _sub_sections.append(dict(type='text', text=suffix)) | 
					
						
						|  | return _sub_sections, _cur_message_idx | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if (answer == "auto" and sequence_template == "instruct") or answer is True: | 
					
						
						|  | answer_prefix, answer_suffix = "<answer>", "</answer>" | 
					
						
						|  | else: | 
					
						
						|  | answer_prefix, answer_suffix = "", "" | 
					
						
						|  | if sequence_template == "pretrain": | 
					
						
						|  | system_suffix = "" | 
					
						
						|  | user_prefix = "" | 
					
						
						|  | user_suffix = "" | 
					
						
						|  | bot_prefix = "" | 
					
						
						|  | bot_suffix = "" | 
					
						
						|  | else: | 
					
						
						|  | system_suffix = f"{conv.sep}" | 
					
						
						|  | user_prefix = f"{conv.roles[0]}: " | 
					
						
						|  | user_suffix = f"{conv.sep}" | 
					
						
						|  | bot_prefix = f"{conv.roles[1]}: " | 
					
						
						|  | bot_suffix = f"{conv.sep}" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | sections = [] | 
					
						
						|  | cur_message_idx = 0 | 
					
						
						|  | final_role = None | 
					
						
						|  | while cur_message_idx < len(message_list): | 
					
						
						|  |  | 
					
						
						|  | sub_sections, cur_message_idx = process_successive_message( | 
					
						
						|  | message_list, cur_message_idx, role="system", prefix="", suffix=system_suffix) | 
					
						
						|  |  | 
					
						
						|  | sections.extend(sub_sections) | 
					
						
						|  | if len(sub_sections) > 0: | 
					
						
						|  | final_role = "system" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | sub_sections, cur_message_idx = process_successive_message( | 
					
						
						|  | message_list, cur_message_idx, role="user", prefix=user_prefix, suffix=user_suffix) | 
					
						
						|  |  | 
					
						
						|  | sections.extend(sub_sections) | 
					
						
						|  | if len(sub_sections) > 0: | 
					
						
						|  | final_role = "user" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | sub_sections, cur_message_idx = process_successive_message( | 
					
						
						|  | message_list, cur_message_idx, role="assistant", prefix=bot_prefix, suffix=bot_suffix, | 
					
						
						|  | answer_prefix=answer_prefix, answer_suffix=answer_suffix, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | sections.extend(sub_sections) | 
					
						
						|  | if len(sub_sections) > 0: | 
					
						
						|  | final_role = "assistant" | 
					
						
						|  |  | 
					
						
						|  | if add_assistant_prefix: | 
					
						
						|  | if final_role == "assistant": | 
					
						
						|  |  | 
					
						
						|  | _bot_prefix = "" | 
					
						
						|  |  | 
					
						
						|  | if len(sections) > 0 and sections[-1]['type'] == 'text' and sections[-1]['text'] == bot_suffix: | 
					
						
						|  | sections = sections[:-1] | 
					
						
						|  | else: | 
					
						
						|  | _bot_prefix = bot_prefix | 
					
						
						|  |  | 
					
						
						|  | bot_response_prefix = dict( | 
					
						
						|  | auto=_bot_prefix, | 
					
						
						|  | think=f"{_bot_prefix}<think>", | 
					
						
						|  | recaption=f"{_bot_prefix}<recaption>", | 
					
						
						|  | img_ratio=f"{_bot_prefix}{answer_prefix}<boi><img_size_{image_base_size}>", | 
					
						
						|  | )[bot_task] | 
					
						
						|  | sections.append(dict(type='text', text=bot_response_prefix)) | 
					
						
						|  |  | 
					
						
						|  | output = self.encode_general( | 
					
						
						|  | sections=sections, | 
					
						
						|  | use_text_mask=False, | 
					
						
						|  | add_eos=False, | 
					
						
						|  | add_pad=False, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if max_length is not None: | 
					
						
						|  | if output.tokens.shape[-1] > max_length: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Encoded token length {output.tokens.shape[-1]} exceeds max_length {max_length}.\n" | 
					
						
						|  | f"Please set a larger max_length or check the input messages:\n{message_list}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return output, sections | 
					
						
						|  |  | 
					
						
						|  | def apply_chat_template( | 
					
						
						|  | self, | 
					
						
						|  | batch_prompt: Optional[List[str]] = None, | 
					
						
						|  | batch_message_list: Optional[List[List[Dict[str, Any]]]] = None, | 
					
						
						|  | mode: str = "gen_text", | 
					
						
						|  | batch_gen_image_info: Optional[List[ImageInfo]] = None, | 
					
						
						|  | batch_cond_image_info: Optional[Union[List[JointImageInfo], List[List[JointImageInfo]]]] = None, | 
					
						
						|  | batch_system_prompt: Optional[List[str]] = None, | 
					
						
						|  | batch_cot_text: Optional[List[str]] = None, | 
					
						
						|  | max_length: Optional[int] = None, | 
					
						
						|  | bot_task: str = "auto", | 
					
						
						|  | image_base_size: int = 1024, | 
					
						
						|  | sequence_template: str = "pretrain", | 
					
						
						|  | cfg_factor: int = 1, | 
					
						
						|  | add_assistant_prefix: Optional[bool] = None, | 
					
						
						|  | drop_think: bool = False, | 
					
						
						|  | ) -> Dict[str, Any]: | 
					
						
						|  | assert bot_task in ["auto", "think", "recaption", "img_ratio"], \ | 
					
						
						|  | f"bot_task should be one of ['auto', 'think', 'recaption', 'img_ratio'], but got {bot_task}." | 
					
						
						|  |  | 
					
						
						|  | if batch_message_list is None: | 
					
						
						|  |  | 
					
						
						|  | batch_size = len(batch_prompt) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if not isinstance(batch_system_prompt, list): | 
					
						
						|  | batch_system_prompt = [batch_system_prompt] * batch_size | 
					
						
						|  | if not isinstance(batch_gen_image_info, list): | 
					
						
						|  | batch_gen_image_info = [batch_gen_image_info] * batch_size | 
					
						
						|  | if batch_cot_text is not None: | 
					
						
						|  | assert len(batch_cot_text) == batch_size, \ | 
					
						
						|  | (f"batch_cot_text should have the same length as batch_size ({batch_size}), " | 
					
						
						|  | f"but got {len(batch_cot_text)}.") | 
					
						
						|  | else: | 
					
						
						|  | batch_cot_text = [None] * batch_size | 
					
						
						|  | if batch_cond_image_info is not None: | 
					
						
						|  | assert len(batch_cond_image_info) == batch_size, \ | 
					
						
						|  | (f"batch_cond_image_info should have the same length as batch_size ({batch_size}), " | 
					
						
						|  | f"but got {len(batch_cond_image_info)}.") | 
					
						
						|  | batch_cond_image_info = [ | 
					
						
						|  | cond_image_info if isinstance(cond_image_info, list) else [cond_image_info] | 
					
						
						|  | for cond_image_info in batch_cond_image_info | 
					
						
						|  | ] | 
					
						
						|  | else: | 
					
						
						|  | batch_cond_image_info = [[] for _ in range(batch_size)] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | batch_message_list = [] | 
					
						
						|  | for prompt, system_prompt, cot_text, gen_image_info, cond_image_info_list in zip( | 
					
						
						|  | batch_prompt, batch_system_prompt, batch_cot_text, batch_gen_image_info, | 
					
						
						|  | batch_cond_image_info, | 
					
						
						|  | ): | 
					
						
						|  | message_list = [] | 
					
						
						|  |  | 
					
						
						|  | if system_prompt: | 
					
						
						|  | message_list.append(dict( | 
					
						
						|  | role="system", type="text", content=system_prompt, context_type="str")) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if len(cond_image_info_list) > 0: | 
					
						
						|  | message_list.extend([ | 
					
						
						|  | dict(role="user", type="joint_image", content=cond_image_info, context_type="image_info") | 
					
						
						|  | for cond_image_info in cond_image_info_list | 
					
						
						|  | ]) | 
					
						
						|  |  | 
					
						
						|  | message_list.append(dict( | 
					
						
						|  | role="user", type="text", content=prompt, context_type="str")) | 
					
						
						|  |  | 
					
						
						|  | if cot_text is not None: | 
					
						
						|  | message_list.append(dict(role="assistant", type="text", content=cot_text, context_type="str")) | 
					
						
						|  | if mode == "gen_image": | 
					
						
						|  | message_list.append(dict( | 
					
						
						|  | role="assistant", type="gen_image", content=gen_image_info, context_type="image_info")) | 
					
						
						|  |  | 
					
						
						|  | batch_message_list.append(message_list) | 
					
						
						|  |  | 
					
						
						|  | output, sections = self.apply_general_template( | 
					
						
						|  | message_list=batch_message_list, | 
					
						
						|  | max_length=max_length, | 
					
						
						|  | add_assistant_prefix=default(add_assistant_prefix, mode != "gen_image"), | 
					
						
						|  | bot_task=bot_task, | 
					
						
						|  | sequence_template=sequence_template, | 
					
						
						|  | cfg_factor=cfg_factor, | 
					
						
						|  | batchify=True, | 
					
						
						|  | image_base_size=image_base_size, | 
					
						
						|  | drop_think=drop_think, | 
					
						
						|  | ) | 
					
						
						|  | return dict(output=output, sections=sections) | 
					
						
						|  |  |