Upload ./configuration_hunyuan.py with huggingface_hub
Browse files- configuration_hunyuan.py +319 -0
    	
        configuration_hunyuan.py
    ADDED
    
    | @@ -0,0 +1,319 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # coding=utf-8
         | 
| 2 | 
            +
            # Copyright (C) 2024 THL A29 Limited, a Tencent company.  All rights reserved.
         | 
| 3 | 
            +
            """ HunYuan model configuration"""
         | 
| 4 | 
            +
            from torch import nn
         | 
| 5 | 
            +
            from transformers.configuration_utils import PretrainedConfig
         | 
| 6 | 
            +
            from transformers.utils import logging
         | 
| 7 | 
            +
            from typing import List, Union, Optional
         | 
| 8 | 
            +
             | 
| 9 | 
            +
             | 
| 10 | 
            +
            logger = logging.get_logger(__name__)
         | 
| 11 | 
            +
             | 
| 12 | 
            +
             | 
| 13 | 
            +
            class HunYuanConfig(PretrainedConfig):
         | 
| 14 | 
            +
                r"""
         | 
| 15 | 
            +
                This is the configuration class to store the configuration of a [`HunYuanModel`]. It is used to instantiate an
         | 
| 16 | 
            +
                HunYuan model according to the specified arguments, defining the model architecture. Instantiating a configuration
         | 
| 17 | 
            +
                with the defaults will yield a similar configuration to that of the HunYuan-7B.
         | 
| 18 | 
            +
             | 
| 19 | 
            +
                Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
         | 
| 20 | 
            +
                documentation from [`PretrainedConfig`] for more information.
         | 
| 21 | 
            +
             | 
| 22 | 
            +
             | 
| 23 | 
            +
                Args:
         | 
| 24 | 
            +
                    vocab_size (`int`, *optional*, defaults to 32000):
         | 
| 25 | 
            +
                        Vocabulary size of the HunYuan model. Defines the number of different tokens that can be represented by the
         | 
| 26 | 
            +
                        `inputs_ids` passed when calling [`HunYuanModel`]
         | 
| 27 | 
            +
                    hidden_size (`int`, *optional*, defaults to 4096):
         | 
| 28 | 
            +
                        Dimension of the hidden representations.
         | 
| 29 | 
            +
                    intermediate_size (`int`, *optional*, defaults to 11008):
         | 
| 30 | 
            +
                        Dimension of the MLP representations or shared MLP representations.
         | 
| 31 | 
            +
                    moe_intermediate_size (`int` or `List`, *optional*, defaults to 11008):
         | 
| 32 | 
            +
                        Dimension of the MLP representations in MoE. Use a list if you want a different size per layer.
         | 
| 33 | 
            +
                    num_hidden_layers (`int`, *optional*, defaults to 32):
         | 
| 34 | 
            +
                        Number of hidden layers in the Transformer decoder.
         | 
| 35 | 
            +
                    num_attention_heads (`int`, *optional*, defaults to 32):
         | 
| 36 | 
            +
                        Number of attention heads for each attention layer in the Transformer decoder.
         | 
| 37 | 
            +
                    num_key_value_heads (`int`, *optional*):
         | 
| 38 | 
            +
                        This is the number of key_value heads that should be used to implement Grouped Query Attention. If
         | 
| 39 | 
            +
                        `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
         | 
| 40 | 
            +
                        `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
         | 
| 41 | 
            +
                        converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
         | 
| 42 | 
            +
                        by meanpooling all the original heads within that group. For more details checkout [this
         | 
| 43 | 
            +
                        paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
         | 
| 44 | 
            +
                        `num_attention_heads`.
         | 
| 45 | 
            +
                    hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
         | 
| 46 | 
            +
                        The non-linear activation function (function or string) in the decoder.
         | 
| 47 | 
            +
                    max_position_embeddings (`int`, *optional*, defaults to 2048):
         | 
| 48 | 
            +
                        The maximum sequence length that this model might ever be used with.
         | 
| 49 | 
            +
                    initializer_range (`float`, *optional*, defaults to 0.02):
         | 
| 50 | 
            +
                        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
         | 
| 51 | 
            +
                    rms_norm_eps (`float`, *optional*, defaults to 1e-06):
         | 
| 52 | 
            +
                        The epsilon used by the rms normalization layers.
         | 
| 53 | 
            +
                    use_cache (`bool`, *optional*, defaults to `True`):
         | 
| 54 | 
            +
                        Whether or not the model should return the last key/values attentions (not used by all models). Only
         | 
| 55 | 
            +
                        relevant if `config.is_decoder=True`.
         | 
| 56 | 
            +
                    pad_token_id (`int`, *optional*):
         | 
| 57 | 
            +
                        Padding token id.
         | 
| 58 | 
            +
                    bos_token_id (`int`, *optional*, defaults to 1):
         | 
| 59 | 
            +
                        Beginning of stream token id.
         | 
| 60 | 
            +
                    eos_token_id (`int`, *optional*, defaults to 2):
         | 
| 61 | 
            +
                        End of stream token id.
         | 
| 62 | 
            +
                    pretraining_tp (`int`, *optional*, defaults to 1):
         | 
| 63 | 
            +
                        Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
         | 
| 64 | 
            +
                        document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
         | 
| 65 | 
            +
                        necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
         | 
| 66 | 
            +
                        issue](https://github.com/pytorch/pytorch/issues/76232).
         | 
| 67 | 
            +
                    tie_word_embeddings (`bool`, *optional*, defaults to `False`):
         | 
| 68 | 
            +
                        Whether to tie weight embeddings
         | 
| 69 | 
            +
                    rope_theta (`float`, *optional*, defaults to 10000.0):
         | 
| 70 | 
            +
                        The base period of the RoPE embeddings.
         | 
| 71 | 
            +
                    rope_scaling (`Dict`, *optional*):
         | 
| 72 | 
            +
                        Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
         | 
| 73 | 
            +
                        strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
         | 
| 74 | 
            +
                        `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
         | 
| 75 | 
            +
                        `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
         | 
| 76 | 
            +
                        these scaling strategies behave:
         | 
| 77 | 
            +
                        https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
         | 
| 78 | 
            +
                        experimental feature, subject to breaking API changes in future versions.
         | 
| 79 | 
            +
                    attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
         | 
| 80 | 
            +
                        Whether to use a bias in the query, key, value and output projection layers during self-attention.
         | 
| 81 | 
            +
                    attention_dropout (`float`, *optional*, defaults to 0.0):
         | 
| 82 | 
            +
                        The dropout ratio for the attention probabilities.
         | 
| 83 | 
            +
                    use_qk_norm (`bool`, *optional*, defaults to `False`):
         | 
| 84 | 
            +
                        Whether query and key in attention use norm
         | 
| 85 | 
            +
                    use_cla (`bool`, *optional*, defaults to `False`):
         | 
| 86 | 
            +
                        Whether to use CLA in attention
         | 
| 87 | 
            +
                    cla_share_factor (`int`, *optional*, defaults to 1):
         | 
| 88 | 
            +
                        The share factor of CLA
         | 
| 89 | 
            +
                    num_experts (`int` or `List`, *optional*, defaults to 1):
         | 
| 90 | 
            +
                        The number of experts for moe. If it is a list, it will be used as the number of experts for each layer.
         | 
| 91 | 
            +
                    num_shared_expert (`int` or `List`, *optional*, defaults to 1):
         | 
| 92 | 
            +
                        The number of shared experts for moe. If it is a list, it will be used as the number of shared experts for each layer.
         | 
| 93 | 
            +
                    moe_topk (`int` or `List`, *optional*, defaults to 1):
         | 
| 94 | 
            +
                        The topk value for moe. If it is a list, it will be used as the topk value for each layer.
         | 
| 95 | 
            +
                    capacity_factor (Not used) (`float` or `List`, *optional*, defaults to 1.0):
         | 
| 96 | 
            +
                        The capacity factor for moe. If it is a list, it will be used as the capacity factor for each layer.
         | 
| 97 | 
            +
                    moe_layer_num_skipped (`int`, *optional*, defaults to 0):
         | 
| 98 | 
            +
                        First moe_layer_num_skipped layers do not use MoE.
         | 
| 99 | 
            +
                """
         | 
| 100 | 
            +
             | 
| 101 | 
            +
                model_type = "hunyuan"
         | 
| 102 | 
            +
                keys_to_ignore_at_inference = ["past_key_values"]
         | 
| 103 | 
            +
             | 
| 104 | 
            +
                def __init__(
         | 
| 105 | 
            +
                    self,
         | 
| 106 | 
            +
                    vocab_size=290943,
         | 
| 107 | 
            +
                    org_vocab_size=290943,
         | 
| 108 | 
            +
                    hidden_size=4096,
         | 
| 109 | 
            +
                    intermediate_size: int=11008,
         | 
| 110 | 
            +
                    moe_intermediate_size: Union[int, List]=None,
         | 
| 111 | 
            +
                    num_hidden_layers=32,
         | 
| 112 | 
            +
                    num_attention_heads=32,
         | 
| 113 | 
            +
                    num_key_value_heads=None,
         | 
| 114 | 
            +
                    attention_head_dim=None,
         | 
| 115 | 
            +
                    hidden_act="silu",
         | 
| 116 | 
            +
                    max_position_embeddings=2048,
         | 
| 117 | 
            +
                    initializer_range=0.02,
         | 
| 118 | 
            +
                    rms_norm_eps=1e-5,
         | 
| 119 | 
            +
                    use_cache=True,
         | 
| 120 | 
            +
                    pad_token_id=0,
         | 
| 121 | 
            +
                    bos_token_id=1,
         | 
| 122 | 
            +
                    eos_token_id=2,
         | 
| 123 | 
            +
                    eod_token_id=3,
         | 
| 124 | 
            +
                    sep_token_id=4,
         | 
| 125 | 
            +
                    im_start_id=5,
         | 
| 126 | 
            +
                    im_end_id=6,
         | 
| 127 | 
            +
                    text_start_id=7,
         | 
| 128 | 
            +
                    text_end_id=8,
         | 
| 129 | 
            +
                    image_token_id=9,
         | 
| 130 | 
            +
                    video_start_id=10,
         | 
| 131 | 
            +
                    video_end_id=11,
         | 
| 132 | 
            +
                    im_newline_id=12,
         | 
| 133 | 
            +
                    mask_init_id=13,
         | 
| 134 | 
            +
                    pretraining_tp=1,
         | 
| 135 | 
            +
                    tie_word_embeddings=False,
         | 
| 136 | 
            +
                    rope_theta=10000.0,
         | 
| 137 | 
            +
                    rope_scaling=None,
         | 
| 138 | 
            +
                    attention_bias=False,
         | 
| 139 | 
            +
                    mlp_bias=False,
         | 
| 140 | 
            +
                    attention_dropout=0.0,
         | 
| 141 | 
            +
                    use_qk_norm=False,
         | 
| 142 | 
            +
                    use_rotary_pos_emb=True,
         | 
| 143 | 
            +
                    use_cla=False,
         | 
| 144 | 
            +
                    cla_share_factor=1,
         | 
| 145 | 
            +
                    norm_type="hf_rms",
         | 
| 146 | 
            +
                    num_experts: Union[int, List]=1,
         | 
| 147 | 
            +
                    use_mixed_mlp_moe=False,
         | 
| 148 | 
            +
                    num_shared_expert: Union[int, List]=1,
         | 
| 149 | 
            +
                    moe_topk: Union[int, List]=1,
         | 
| 150 | 
            +
                    # capacity_factor: Union[int, List]=1.0,
         | 
| 151 | 
            +
                    moe_drop_tokens=False,
         | 
| 152 | 
            +
                    moe_random_routing_dropped_token=False,
         | 
| 153 | 
            +
                    use_mla=False,
         | 
| 154 | 
            +
                    kv_lora_rank=512,
         | 
| 155 | 
            +
                    q_lora_rank=1536,
         | 
| 156 | 
            +
                    qk_rope_head_dim=64,
         | 
| 157 | 
            +
                    v_head_dim=128,
         | 
| 158 | 
            +
                    qk_nope_head_dim=128,
         | 
| 159 | 
            +
                    moe_layer_num_skipped=0,
         | 
| 160 | 
            +
                    norm_topk_prob=True,
         | 
| 161 | 
            +
                    routed_scaling_factor=1.0,
         | 
| 162 | 
            +
                    group_limited_greedy=False,
         | 
| 163 | 
            +
                    n_group=None,
         | 
| 164 | 
            +
                    topk_group=None,
         | 
| 165 | 
            +
                    vit_path=None,
         | 
| 166 | 
            +
                    num_media_embeds=257,
         | 
| 167 | 
            +
                    vit_type="AnyResVit",
         | 
| 168 | 
            +
                    vit_input_resolution=224,
         | 
| 169 | 
            +
                    vit_token=64,
         | 
| 170 | 
            +
                    vit_patch=1,
         | 
| 171 | 
            +
                    vit_mapping_type="simple_conv_mlp",
         | 
| 172 | 
            +
                    vit_norm_type="fused",
         | 
| 173 | 
            +
                    vit_used_rms_norm=True,
         | 
| 174 | 
            +
                    vit_remove_prenorm=True,
         | 
| 175 | 
            +
                    vit_add_patchemb_bias=True,
         | 
| 176 | 
            +
                    anyres_vit_max_image_size=2048,
         | 
| 177 | 
            +
                    anyres_pooling_size=2,
         | 
| 178 | 
            +
                    anyres_vit_two_views=False,
         | 
| 179 | 
            +
                    skip_cls_token=False,
         | 
| 180 | 
            +
                    position_embedding_xdrope=False,
         | 
| 181 | 
            +
                    xdrope_section=None,
         | 
| 182 | 
            +
                    add_classification_head=False,
         | 
| 183 | 
            +
                    class_num=0,
         | 
| 184 | 
            +
                    pool_type="last",
         | 
| 185 | 
            +
                    pad_id=-1,
         | 
| 186 | 
            +
                    **kwargs,
         | 
| 187 | 
            +
                ):
         | 
| 188 | 
            +
                    self.vocab_size = vocab_size
         | 
| 189 | 
            +
                    self.org_vocab_size = org_vocab_size
         | 
| 190 | 
            +
                    self.max_position_embeddings = max_position_embeddings
         | 
| 191 | 
            +
                    self.hidden_size = hidden_size
         | 
| 192 | 
            +
                    self.intermediate_size = intermediate_size
         | 
| 193 | 
            +
                    self.moe_intermediate_size = moe_intermediate_size
         | 
| 194 | 
            +
                    self.num_hidden_layers = num_hidden_layers
         | 
| 195 | 
            +
                    self.num_attention_heads = num_attention_heads
         | 
| 196 | 
            +
                    self.num_experts = num_experts
         | 
| 197 | 
            +
                    self.use_mixed_mlp_moe = use_mixed_mlp_moe
         | 
| 198 | 
            +
                    self.num_shared_expert = num_shared_expert
         | 
| 199 | 
            +
                    self.moe_topk = moe_topk
         | 
| 200 | 
            +
                    # self.capacity_factor = capacity_factor
         | 
| 201 | 
            +
                    self.moe_drop_tokens = moe_drop_tokens
         | 
| 202 | 
            +
                    self.moe_random_routing_dropped_token = moe_random_routing_dropped_token
         | 
| 203 | 
            +
             | 
| 204 | 
            +
                    if attention_head_dim is not None:
         | 
| 205 | 
            +
                        self.attention_head_dim = attention_head_dim
         | 
| 206 | 
            +
                    else:
         | 
| 207 | 
            +
                        self.attention_head_dim = self.hidden_size // num_attention_heads
         | 
| 208 | 
            +
             | 
| 209 | 
            +
                    # for backward compatibility
         | 
| 210 | 
            +
                    if num_key_value_heads is None:
         | 
| 211 | 
            +
                        num_key_value_heads = num_attention_heads
         | 
| 212 | 
            +
             | 
| 213 | 
            +
                    self.num_key_value_heads = num_key_value_heads
         | 
| 214 | 
            +
                    self.hidden_act = hidden_act
         | 
| 215 | 
            +
                    self.initializer_range = initializer_range
         | 
| 216 | 
            +
                    self.rms_norm_eps = rms_norm_eps
         | 
| 217 | 
            +
                    self.pretraining_tp = pretraining_tp
         | 
| 218 | 
            +
                    self.use_cache = use_cache
         | 
| 219 | 
            +
                    self.rope_theta = rope_theta
         | 
| 220 | 
            +
                    self.rope_scaling = rope_scaling
         | 
| 221 | 
            +
                    # self._rope_scaling_validation()   # TODO: Need validation?
         | 
| 222 | 
            +
                    self.attention_bias = attention_bias
         | 
| 223 | 
            +
                    self.mlp_bias = mlp_bias
         | 
| 224 | 
            +
                    self.attention_dropout = attention_dropout
         | 
| 225 | 
            +
                    self.use_qk_norm = use_qk_norm
         | 
| 226 | 
            +
                    self.use_rotary_pos_emb = use_rotary_pos_emb
         | 
| 227 | 
            +
                    self.use_cla = use_cla
         | 
| 228 | 
            +
                    self.cla_share_factor = cla_share_factor
         | 
| 229 | 
            +
                    self.norm_type = norm_type
         | 
| 230 | 
            +
                    # MLA args
         | 
| 231 | 
            +
                    self.use_mla = use_mla
         | 
| 232 | 
            +
                    self.kv_lora_rank = kv_lora_rank
         | 
| 233 | 
            +
                    self.q_lora_rank = q_lora_rank
         | 
| 234 | 
            +
                    self.qk_rope_head_dim = qk_rope_head_dim
         | 
| 235 | 
            +
                    self.qk_nope_head_dim = qk_nope_head_dim
         | 
| 236 | 
            +
                    self.v_head_dim = v_head_dim
         | 
| 237 | 
            +
             | 
| 238 | 
            +
                    # DeepSeek related args
         | 
| 239 | 
            +
                    self.moe_layer_num_skipped = moe_layer_num_skipped
         | 
| 240 | 
            +
                    self.norm_topk_prob = norm_topk_prob
         | 
| 241 | 
            +
                    self.routed_scaling_factor = routed_scaling_factor
         | 
| 242 | 
            +
                    self.group_limited_greedy = group_limited_greedy
         | 
| 243 | 
            +
                    self.n_group = n_group
         | 
| 244 | 
            +
                    self.topk_group = topk_group
         | 
| 245 | 
            +
                    self.add_classification_head = add_classification_head
         | 
| 246 | 
            +
                    self.class_num = class_num
         | 
| 247 | 
            +
                    self.pool_type = pool_type
         | 
| 248 | 
            +
                    self.pad_id = pad_id
         | 
| 249 | 
            +
             | 
| 250 | 
            +
                    if self.class_num is not None:
         | 
| 251 | 
            +
                        self.dense_list = [self.hidden_size, self.class_num]
         | 
| 252 | 
            +
             | 
| 253 | 
            +
                    # Vit args
         | 
| 254 | 
            +
                    self.vit_path = vit_path
         | 
| 255 | 
            +
                    self.num_media_embeds = num_media_embeds
         | 
| 256 | 
            +
                    self.vit_type = vit_type
         | 
| 257 | 
            +
                    self.vit_input_resolution = vit_input_resolution
         | 
| 258 | 
            +
                    self.vit_token = vit_token
         | 
| 259 | 
            +
                    self.vit_patch = vit_patch
         | 
| 260 | 
            +
                    self.vit_mapping_type = vit_mapping_type
         | 
| 261 | 
            +
                    self.vit_norm_type = vit_norm_type
         | 
| 262 | 
            +
                    self.vit_used_rms_norm = vit_used_rms_norm
         | 
| 263 | 
            +
                    self.vit_remove_prenorm = vit_remove_prenorm
         | 
| 264 | 
            +
                    self.vit_add_patchemb_bias = vit_add_patchemb_bias
         | 
| 265 | 
            +
                    self.anyres_vit_max_image_size = anyres_vit_max_image_size
         | 
| 266 | 
            +
                    self.anyres_pooling_size = anyres_pooling_size
         | 
| 267 | 
            +
                    self.anyres_vit_two_views = anyres_vit_two_views
         | 
| 268 | 
            +
                    self.skip_cls_token = skip_cls_token
         | 
| 269 | 
            +
                    self.position_embedding_xdrope = position_embedding_xdrope
         | 
| 270 | 
            +
                    self.xdrope_section = xdrope_section
         | 
| 271 | 
            +
             | 
| 272 | 
            +
                    # token id
         | 
| 273 | 
            +
                    self.eod_token_id = eod_token_id
         | 
| 274 | 
            +
                    self.im_start_id = im_start_id
         | 
| 275 | 
            +
                    self.im_end_id = im_end_id
         | 
| 276 | 
            +
                    self.text_start_id = text_start_id
         | 
| 277 | 
            +
                    self.text_end_id = text_end_id
         | 
| 278 | 
            +
                    self.image_token_id = image_token_id
         | 
| 279 | 
            +
                    self.video_start_id = video_start_id
         | 
| 280 | 
            +
                    self.video_end_id = video_end_id
         | 
| 281 | 
            +
                    self.im_newline_id = im_newline_id
         | 
| 282 | 
            +
                    self.mask_init_id = mask_init_id
         | 
| 283 | 
            +
             | 
| 284 | 
            +
                    super().__init__(
         | 
| 285 | 
            +
                        pad_token_id=pad_token_id,
         | 
| 286 | 
            +
                        bos_token_id=bos_token_id,
         | 
| 287 | 
            +
                        eos_token_id=eos_token_id,
         | 
| 288 | 
            +
                        sep_token_id=sep_token_id,
         | 
| 289 | 
            +
                        tie_word_embeddings=tie_word_embeddings,
         | 
| 290 | 
            +
                        **kwargs,
         | 
| 291 | 
            +
                    )
         | 
| 292 | 
            +
             | 
| 293 | 
            +
                def _rope_scaling_validation(self):
         | 
| 294 | 
            +
                    """
         | 
| 295 | 
            +
                    Validate the `rope_scaling` configuration.
         | 
| 296 | 
            +
                    """
         | 
| 297 | 
            +
                    if self.rope_scaling is None:
         | 
| 298 | 
            +
                        return
         | 
| 299 | 
            +
             | 
| 300 | 
            +
                    if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
         | 
| 301 | 
            +
                        raise ValueError(
         | 
| 302 | 
            +
                            "`rope_scaling` must be a dictionary with with two fields, `type` and `factor` or `type` and `alpha`, "
         | 
| 303 | 
            +
                            f"got {self.rope_scaling}"
         | 
| 304 | 
            +
                        )
         | 
| 305 | 
            +
                    rope_scaling_type = self.rope_scaling.get("type", None)
         | 
| 306 | 
            +
                    rope_scaling_factor = self.rope_scaling.get("factor", None)
         | 
| 307 | 
            +
                    rope_scaling_alpha = self.rope_scaling.get("alpha", None)
         | 
| 308 | 
            +
                    if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
         | 
| 309 | 
            +
                        raise ValueError(
         | 
| 310 | 
            +
                            f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
         | 
| 311 | 
            +
                        )
         | 
| 312 | 
            +
                    if rope_scaling_factor is None and rope_scaling_alpha is None:
         | 
| 313 | 
            +
                        raise ValueError("`rope_scaling`'s factor or alpha field must be have one, got both of none")
         | 
| 314 | 
            +
                    if rope_scaling_factor is not None:
         | 
| 315 | 
            +
                        if not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
         | 
| 316 | 
            +
                            raise ValueError(f"`rope_scaling`'s factor field must be a float > 1.0, got {rope_scaling_factor}")
         | 
| 317 | 
            +
                    if rope_scaling_alpha is not None:
         | 
| 318 | 
            +
                        if not isinstance(rope_scaling_alpha, float) or rope_scaling_alpha <= 1.0:
         | 
| 319 | 
            +
                            raise ValueError(f"`rope_scaling`'s alpha field must be a float > 1.0, got {rope_scaling_alpha}")
         | 

