--- language: - en base_model: - microsoft/deberta-v3-base pipeline_tag: text-classification license: mit --- Binary classification model for ad-detection on QA Systems. ## Sample usage ```python import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification classifier_model_path = "teknology/ad-classifier-v0.4" tokenizer = AutoTokenizer.from_pretrained(classifier_model_path) model = AutoModelForSequenceClassification.from_pretrained(classifier_model_path) model.eval() device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) def classify(passages): inputs = tokenizer( passages, padding=True, truncation=True, max_length=512, return_tensors="pt" ) inputs = {k: v.to(device) for k, v in inputs.items()} with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits predictions = torch.argmax(logits, dim=-1) return predictions.cpu().tolist() preds = classify(["sample_text_1", "sample_text_2"]) ``` ## Version Previous versions can be found at: - v0.0: https://huggingface.co/jmvcoelho/ad-classifier-v0.0 Trained with the official data from Webis Generated Native Ads 2024 - v0.1: https://huggingface.co/jmvcoelho/ad-classifier-v0.1 Trained with v0.0 data + new synthetic data - v0.2: https://huggingface.co/jmvcoelho/ad-classifier-v0.2 Similar to v0.1, but include more diversity in ad placement startegies through prompting. - v0.3: https://huggingface.co/teknology/ad-classifier-v0.3 Continued from v0.2, added a new synthetic dataset generated based on Wikipedia articles. - **v0.4**: Same training data composition as v0.3, but curriculum learning with the mixed data.