2025-02-14 04:23:49,942 - training_args.py:2100 - _setup_devices - INFO - PyTorch: setting up devices 2025-02-14 04:23:49,975 - training_args.py:1837 - __post_init__ - WARNING - When using FSDP full shard, instead of using `gradient_checkpointing` in TrainingArguments, please use `activation_checkpointing` in `fsdp_config`. The former introduces a redundant AllGather operation in backward pass. Reference: https://github.com/huggingface/transformers/issues/30404 2025-02-14 04:23:50,508 - configuration_utils.py:731 - _get_config_dict - INFO - loading configuration file ./checkpoints/longvu_llama3_2/config.json 2025-02-14 04:23:50,511 - configuration_utils.py:800 - from_dict - INFO - Model config CambrianConfig { "_name_or_path": "/tmp/iopath_cache/manifold_cache/tree/users/shenx/finetune/09281004-cambrian_llama3_2_t576_ov", "architectures": [ "CambrianLlamaForCausalLM" ], "attention_bias": false, "attention_dropout": 0.0, "bos_token_id": 128000, "connect_layer": 2, "connector_depth": 3, "connector_only": true, "dino_threshold": 0.83, "drop_threshold": 0.8, "eos_token_id": [ 128001, 128008, 128009 ], "frame_pos": false, "freeze_mm_mlp_adapter": false, "hidden_act": "silu", "hidden_size": 3072, "highres": true, "highres_connect": false, "image_aspect_ratio": "pad", "image_position": 91, "image_token_len": 144, "initializer_range": 0.02, "intermediate_size": 8192, "is_image_newline": true, "is_st_sampler": false, "lowres_token": 8, "max_position_embeddings": 131072, "mlp_bias": false, "mm_patch_merge_type": "flat", "mm_projector_lr": null, "mm_projector_type": "sva", "mm_use_im_patch_token": false, "mm_use_im_start_end": false, "mm_vision_sampler_lr": null, "mm_vision_select_feature": "patch", "mm_vision_select_layer": -2, "mm_vision_tower_aux_list": [ "siglip/CLIP-ViT-SO400M-14-384", "facebook/dinov2-giant-res378" ], "mm_vision_tower_aux_token_len_list": [ 576, 576 ], "mm_vision_tower_lr": null, "model_type": "cambrian_llama", "num_attention_heads": 24, "num_hidden_layers": 28, "num_key_value_heads": 8, "num_of_vision_sampler_layers": 10, "num_query_group": 1, "pretraining_tp": 1, "query_num_list": [ 144 ], "rms_norm_eps": 1e-05, "rope_scaling": { "factor": 32.0, "high_freq_factor": 4.0, "low_freq_factor": 1.0, "original_max_position_embeddings": 8192, "rope_type": "llama3" }, "rope_theta": 500000.0, "spmd_debug": null, "spmd_fsdp_sharding": null, "spmd_mesh": null, "start_of_vision_sampler_layers": 0, "stride_of_vision_sampler_layers": 3, "tie_word_embeddings": false, "tokenizer_model_max_length": 8192, "tokenizer_padding_side": "right", "torch_dtype": "float32", "transformers_version": "4.43.1", "tune_mm_mlp_adapter": false, "unfreeze_mm_vision_tower": false, "use_cache": false, "use_mm_proj": true, "vision_hidden_size": 1024, "vision_tower_aux_token_len_list": [ 576, 576 ], "vocab_size": 128256 } 2025-02-14 04:23:50,511 - modeling_utils.py:3618 - from_pretrained - INFO - loading weights file ./checkpoints/longvu_llama3_2/pytorch_model.bin 2025-02-14 04:23:50,551 - configuration_utils.py:1038 - from_dict - INFO - Generate config GenerationConfig { "bos_token_id": 128000, "eos_token_id": [ 128001, 128008, 128009 ], "use_cache": false } 2025-02-14 04:23:50,771 - configuration_utils.py:733 - _get_config_dict - INFO - loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--facebook--dinov2-giant/snapshots/611a9d42f2335e0f921f1e313ad3c1b7178d206d/config.json 2025-02-14 04:23:50,774 - configuration_utils.py:800 - from_dict - INFO - Model config Dinov2Config { "apply_layernorm": true, "architectures": [ "Dinov2Model" ], "attention_probs_dropout_prob": 0.0, "drop_path_rate": 0.0, "hidden_act": "gelu", "hidden_dropout_prob": 0.0, "hidden_size": 1536, "image_size": 518, "initializer_range": 0.02, "layer_norm_eps": 1e-06, "layerscale_value": 1.0, "mlp_ratio": 4, "model_type": "dinov2", "num_attention_heads": 24, "num_channels": 3, "num_hidden_layers": 40, "out_features": [ "stage40" ], "out_indices": [ 40 ], "patch_size": 14, "qkv_bias": true, "reshape_hidden_states": true, "stage_names": [ "stem", "stage1", "stage2", "stage3", "stage4", "stage5", "stage6", "stage7", "stage8", "stage9", "stage10", "stage11", "stage12", "stage13", "stage14", "stage15", "stage16", "stage17", "stage18", "stage19", "stage20", "stage21", "stage22", "stage23", "stage24", "stage25", "stage26", "stage27", "stage28", "stage29", "stage30", "stage31", "stage32", "stage33", "stage34", "stage35", "stage36", "stage37", "stage38", "stage39", "stage40" ], "torch_dtype": "float32", "transformers_version": "4.43.1", "use_swiglu_ffn": true } 2025-02-14 04:23:52,141 - modeling_utils.py:4450 - _load_pretrained_model - INFO - All model checkpoint weights were used when initializing CambrianLlamaForCausalLM. 2025-02-14 04:23:52,141 - modeling_utils.py:4458 - _load_pretrained_model - INFO - All the weights of CambrianLlamaForCausalLM were initialized from the model checkpoint at ./checkpoints/longvu_llama3_2. If your task is similar to the task the model of the checkpoint was trained on, you can already use CambrianLlamaForCausalLM for predictions without further training. 2025-02-14 04:23:52,147 - configuration_utils.py:991 - from_pretrained - INFO - loading configuration file ./checkpoints/longvu_llama3_2/generation_config.json 2025-02-14 04:23:52,147 - configuration_utils.py:1038 - from_dict - INFO - Generate config GenerationConfig { "bos_token_id": 128000, "do_sample": true, "eos_token_id": [ 128001, 128008, 128009 ], "temperature": 0.6, "top_p": 0.9 } 2025-02-14 04:23:52,674 - tokenization_utils_base.py:2287 - from_pretrained - INFO - loading file tokenizer.json 2025-02-14 04:23:52,674 - tokenization_utils_base.py:2287 - from_pretrained - INFO - loading file added_tokens.json 2025-02-14 04:23:52,674 - tokenization_utils_base.py:2287 - from_pretrained - INFO - loading file special_tokens_map.json 2025-02-14 04:23:52,674 - tokenization_utils_base.py:2287 - from_pretrained - INFO - loading file tokenizer_config.json 2025-02-14 04:23:53,030 - tokenization_utils_base.py:2533 - _from_pretrained - INFO - Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. 2025-02-14 04:23:53,702 - configuration_utils.py:733 - _get_config_dict - INFO - loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--google--siglip-so400m-patch14-384/snapshots/9fdffc58afc957d1a03a25b10dba0329ab15c2a3/config.json 2025-02-14 04:23:53,704 - configuration_utils.py:800 - from_dict - INFO - Model config SiglipVisionConfig { "attention_dropout": 0.0, "hidden_act": "gelu_pytorch_tanh", "hidden_size": 1152, "image_size": 384, "intermediate_size": 4304, "layer_norm_eps": 1e-06, "model_type": "siglip_vision_model", "num_attention_heads": 16, "num_channels": 3, "num_hidden_layers": 27, "patch_size": 14, "transformers_version": "4.43.1" } 2025-02-14 04:23:53,704 - modeling_utils.py:3621 - from_pretrained - INFO - loading weights file model.safetensors from cache at /root/.cache/huggingface/hub/models--google--siglip-so400m-patch14-384/snapshots/9fdffc58afc957d1a03a25b10dba0329ab15c2a3/model.safetensors 2025-02-14 04:23:53,969 - modeling_utils.py:4440 - _load_pretrained_model - INFO - Some weights of the model checkpoint at google/siglip-so400m-patch14-384 were not used when initializing SiglipVisionModel: ['logit_bias', 'logit_scale', 'text_model.embeddings.position_embedding.weight', 'text_model.embeddings.token_embedding.weight', 'text_model.encoder.layers.0.layer_norm1.bias', 'text_model.encoder.layers.0.layer_norm1.weight', 'text_model.encoder.layers.0.layer_norm2.bias', 'text_model.encoder.layers.0.layer_norm2.weight', 'text_model.encoder.layers.0.mlp.fc1.bias', 'text_model.encoder.layers.0.mlp.fc1.weight', 'text_model.encoder.layers.0.mlp.fc2.bias', 'text_model.encoder.layers.0.mlp.fc2.weight', 'text_model.encoder.layers.0.self_attn.k_proj.bias', 'text_model.encoder.layers.0.self_attn.k_proj.weight', 'text_model.encoder.layers.0.self_attn.out_proj.bias', 'text_model.encoder.layers.0.self_attn.out_proj.weight', 'text_model.encoder.layers.0.self_attn.q_proj.bias', 'text_model.encoder.layers.0.self_attn.q_proj.weight', 'text_model.encoder.layers.0.self_attn.v_proj.bias', 'text_model.encoder.layers.0.self_attn.v_proj.weight', 'text_model.encoder.layers.1.layer_norm1.bias', 'text_model.encoder.layers.1.layer_norm1.weight', 'text_model.encoder.layers.1.layer_norm2.bias', 'text_model.encoder.layers.1.layer_norm2.weight', 'text_model.encoder.layers.1.mlp.fc1.bias', 'text_model.encoder.layers.1.mlp.fc1.weight', 'text_model.encoder.layers.1.mlp.fc2.bias', 'text_model.encoder.layers.1.mlp.fc2.weight', 'text_model.encoder.layers.1.self_attn.k_proj.bias', 'text_model.encoder.layers.1.self_attn.k_proj.weight', 'text_model.encoder.layers.1.self_attn.out_proj.bias', 'text_model.encoder.layers.1.self_attn.out_proj.weight', 'text_model.encoder.layers.1.self_attn.q_proj.bias', 'text_model.encoder.layers.1.self_attn.q_proj.weight', 'text_model.encoder.layers.1.self_attn.v_proj.bias', 'text_model.encoder.layers.1.self_attn.v_proj.weight', 'text_model.encoder.layers.10.layer_norm1.bias', 'text_model.encoder.layers.10.layer_norm1.weight', 'text_model.encoder.layers.10.layer_norm2.bias', 'text_model.encoder.layers.10.layer_norm2.weight', 'text_model.encoder.layers.10.mlp.fc1.bias', 'text_model.encoder.layers.10.mlp.fc1.weight', 'text_model.encoder.layers.10.mlp.fc2.bias', 'text_model.encoder.layers.10.mlp.fc2.weight', 'text_model.encoder.layers.10.self_attn.k_proj.bias', 'text_model.encoder.layers.10.self_attn.k_proj.weight', 'text_model.encoder.layers.10.self_attn.out_proj.bias', 'text_model.encoder.layers.10.self_attn.out_proj.weight', 'text_model.encoder.layers.10.self_attn.q_proj.bias', 'text_model.encoder.layers.10.self_attn.q_proj.weight', 'text_model.encoder.layers.10.self_attn.v_proj.bias', 'text_model.encoder.layers.10.self_attn.v_proj.weight', 'text_model.encoder.layers.11.layer_norm1.bias', 'text_model.encoder.layers.11.layer_norm1.weight', 'text_model.encoder.layers.11.layer_norm2.bias', 'text_model.encoder.layers.11.layer_norm2.weight', 'text_model.encoder.layers.11.mlp.fc1.bias', 'text_model.encoder.layers.11.mlp.fc1.weight', 'text_model.encoder.layers.11.mlp.fc2.bias', 'text_model.encoder.layers.11.mlp.fc2.weight', 'text_model.encoder.layers.11.self_attn.k_proj.bias', 'text_model.encoder.layers.11.self_attn.k_proj.weight', 'text_model.encoder.layers.11.self_attn.out_proj.bias', 'text_model.encoder.layers.11.self_attn.out_proj.weight', 'text_model.encoder.layers.11.self_attn.q_proj.bias', 'text_model.encoder.layers.11.self_attn.q_proj.weight', 'text_model.encoder.layers.11.self_attn.v_proj.bias', 'text_model.encoder.layers.11.self_attn.v_proj.weight', 'text_model.encoder.layers.12.layer_norm1.bias', 'text_model.encoder.layers.12.layer_norm1.weight', 'text_model.encoder.layers.12.layer_norm2.bias', 'text_model.encoder.layers.12.layer_norm2.weight', 'text_model.encoder.layers.12.mlp.fc1.bias', 'text_model.encoder.layers.12.mlp.fc1.weight', 'text_model.encoder.layers.12.mlp.fc2.bias', 'text_model.encoder.layers.12.mlp.fc2.weight', 'text_model.encoder.layers.12.self_attn.k_proj.bias', 'text_model.encoder.layers.12.self_attn.k_proj.weight', 'text_model.encoder.layers.12.self_attn.out_proj.bias', 'text_model.encoder.layers.12.self_attn.out_proj.weight', 'text_model.encoder.layers.12.self_attn.q_proj.bias', 'text_model.encoder.layers.12.self_attn.q_proj.weight', 'text_model.encoder.layers.12.self_attn.v_proj.bias', 'text_model.encoder.layers.12.self_attn.v_proj.weight', 'text_model.encoder.layers.13.layer_norm1.bias', 'text_model.encoder.layers.13.layer_norm1.weight', 'text_model.encoder.layers.13.layer_norm2.bias', 'text_model.encoder.layers.13.layer_norm2.weight', 'text_model.encoder.layers.13.mlp.fc1.bias', 'text_model.encoder.layers.13.mlp.fc1.weight', 'text_model.encoder.layers.13.mlp.fc2.bias', 'text_model.encoder.layers.13.mlp.fc2.weight', 'text_model.encoder.layers.13.self_attn.k_proj.bias', 'text_model.encoder.layers.13.self_attn.k_proj.weight', 'text_model.encoder.layers.13.self_attn.out_proj.bias', 'text_model.encoder.layers.13.self_attn.out_proj.weight', 'text_model.encoder.layers.13.self_attn.q_proj.bias', 'text_model.encoder.layers.13.self_attn.q_proj.weight', 'text_model.encoder.layers.13.self_attn.v_proj.bias', 'text_model.encoder.layers.13.self_attn.v_proj.weight', 'text_model.encoder.layers.14.layer_norm1.bias', 'text_model.encoder.layers.14.layer_norm1.weight', 'text_model.encoder.layers.14.layer_norm2.bias', 'text_model.encoder.layers.14.layer_norm2.weight', 'text_model.encoder.layers.14.mlp.fc1.bias', 'text_model.encoder.layers.14.mlp.fc1.weight', 'text_model.encoder.layers.14.mlp.fc2.bias', 'text_model.encoder.layers.14.mlp.fc2.weight', 'text_model.encoder.layers.14.self_attn.k_proj.bias', 'text_model.encoder.layers.14.self_attn.k_proj.weight', 'text_model.encoder.layers.14.self_attn.out_proj.bias', 'text_model.encoder.layers.14.self_attn.out_proj.weight', 'text_model.encoder.layers.14.self_attn.q_proj.bias', 'text_model.encoder.layers.14.self_attn.q_proj.weight', 'text_model.encoder.layers.14.self_attn.v_proj.bias', 'text_model.encoder.layers.14.self_attn.v_proj.weight', 'text_model.encoder.layers.15.layer_norm1.bias', 'text_model.encoder.layers.15.layer_norm1.weight', 'text_model.encoder.layers.15.layer_norm2.bias', 'text_model.encoder.layers.15.layer_norm2.weight', 'text_model.encoder.layers.15.mlp.fc1.bias', 'text_model.encoder.layers.15.mlp.fc1.weight', 'text_model.encoder.layers.15.mlp.fc2.bias', 'text_model.encoder.layers.15.mlp.fc2.weight', 'text_model.encoder.layers.15.self_attn.k_proj.bias', 'text_model.encoder.layers.15.self_attn.k_proj.weight', 'text_model.encoder.layers.15.self_attn.out_proj.bias', 'text_model.encoder.layers.15.self_attn.out_proj.weight', 'text_model.encoder.layers.15.self_attn.q_proj.bias', 'text_model.encoder.layers.15.self_attn.q_proj.weight', 'text_model.encoder.layers.15.self_attn.v_proj.bias', 'text_model.encoder.layers.15.self_attn.v_proj.weight', 'text_model.encoder.layers.16.layer_norm1.bias', 'text_model.encoder.layers.16.layer_norm1.weight', 'text_model.encoder.layers.16.layer_norm2.bias', 'text_model.encoder.layers.16.layer_norm2.weight', 'text_model.encoder.layers.16.mlp.fc1.bias', 'text_model.encoder.layers.16.mlp.fc1.weight', 'text_model.encoder.layers.16.mlp.fc2.bias', 'text_model.encoder.layers.16.mlp.fc2.weight', 'text_model.encoder.layers.16.self_attn.k_proj.bias', 'text_model.encoder.layers.16.self_attn.k_proj.weight', 'text_model.encoder.layers.16.self_attn.out_proj.bias', 'text_model.encoder.layers.16.self_attn.out_proj.weight', 'text_model.encoder.layers.16.self_attn.q_proj.bias', 'text_model.encoder.layers.16.self_attn.q_proj.weight', 'text_model.encoder.layers.16.self_attn.v_proj.bias', 'text_model.encoder.layers.16.self_attn.v_proj.weight', 'text_model.encoder.layers.17.layer_norm1.bias', 'text_model.encoder.layers.17.layer_norm1.weight', 'text_model.encoder.layers.17.layer_norm2.bias', 'text_model.encoder.layers.17.layer_norm2.weight', 'text_model.encoder.layers.17.mlp.fc1.bias', 'text_model.encoder.layers.17.mlp.fc1.weight', 'text_model.encoder.layers.17.mlp.fc2.bias', 'text_model.encoder.layers.17.mlp.fc2.weight', 'text_model.encoder.layers.17.self_attn.k_proj.bias', 'text_model.encoder.layers.17.self_attn.k_proj.weight', 'text_model.encoder.layers.17.self_attn.out_proj.bias', 'text_model.encoder.layers.17.self_attn.out_proj.weight', 'text_model.encoder.layers.17.self_attn.q_proj.bias', 'text_model.encoder.layers.17.self_attn.q_proj.weight', 'text_model.encoder.layers.17.self_attn.v_proj.bias', 'text_model.encoder.layers.17.self_attn.v_proj.weight', 'text_model.encoder.layers.18.layer_norm1.bias', 'text_model.encoder.layers.18.layer_norm1.weight', 'text_model.encoder.layers.18.layer_norm2.bias', 'text_model.encoder.layers.18.layer_norm2.weight', 'text_model.encoder.layers.18.mlp.fc1.bias', 'text_model.encoder.layers.18.mlp.fc1.weight', 'text_model.encoder.layers.18.mlp.fc2.bias', 'text_model.encoder.layers.18.mlp.fc2.weight', 'text_model.encoder.layers.18.self_attn.k_proj.bias', 'text_model.encoder.layers.18.self_attn.k_proj.weight', 'text_model.encoder.layers.18.self_attn.out_proj.bias', 'text_model.encoder.layers.18.self_attn.out_proj.weight', 'text_model.encoder.layers.18.self_attn.q_proj.bias', 'text_model.encoder.layers.18.self_attn.q_proj.weight', 'text_model.encoder.layers.18.self_attn.v_proj.bias', 'text_model.encoder.layers.18.self_attn.v_proj.weight', 'text_model.encoder.layers.19.layer_norm1.bias', 'text_model.encoder.layers.19.layer_norm1.weight', 'text_model.encoder.layers.19.layer_norm2.bias', 'text_model.encoder.layers.19.layer_norm2.weight', 'text_model.encoder.layers.19.mlp.fc1.bias', 'text_model.encoder.layers.19.mlp.fc1.weight', 'text_model.encoder.layers.19.mlp.fc2.bias', 'text_model.encoder.layers.19.mlp.fc2.weight', 'text_model.encoder.layers.19.self_attn.k_proj.bias', 'text_model.encoder.layers.19.self_attn.k_proj.weight', 'text_model.encoder.layers.19.self_attn.out_proj.bias', 'text_model.encoder.layers.19.self_attn.out_proj.weight', 'text_model.encoder.layers.19.self_attn.q_proj.bias', 'text_model.encoder.layers.19.self_attn.q_proj.weight', 'text_model.encoder.layers.19.self_attn.v_proj.bias', 'text_model.encoder.layers.19.self_attn.v_proj.weight', 'text_model.encoder.layers.2.layer_norm1.bias', 'text_model.encoder.layers.2.layer_norm1.weight', 'text_model.encoder.layers.2.layer_norm2.bias', 'text_model.encoder.layers.2.layer_norm2.weight', 'text_model.encoder.layers.2.mlp.fc1.bias', 'text_model.encoder.layers.2.mlp.fc1.weight', 'text_model.encoder.layers.2.mlp.fc2.bias', 'text_model.encoder.layers.2.mlp.fc2.weight', 'text_model.encoder.layers.2.self_attn.k_proj.bias', 'text_model.encoder.layers.2.self_attn.k_proj.weight', 'text_model.encoder.layers.2.self_attn.out_proj.bias', 'text_model.encoder.layers.2.self_attn.out_proj.weight', 'text_model.encoder.layers.2.self_attn.q_proj.bias', 'text_model.encoder.layers.2.self_attn.q_proj.weight', 'text_model.encoder.layers.2.self_attn.v_proj.bias', 'text_model.encoder.layers.2.self_attn.v_proj.weight', 'text_model.encoder.layers.20.layer_norm1.bias', 'text_model.encoder.layers.20.layer_norm1.weight', 'text_model.encoder.layers.20.layer_norm2.bias', 'text_model.encoder.layers.20.layer_norm2.weight', 'text_model.encoder.layers.20.mlp.fc1.bias', 'text_model.encoder.layers.20.mlp.fc1.weight', 'text_model.encoder.layers.20.mlp.fc2.bias', 'text_model.encoder.layers.20.mlp.fc2.weight', 'text_model.encoder.layers.20.self_attn.k_proj.bias', 'text_model.encoder.layers.20.self_attn.k_proj.weight', 'text_model.encoder.layers.20.self_attn.out_proj.bias', 'text_model.encoder.layers.20.self_attn.out_proj.weight', 'text_model.encoder.layers.20.self_attn.q_proj.bias', 'text_model.encoder.layers.20.self_attn.q_proj.weight', 'text_model.encoder.layers.20.self_attn.v_proj.bias', 'text_model.encoder.layers.20.self_attn.v_proj.weight', 'text_model.encoder.layers.21.layer_norm1.bias', 'text_model.encoder.layers.21.layer_norm1.weight', 'text_model.encoder.layers.21.layer_norm2.bias', 'text_model.encoder.layers.21.layer_norm2.weight', 'text_model.encoder.layers.21.mlp.fc1.bias', 'text_model.encoder.layers.21.mlp.fc1.weight', 'text_model.encoder.layers.21.mlp.fc2.bias', 'text_model.encoder.layers.21.mlp.fc2.weight', 'text_model.encoder.layers.21.self_attn.k_proj.bias', 'text_model.encoder.layers.21.self_attn.k_proj.weight', 'text_model.encoder.layers.21.self_attn.out_proj.bias', 'text_model.encoder.layers.21.self_attn.out_proj.weight', 'text_model.encoder.layers.21.self_attn.q_proj.bias', 'text_model.encoder.layers.21.self_attn.q_proj.weight', 'text_model.encoder.layers.21.self_attn.v_proj.bias', 'text_model.encoder.layers.21.self_attn.v_proj.weight', 'text_model.encoder.layers.22.layer_norm1.bias', 'text_model.encoder.layers.22.layer_norm1.weight', 'text_model.encoder.layers.22.layer_norm2.bias', 'text_model.encoder.layers.22.layer_norm2.weight', 'text_model.encoder.layers.22.mlp.fc1.bias', 'text_model.encoder.layers.22.mlp.fc1.weight', 'text_model.encoder.layers.22.mlp.fc2.bias', 'text_model.encoder.layers.22.mlp.fc2.weight', 'text_model.encoder.layers.22.self_attn.k_proj.bias', 'text_model.encoder.layers.22.self_attn.k_proj.weight', 'text_model.encoder.layers.22.self_attn.out_proj.bias', 'text_model.encoder.layers.22.self_attn.out_proj.weight', 'text_model.encoder.layers.22.self_attn.q_proj.bias', 'text_model.encoder.layers.22.self_attn.q_proj.weight', 'text_model.encoder.layers.22.self_attn.v_proj.bias', 'text_model.encoder.layers.22.self_attn.v_proj.weight', 'text_model.encoder.layers.23.layer_norm1.bias', 'text_model.encoder.layers.23.layer_norm1.weight', 'text_model.encoder.layers.23.layer_norm2.bias', 'text_model.encoder.layers.23.layer_norm2.weight', 'text_model.encoder.layers.23.mlp.fc1.bias', 'text_model.encoder.layers.23.mlp.fc1.weight', 'text_model.encoder.layers.23.mlp.fc2.bias', 'text_model.encoder.layers.23.mlp.fc2.weight', 'text_model.encoder.layers.23.self_attn.k_proj.bias', 'text_model.encoder.layers.23.self_attn.k_proj.weight', 'text_model.encoder.layers.23.self_attn.out_proj.bias', 'text_model.encoder.layers.23.self_attn.out_proj.weight', 'text_model.encoder.layers.23.self_attn.q_proj.bias', 'text_model.encoder.layers.23.self_attn.q_proj.weight', 'text_model.encoder.layers.23.self_attn.v_proj.bias', 'text_model.encoder.layers.23.self_attn.v_proj.weight', 'text_model.encoder.layers.24.layer_norm1.bias', 'text_model.encoder.layers.24.layer_norm1.weight', 'text_model.encoder.layers.24.layer_norm2.bias', 'text_model.encoder.layers.24.layer_norm2.weight', 'text_model.encoder.layers.24.mlp.fc1.bias', 'text_model.encoder.layers.24.mlp.fc1.weight', 'text_model.encoder.layers.24.mlp.fc2.bias', 'text_model.encoder.layers.24.mlp.fc2.weight', 'text_model.encoder.layers.24.self_attn.k_proj.bias', 'text_model.encoder.layers.24.self_attn.k_proj.weight', 'text_model.encoder.layers.24.self_attn.out_proj.bias', 'text_model.encoder.layers.24.self_attn.out_proj.weight', 'text_model.encoder.layers.24.self_attn.q_proj.bias', 'text_model.encoder.layers.24.self_attn.q_proj.weight', 'text_model.encoder.layers.24.self_attn.v_proj.bias', 'text_model.encoder.layers.24.self_attn.v_proj.weight', 'text_model.encoder.layers.25.layer_norm1.bias', 'text_model.encoder.layers.25.layer_norm1.weight', 'text_model.encoder.layers.25.layer_norm2.bias', 'text_model.encoder.layers.25.layer_norm2.weight', 'text_model.encoder.layers.25.mlp.fc1.bias', 'text_model.encoder.layers.25.mlp.fc1.weight', 'text_model.encoder.layers.25.mlp.fc2.bias', 'text_model.encoder.layers.25.mlp.fc2.weight', 'text_model.encoder.layers.25.self_attn.k_proj.bias', 'text_model.encoder.layers.25.self_attn.k_proj.weight', 'text_model.encoder.layers.25.self_attn.out_proj.bias', 'text_model.encoder.layers.25.self_attn.out_proj.weight', 'text_model.encoder.layers.25.self_attn.q_proj.bias', 'text_model.encoder.layers.25.self_attn.q_proj.weight', 'text_model.encoder.layers.25.self_attn.v_proj.bias', 'text_model.encoder.layers.25.self_attn.v_proj.weight', 'text_model.encoder.layers.26.layer_norm1.bias', 'text_model.encoder.layers.26.layer_norm1.weight', 'text_model.encoder.layers.26.layer_norm2.bias', 'text_model.encoder.layers.26.layer_norm2.weight', 'text_model.encoder.layers.26.mlp.fc1.bias', 'text_model.encoder.layers.26.mlp.fc1.weight', 'text_model.encoder.layers.26.mlp.fc2.bias', 'text_model.encoder.layers.26.mlp.fc2.weight', 'text_model.encoder.layers.26.self_attn.k_proj.bias', 'text_model.encoder.layers.26.self_attn.k_proj.weight', 'text_model.encoder.layers.26.self_attn.out_proj.bias', 'text_model.encoder.layers.26.self_attn.out_proj.weight', 'text_model.encoder.layers.26.self_attn.q_proj.bias', 'text_model.encoder.layers.26.self_attn.q_proj.weight', 'text_model.encoder.layers.26.self_attn.v_proj.bias', 'text_model.encoder.layers.26.self_attn.v_proj.weight', 'text_model.encoder.layers.3.layer_norm1.bias', 'text_model.encoder.layers.3.layer_norm1.weight', 'text_model.encoder.layers.3.layer_norm2.bias', 'text_model.encoder.layers.3.layer_norm2.weight', 'text_model.encoder.layers.3.mlp.fc1.bias', 'text_model.encoder.layers.3.mlp.fc1.weight', 'text_model.encoder.layers.3.mlp.fc2.bias', 'text_model.encoder.layers.3.mlp.fc2.weight', 'text_model.encoder.layers.3.self_attn.k_proj.bias', 'text_model.encoder.layers.3.self_attn.k_proj.weight', 'text_model.encoder.layers.3.self_attn.out_proj.bias', 'text_model.encoder.layers.3.self_attn.out_proj.weight', 'text_model.encoder.layers.3.self_attn.q_proj.bias', 'text_model.encoder.layers.3.self_attn.q_proj.weight', 'text_model.encoder.layers.3.self_attn.v_proj.bias', 'text_model.encoder.layers.3.self_attn.v_proj.weight', 'text_model.encoder.layers.4.layer_norm1.bias', 'text_model.encoder.layers.4.layer_norm1.weight', 'text_model.encoder.layers.4.layer_norm2.bias', 'text_model.encoder.layers.4.layer_norm2.weight', 'text_model.encoder.layers.4.mlp.fc1.bias', 'text_model.encoder.layers.4.mlp.fc1.weight', 'text_model.encoder.layers.4.mlp.fc2.bias', 'text_model.encoder.layers.4.mlp.fc2.weight', 'text_model.encoder.layers.4.self_attn.k_proj.bias', 'text_model.encoder.layers.4.self_attn.k_proj.weight', 'text_model.encoder.layers.4.self_attn.out_proj.bias', 'text_model.encoder.layers.4.self_attn.out_proj.weight', 'text_model.encoder.layers.4.self_attn.q_proj.bias', 'text_model.encoder.layers.4.self_attn.q_proj.weight', 'text_model.encoder.layers.4.self_attn.v_proj.bias', 'text_model.encoder.layers.4.self_attn.v_proj.weight', 'text_model.encoder.layers.5.layer_norm1.bias', 'text_model.encoder.layers.5.layer_norm1.weight', 'text_model.encoder.layers.5.layer_norm2.bias', 'text_model.encoder.layers.5.layer_norm2.weight', 'text_model.encoder.layers.5.mlp.fc1.bias', 'text_model.encoder.layers.5.mlp.fc1.weight', 'text_model.encoder.layers.5.mlp.fc2.bias', 'text_model.encoder.layers.5.mlp.fc2.weight', 'text_model.encoder.layers.5.self_attn.k_proj.bias', 'text_model.encoder.layers.5.self_attn.k_proj.weight', 'text_model.encoder.layers.5.self_attn.out_proj.bias', 'text_model.encoder.layers.5.self_attn.out_proj.weight', 'text_model.encoder.layers.5.self_attn.q_proj.bias', 'text_model.encoder.layers.5.self_attn.q_proj.weight', 'text_model.encoder.layers.5.self_attn.v_proj.bias', 'text_model.encoder.layers.5.self_attn.v_proj.weight', 'text_model.encoder.layers.6.layer_norm1.bias', 'text_model.encoder.layers.6.layer_norm1.weight', 'text_model.encoder.layers.6.layer_norm2.bias', 'text_model.encoder.layers.6.layer_norm2.weight', 'text_model.encoder.layers.6.mlp.fc1.bias', 'text_model.encoder.layers.6.mlp.fc1.weight', 'text_model.encoder.layers.6.mlp.fc2.bias', 'text_model.encoder.layers.6.mlp.fc2.weight', 'text_model.encoder.layers.6.self_attn.k_proj.bias', 'text_model.encoder.layers.6.self_attn.k_proj.weight', 'text_model.encoder.layers.6.self_attn.out_proj.bias', 'text_model.encoder.layers.6.self_attn.out_proj.weight', 'text_model.encoder.layers.6.self_attn.q_proj.bias', 'text_model.encoder.layers.6.self_attn.q_proj.weight', 'text_model.encoder.layers.6.self_attn.v_proj.bias', 'text_model.encoder.layers.6.self_attn.v_proj.weight', 'text_model.encoder.layers.7.layer_norm1.bias', 'text_model.encoder.layers.7.layer_norm1.weight', 'text_model.encoder.layers.7.layer_norm2.bias', 'text_model.encoder.layers.7.layer_norm2.weight', 'text_model.encoder.layers.7.mlp.fc1.bias', 'text_model.encoder.layers.7.mlp.fc1.weight', 'text_model.encoder.layers.7.mlp.fc2.bias', 'text_model.encoder.layers.7.mlp.fc2.weight', 'text_model.encoder.layers.7.self_attn.k_proj.bias', 'text_model.encoder.layers.7.self_attn.k_proj.weight', 'text_model.encoder.layers.7.self_attn.out_proj.bias', 'text_model.encoder.layers.7.self_attn.out_proj.weight', 'text_model.encoder.layers.7.self_attn.q_proj.bias', 'text_model.encoder.layers.7.self_attn.q_proj.weight', 'text_model.encoder.layers.7.self_attn.v_proj.bias', 'text_model.encoder.layers.7.self_attn.v_proj.weight', 'text_model.encoder.layers.8.layer_norm1.bias', 'text_model.encoder.layers.8.layer_norm1.weight', 'text_model.encoder.layers.8.layer_norm2.bias', 'text_model.encoder.layers.8.layer_norm2.weight', 'text_model.encoder.layers.8.mlp.fc1.bias', 'text_model.encoder.layers.8.mlp.fc1.weight', 'text_model.encoder.layers.8.mlp.fc2.bias', 'text_model.encoder.layers.8.mlp.fc2.weight', 'text_model.encoder.layers.8.self_attn.k_proj.bias', 'text_model.encoder.layers.8.self_attn.k_proj.weight', 'text_model.encoder.layers.8.self_attn.out_proj.bias', 'text_model.encoder.layers.8.self_attn.out_proj.weight', 'text_model.encoder.layers.8.self_attn.q_proj.bias', 'text_model.encoder.layers.8.self_attn.q_proj.weight', 'text_model.encoder.layers.8.self_attn.v_proj.bias', 'text_model.encoder.layers.8.self_attn.v_proj.weight', 'text_model.encoder.layers.9.layer_norm1.bias', 'text_model.encoder.layers.9.layer_norm1.weight', 'text_model.encoder.layers.9.layer_norm2.bias', 'text_model.encoder.layers.9.layer_norm2.weight', 'text_model.encoder.layers.9.mlp.fc1.bias', 'text_model.encoder.layers.9.mlp.fc1.weight', 'text_model.encoder.layers.9.mlp.fc2.bias', 'text_model.encoder.layers.9.mlp.fc2.weight', 'text_model.encoder.layers.9.self_attn.k_proj.bias', 'text_model.encoder.layers.9.self_attn.k_proj.weight', 'text_model.encoder.layers.9.self_attn.out_proj.bias', 'text_model.encoder.layers.9.self_attn.out_proj.weight', 'text_model.encoder.layers.9.self_attn.q_proj.bias', 'text_model.encoder.layers.9.self_attn.q_proj.weight', 'text_model.encoder.layers.9.self_attn.v_proj.bias', 'text_model.encoder.layers.9.self_attn.v_proj.weight', 'text_model.final_layer_norm.bias', 'text_model.final_layer_norm.weight', 'text_model.head.bias', 'text_model.head.weight'] - This IS expected if you are initializing SiglipVisionModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model). - This IS NOT expected if you are initializing SiglipVisionModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model). 2025-02-14 04:23:53,971 - modeling_utils.py:4458 - _load_pretrained_model - INFO - All the weights of SiglipVisionModel were initialized from the model checkpoint at google/siglip-so400m-patch14-384. If your task is similar to the task the model of the checkpoint was trained on, you can already use SiglipVisionModel for predictions without further training. 2025-02-14 04:23:54,163 - image_processing_base.py:375 - get_image_processor_dict - INFO - loading configuration file preprocessor_config.json from cache at /root/.cache/huggingface/hub/models--google--siglip-so400m-patch14-384/snapshots/9fdffc58afc957d1a03a25b10dba0329ab15c2a3/preprocessor_config.json 2025-02-14 04:23:54,164 - image_processing_base.py:429 - from_dict - INFO - Image processor SiglipImageProcessor { "do_convert_rgb": null, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.5, 0.5, 0.5 ], "image_processor_type": "SiglipImageProcessor", "image_std": [ 0.5, 0.5, 0.5 ], "processor_class": "SiglipProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "height": 384, "width": 384 } } 2025-02-14 04:23:54,834 - configuration_utils.py:733 - _get_config_dict - INFO - loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--facebook--dinov2-giant/snapshots/611a9d42f2335e0f921f1e313ad3c1b7178d206d/config.json 2025-02-14 04:23:54,837 - configuration_utils.py:800 - from_dict - INFO - Model config Dinov2Config { "apply_layernorm": true, "architectures": [ "Dinov2Model" ], "attention_probs_dropout_prob": 0.0, "drop_path_rate": 0.0, "hidden_act": "gelu", "hidden_dropout_prob": 0.0, "hidden_size": 1536, "image_size": 518, "initializer_range": 0.02, "layer_norm_eps": 1e-06, "layerscale_value": 1.0, "mlp_ratio": 4, "model_type": "dinov2", "num_attention_heads": 24, "num_channels": 3, "num_hidden_layers": 40, "out_features": [ "stage40" ], "out_indices": [ 40 ], "patch_size": 14, "qkv_bias": true, "reshape_hidden_states": true, "stage_names": [ "stem", "stage1", "stage2", "stage3", "stage4", "stage5", "stage6", "stage7", "stage8", "stage9", "stage10", "stage11", "stage12", "stage13", "stage14", "stage15", "stage16", "stage17", "stage18", "stage19", "stage20", "stage21", "stage22", "stage23", "stage24", "stage25", "stage26", "stage27", "stage28", "stage29", "stage30", "stage31", "stage32", "stage33", "stage34", "stage35", "stage36", "stage37", "stage38", "stage39", "stage40" ], "torch_dtype": "float32", "transformers_version": "4.43.1", "use_swiglu_ffn": true } 2025-02-14 04:23:54,838 - modeling_utils.py:3621 - from_pretrained - INFO - loading weights file model.safetensors from cache at /root/.cache/huggingface/hub/models--facebook--dinov2-giant/snapshots/611a9d42f2335e0f921f1e313ad3c1b7178d206d/model.safetensors 2025-02-14 04:23:55,363 - modeling_utils.py:4450 - _load_pretrained_model - INFO - All model checkpoint weights were used when initializing Dinov2Model. 2025-02-14 04:23:55,364 - modeling_utils.py:4458 - _load_pretrained_model - INFO - All the weights of Dinov2Model were initialized from the model checkpoint at facebook/dinov2-giant. If your task is similar to the task the model of the checkpoint was trained on, you can already use Dinov2Model for predictions without further training. 2025-02-14 04:23:55,551 - image_processing_base.py:375 - get_image_processor_dict - INFO - loading configuration file preprocessor_config.json from cache at /root/.cache/huggingface/hub/models--facebook--dinov2-giant/snapshots/611a9d42f2335e0f921f1e313ad3c1b7178d206d/preprocessor_config.json 2025-02-14 04:23:55,554 - image_processing_base.py:429 - from_dict - INFO - Image processor BitImageProcessor { "crop_size": { "height": 378, "width": 378 }, "do_center_crop": true, "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.485, 0.456, 0.406 ], "image_processor_type": "BitImageProcessor", "image_std": [ 0.229, 0.224, 0.225 ], "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "shortest_edge": 378 } } 2025-02-14 04:23:56,625 - finetune_llama.py:1239 - train - INFO - Total params: 3264865280 2025-02-14 04:23:56,625 - finetune_llama.py:1240 - train - INFO - Trainable params: 12589056 2025-02-14 04:23:56,625 - finetune_llama.py:1241 - train - INFO - LM head params: 394002432 2025-02-14 04:23:57,952 - trainer_callback.py:423 - add_callback - WARNING - You are adding a to the callbacks of this Trainer, but there is already one. The currentlist of callbacks is :DefaultFlowCallback TensorBoardCallback 2025-02-14 04:23:57,952 - trainer.py:648 - __init__ - INFO - Using auto half precision backend 2025-02-14 04:24:00,013 - trainer.py:2134 - _inner_training_loop - INFO - ***** Running training ***** 2025-02-14 04:24:00,013 - trainer.py:2135 - _inner_training_loop - INFO - Num examples = 554 2025-02-14 04:24:00,013 - trainer.py:2136 - _inner_training_loop - INFO - Num Epochs = 2 2025-02-14 04:24:00,013 - trainer.py:2137 - _inner_training_loop - INFO - Instantaneous batch size per device = 1 2025-02-14 04:24:00,013 - trainer.py:2140 - _inner_training_loop - INFO - Total train batch size (w. parallel, distributed & accumulation) = 1 2025-02-14 04:24:00,013 - trainer.py:2141 - _inner_training_loop - INFO - Gradient Accumulation steps = 1 2025-02-14 04:24:00,013 - trainer.py:2142 - _inner_training_loop - INFO - Total optimization steps = 1,108 2025-02-14 04:24:00,015 - trainer.py:2143 - _inner_training_loop - INFO - Number of trainable parameters = 406,591,488 2025-02-14 04:24:26,002 - resource_logging.py:42 - debug_tensor - DEBUG - File: Unknown, Line: Unknown 2025-02-14 04:24:26,003 - resource_logging.py:45 - debug_tensor - DEBUG - In compute_loss(): inputs['labels']: [torch.Size([1, 8192]), torch.int64, cuda:0] 2025-02-14 04:24:26,038 - mm_trainer.py:618 - compute_loss - DEBUG - In compute_loss(): assistant token at position 224