Training complete
Browse files- README.md +24 -16
- pytorch_model.bin +1 -1
README.md
CHANGED
|
@@ -15,8 +15,16 @@ should probably proofread and complete it, then remove this comment. -->
|
|
| 15 |
|
| 16 |
This model was trained from scratch on the None dataset.
|
| 17 |
It achieves the following results on the evaluation set:
|
| 18 |
-
- Loss: 0.
|
| 19 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
## Model description
|
| 22 |
|
|
@@ -35,9 +43,9 @@ More information needed
|
|
| 35 |
### Training hyperparameters
|
| 36 |
|
| 37 |
The following hyperparameters were used during training:
|
| 38 |
-
- learning_rate:
|
| 39 |
- train_batch_size: 4
|
| 40 |
-
- eval_batch_size:
|
| 41 |
- seed: 42
|
| 42 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 43 |
- lr_scheduler_type: cosine
|
|
@@ -46,22 +54,22 @@ The following hyperparameters were used during training:
|
|
| 46 |
|
| 47 |
### Training results
|
| 48 |
|
| 49 |
-
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
| 50 |
-
|
| 51 |
-
|
|
| 52 |
-
|
|
| 53 |
-
| 0.
|
| 54 |
-
| 0.
|
| 55 |
-
| 0.
|
| 56 |
-
| 0.
|
| 57 |
-
| 0.
|
| 58 |
-
| 0.
|
| 59 |
-
| 0.
|
| 60 |
|
| 61 |
|
| 62 |
### Framework versions
|
| 63 |
|
| 64 |
- Transformers 4.38.2
|
| 65 |
- Pytorch 2.2.1+cu121
|
| 66 |
-
- Datasets 2.
|
| 67 |
- Tokenizers 0.15.2
|
|
|
|
| 15 |
|
| 16 |
This model was trained from scratch on the None dataset.
|
| 17 |
It achieves the following results on the evaluation set:
|
| 18 |
+
- Loss: 0.2292
|
| 19 |
+
- 1: {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 1}
|
| 20 |
+
- 4: {'precision': 0.6666666666666666, 'recall': 1.0, 'f1-score': 0.8, 'support': 2}
|
| 21 |
+
- 5: {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 1}
|
| 22 |
+
- 6: {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 3}
|
| 23 |
+
- 9: {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 2}
|
| 24 |
+
- 10: {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 2}
|
| 25 |
+
- Accuracy: 0.9091
|
| 26 |
+
- Macro avg: {'precision': 0.7777777777777777, 'recall': 0.8333333333333334, 'f1-score': 0.7999999999999999, 'support': 11}
|
| 27 |
+
- Weighted avg: {'precision': 0.8484848484848484, 'recall': 0.9090909090909091, 'f1-score': 0.8727272727272727, 'support': 11}
|
| 28 |
|
| 29 |
## Model description
|
| 30 |
|
|
|
|
| 43 |
### Training hyperparameters
|
| 44 |
|
| 45 |
The following hyperparameters were used during training:
|
| 46 |
+
- learning_rate: 5e-05
|
| 47 |
- train_batch_size: 4
|
| 48 |
+
- eval_batch_size: 16
|
| 49 |
- seed: 42
|
| 50 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 51 |
- lr_scheduler_type: cosine
|
|
|
|
| 54 |
|
| 55 |
### Training results
|
| 56 |
|
| 57 |
+
| Training Loss | Epoch | Step | Validation Loss | 0 | 1 | 4 | 5 | 6 | 9 | 10 | Accuracy | Macro avg | Weighted avg |
|
| 58 |
+
|:-------------:|:-----:|:----:|:---------------:|:----------------------------------------------------------------:|:----------------------------------------------------------------:|:-------------------------------------------------------------------------------:|:----------------------------------------------------------------:|:-------------------------------------------------------------------------------:|:----------------------------------------------------------------:|:----------------------------------------------------------------:|:--------:|:--------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------:|
|
| 59 |
+
| 1.0038 | 0.4 | 459 | 0.7923 | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 0} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 1} | {'precision': 0.6666666666666666, 'recall': 1.0, 'f1-score': 0.8, 'support': 2} | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 1} | {'precision': 1.0, 'recall': 0.6666666666666666, 'f1-score': 0.8, 'support': 3} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 2} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 2} | 0.8182 | {'precision': 0.6666666666666666, 'recall': 0.6666666666666666, 'f1-score': 0.6571428571428571, 'support': 11} | {'precision': 0.8484848484848484, 'recall': 0.8181818181818182, 'f1-score': 0.8181818181818182, 'support': 11} |
|
| 60 |
+
| 1.0341 | 0.8 | 918 | 0.0965 | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 1} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 2} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 1} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 3} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 2} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 2} | 1.0 | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 11}| {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 11} |
|
| 61 |
+
| 0.0006 | 1.2 | 1377 | 0.1084 | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 1} | {'precision': 0.6666666666666666, 'recall': 1.0, 'f1-score': 0.8, 'support': 2}| {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 1} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 3} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 2} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 2} | 0.9091 | {'precision': 0.7777777777777777, 'recall': 0.8333333333333334, 'f1-score': 0.7999999999999999, 'support': 11}| {'precision': 0.8484848484848484, 'recall': 0.9090909090909091, 'f1-score': 0.8727272727272727, 'support': 11} |
|
| 62 |
+
| 0.1193 | 1.6 | 1836 | 0.7853 | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 1} | {'precision': 0.6666666666666666, 'recall': 1.0, 'f1-score': 0.8, 'support': 2}| {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 1} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 3} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 2} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 2} | 0.9091 | {'precision': 0.7777777777777777, 'recall': 0.8333333333333334, 'f1-score': 0.7999999999999999, 'support': 11}| {'precision': 0.8484848484848484, 'recall': 0.9090909090909091, 'f1-score': 0.8727272727272727, 'support': 11} |
|
| 63 |
+
| 0.007 | 2.0 | 2295 | 0.0076 | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 1} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 2} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 1} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 3} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 2} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 2} | 1.0 | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 11}| {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 11} |
|
| 64 |
+
| 0.0001 | 2.4 | 2754 | 0.3204 | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 1} | {'precision': 0.6666666666666666, 'recall': 1.0, 'f1-score': 0.8, 'support': 2}| {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 1} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 3} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 2} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 2} | 0.9091 | {'precision': 0.7777777777777777, 'recall': 0.8333333333333334, 'f1-score': 0.7999999999999999, 'support': 11}| {'precision': 0.8484848484848484, 'recall': 0.9090909090909091, 'f1-score': 0.8727272727272727, 'support': 11} |
|
| 65 |
+
| 0.0001 | 2.8 | 3213 | 0.0948 | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 1} | {'precision': 0.6666666666666666, 'recall': 1.0, 'f1-score': 0.8, 'support': 2}| {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 1} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 3} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 2} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 2} | 0.9091 | {'precision': 0.7777777777777777, 'recall': 0.8333333333333334, 'f1-score': 0.7999999999999999, 'support': 11}| {'precision': 0.8484848484848484, 'recall': 0.9090909090909091, 'f1-score': 0.8727272727272727, 'support': 11} |
|
| 66 |
+
| 0.0001 | 3.2 | 3672 | 0.1412 | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 1} | {'precision': 0.6666666666666666, 'recall': 1.0, 'f1-score': 0.8, 'support': 2}| {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 1} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 3} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 2} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 2} | 0.9091 | {'precision': 0.7777777777777777, 'recall': 0.8333333333333334, 'f1-score': 0.7999999999999999, 'support': 11}| {'precision': 0.8484848484848484, 'recall': 0.9090909090909091, 'f1-score': 0.8727272727272727, 'support': 11} |
|
| 67 |
+
| 0.0 | 3.6 | 4131 | 0.2292 | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 1} | {'precision': 0.6666666666666666, 'recall': 1.0, 'f1-score': 0.8, 'support': 2}| {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 1} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 3} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 2} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 2} | 0.9091 | {'precision': 0.7777777777777777, 'recall': 0.8333333333333334, 'f1-score': 0.7999999999999999, 'support': 11}| {'precision': 0.8484848484848484, 'recall': 0.9090909090909091, 'f1-score': 0.8727272727272727, 'support': 11} |
|
| 68 |
|
| 69 |
|
| 70 |
### Framework versions
|
| 71 |
|
| 72 |
- Transformers 4.38.2
|
| 73 |
- Pytorch 2.2.1+cu121
|
| 74 |
+
- Datasets 2.19.0
|
| 75 |
- Tokenizers 0.15.2
|
pytorch_model.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 516667930
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5ffe791a7a07f85134bc8b71f37e23e6ac075194a53dfa7e43af9d61af8eef5b
|
| 3 |
size 516667930
|