tarekxpc commited on
Commit
399e03c
1 Parent(s): de6fbbb

Training complete

Browse files
Files changed (2) hide show
  1. README.md +24 -16
  2. pytorch_model.bin +1 -1
README.md CHANGED
@@ -15,8 +15,16 @@ should probably proofread and complete it, then remove this comment. -->
15
 
16
  This model was trained from scratch on the None dataset.
17
  It achieves the following results on the evaluation set:
18
- - Loss: 0.6274
19
- - Accuracy: 1.0
 
 
 
 
 
 
 
 
20
 
21
  ## Model description
22
 
@@ -35,9 +43,9 @@ More information needed
35
  ### Training hyperparameters
36
 
37
  The following hyperparameters were used during training:
38
- - learning_rate: 1e-06
39
  - train_batch_size: 4
40
- - eval_batch_size: 8
41
  - seed: 42
42
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
43
  - lr_scheduler_type: cosine
@@ -46,22 +54,22 @@ The following hyperparameters were used during training:
46
 
47
  ### Training results
48
 
49
- | Training Loss | Epoch | Step | Validation Loss | Accuracy |
50
- |:-------------:|:-----:|:----:|:---------------:|:--------:|
51
- | 0.6169 | 0.4 | 52 | 0.8997 | 0.0 |
52
- | 0.698 | 0.81 | 104 | 0.7669 | 0.0 |
53
- | 0.5953 | 1.21 | 156 | 0.6956 | 0.0 |
54
- | 0.5979 | 1.61 | 208 | 0.6580 | 1.0 |
55
- | 0.5949 | 2.02 | 260 | 0.6465 | 1.0 |
56
- | 0.6608 | 2.42 | 312 | 0.6321 | 1.0 |
57
- | 0.5082 | 2.82 | 364 | 0.6339 | 1.0 |
58
- | 0.578 | 3.22 | 416 | 0.6302 | 1.0 |
59
- | 0.6325 | 3.63 | 468 | 0.6274 | 1.0 |
60
 
61
 
62
  ### Framework versions
63
 
64
  - Transformers 4.38.2
65
  - Pytorch 2.2.1+cu121
66
- - Datasets 2.18.0
67
  - Tokenizers 0.15.2
 
15
 
16
  This model was trained from scratch on the None dataset.
17
  It achieves the following results on the evaluation set:
18
+ - Loss: 0.2292
19
+ - 1: {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 1}
20
+ - 4: {'precision': 0.6666666666666666, 'recall': 1.0, 'f1-score': 0.8, 'support': 2}
21
+ - 5: {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 1}
22
+ - 6: {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 3}
23
+ - 9: {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 2}
24
+ - 10: {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 2}
25
+ - Accuracy: 0.9091
26
+ - Macro avg: {'precision': 0.7777777777777777, 'recall': 0.8333333333333334, 'f1-score': 0.7999999999999999, 'support': 11}
27
+ - Weighted avg: {'precision': 0.8484848484848484, 'recall': 0.9090909090909091, 'f1-score': 0.8727272727272727, 'support': 11}
28
 
29
  ## Model description
30
 
 
43
  ### Training hyperparameters
44
 
45
  The following hyperparameters were used during training:
46
+ - learning_rate: 5e-05
47
  - train_batch_size: 4
48
+ - eval_batch_size: 16
49
  - seed: 42
50
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
  - lr_scheduler_type: cosine
 
54
 
55
  ### Training results
56
 
57
+ | Training Loss | Epoch | Step | Validation Loss | 0 | 1 | 4 | 5 | 6 | 9 | 10 | Accuracy | Macro avg | Weighted avg |
58
+ |:-------------:|:-----:|:----:|:---------------:|:----------------------------------------------------------------:|:----------------------------------------------------------------:|:-------------------------------------------------------------------------------:|:----------------------------------------------------------------:|:-------------------------------------------------------------------------------:|:----------------------------------------------------------------:|:----------------------------------------------------------------:|:--------:|:--------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------:|
59
+ | 1.0038 | 0.4 | 459 | 0.7923 | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 0} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 1} | {'precision': 0.6666666666666666, 'recall': 1.0, 'f1-score': 0.8, 'support': 2} | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 1} | {'precision': 1.0, 'recall': 0.6666666666666666, 'f1-score': 0.8, 'support': 3} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 2} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 2} | 0.8182 | {'precision': 0.6666666666666666, 'recall': 0.6666666666666666, 'f1-score': 0.6571428571428571, 'support': 11} | {'precision': 0.8484848484848484, 'recall': 0.8181818181818182, 'f1-score': 0.8181818181818182, 'support': 11} |
60
+ | 1.0341 | 0.8 | 918 | 0.0965 | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 1} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 2} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 1} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 3} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 2} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 2} | 1.0 | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 11}| {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 11} |
61
+ | 0.0006 | 1.2 | 1377 | 0.1084 | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 1} | {'precision': 0.6666666666666666, 'recall': 1.0, 'f1-score': 0.8, 'support': 2}| {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 1} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 3} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 2} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 2} | 0.9091 | {'precision': 0.7777777777777777, 'recall': 0.8333333333333334, 'f1-score': 0.7999999999999999, 'support': 11}| {'precision': 0.8484848484848484, 'recall': 0.9090909090909091, 'f1-score': 0.8727272727272727, 'support': 11} |
62
+ | 0.1193 | 1.6 | 1836 | 0.7853 | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 1} | {'precision': 0.6666666666666666, 'recall': 1.0, 'f1-score': 0.8, 'support': 2}| {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 1} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 3} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 2} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 2} | 0.9091 | {'precision': 0.7777777777777777, 'recall': 0.8333333333333334, 'f1-score': 0.7999999999999999, 'support': 11}| {'precision': 0.8484848484848484, 'recall': 0.9090909090909091, 'f1-score': 0.8727272727272727, 'support': 11} |
63
+ | 0.007 | 2.0 | 2295 | 0.0076 | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 1} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 2} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 1} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 3} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 2} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 2} | 1.0 | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 11}| {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 11} |
64
+ | 0.0001 | 2.4 | 2754 | 0.3204 | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 1} | {'precision': 0.6666666666666666, 'recall': 1.0, 'f1-score': 0.8, 'support': 2}| {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 1} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 3} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 2} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 2} | 0.9091 | {'precision': 0.7777777777777777, 'recall': 0.8333333333333334, 'f1-score': 0.7999999999999999, 'support': 11}| {'precision': 0.8484848484848484, 'recall': 0.9090909090909091, 'f1-score': 0.8727272727272727, 'support': 11} |
65
+ | 0.0001 | 2.8 | 3213 | 0.0948 | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 1} | {'precision': 0.6666666666666666, 'recall': 1.0, 'f1-score': 0.8, 'support': 2}| {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 1} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 3} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 2} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 2} | 0.9091 | {'precision': 0.7777777777777777, 'recall': 0.8333333333333334, 'f1-score': 0.7999999999999999, 'support': 11}| {'precision': 0.8484848484848484, 'recall': 0.9090909090909091, 'f1-score': 0.8727272727272727, 'support': 11} |
66
+ | 0.0001 | 3.2 | 3672 | 0.1412 | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 1} | {'precision': 0.6666666666666666, 'recall': 1.0, 'f1-score': 0.8, 'support': 2}| {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 1} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 3} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 2} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 2} | 0.9091 | {'precision': 0.7777777777777777, 'recall': 0.8333333333333334, 'f1-score': 0.7999999999999999, 'support': 11}| {'precision': 0.8484848484848484, 'recall': 0.9090909090909091, 'f1-score': 0.8727272727272727, 'support': 11} |
67
+ | 0.0 | 3.6 | 4131 | 0.2292 | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 1} | {'precision': 0.6666666666666666, 'recall': 1.0, 'f1-score': 0.8, 'support': 2}| {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 1} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 3} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 2} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 2} | 0.9091 | {'precision': 0.7777777777777777, 'recall': 0.8333333333333334, 'f1-score': 0.7999999999999999, 'support': 11}| {'precision': 0.8484848484848484, 'recall': 0.9090909090909091, 'f1-score': 0.8727272727272727, 'support': 11} |
68
 
69
 
70
  ### Framework versions
71
 
72
  - Transformers 4.38.2
73
  - Pytorch 2.2.1+cu121
74
+ - Datasets 2.19.0
75
  - Tokenizers 0.15.2
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b90a15bbcb4077745e16c88bdf97cfb93bec8727f4ccf6cac58fd974532f1aeb
3
  size 516667930
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5ffe791a7a07f85134bc8b71f37e23e6ac075194a53dfa7e43af9d61af8eef5b
3
  size 516667930