taozi555 commited on
Commit
9cd8068
·
verified ·
1 Parent(s): cb3420a

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/root/autodl-tmp/out/checkpoint-1902",
3
+ "architectures": [
4
+ "MistralForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 1,
8
+ "eos_token_id": 2,
9
+ "head_dim": 128,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 5120,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 14336,
14
+ "max_position_embeddings": 1024000,
15
+ "model_type": "mistral",
16
+ "num_attention_heads": 32,
17
+ "num_hidden_layers": 40,
18
+ "num_key_value_heads": 8,
19
+ "rms_norm_eps": 1e-05,
20
+ "rope_theta": 1000000.0,
21
+ "sliding_window": null,
22
+ "tie_word_embeddings": false,
23
+ "torch_dtype": "bfloat16",
24
+ "transformers_version": "4.46.3",
25
+ "use_cache": false,
26
+ "vocab_size": 131072
27
+ }
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "do_sample": true,
5
+ "eos_token_id": 2,
6
+ "transformers_version": "4.46.3"
7
+ }
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step225
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:89af8efae13b10e91766f41f0ae0e52f450126f73b6764e2879e9fd4879842f0
3
+ size 4865522496
model-00002-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a4a394bc09723b10ca630fbb380c29a1cd49c53e41032562420b1fb07729ee7a
3
+ size 4907529424
model-00003-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c5f68e7a2c6e6108d2cbba16f0fec7da3b679684e79f0713869c6caae33c07d9
3
+ size 4907529456
model-00004-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a90dbce4fb115fd8a2ec997f5f6515fd0a3c9e1a11cd7c17e92d3a7839909b83
3
+ size 4907529456
model-00005-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aea3f4d529567fbe12cf12bb9c2da3246ccd23f997e71c0d1efb068affbd6e13
3
+ size 4907496272
model.safetensors.index.json ADDED
@@ -0,0 +1,370 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 24495564800
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00005-of-00005.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00005.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00005.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00005.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00005.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00005.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00005.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00005.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00005.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00003-of-00005.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00003-of-00005.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00003-of-00005.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00005.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00005.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00005.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00005.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00005.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00005.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00005.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00004-of-00005.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00004-of-00005.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00004-of-00005.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00004-of-00005.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00004-of-00005.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00004-of-00005.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00005.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00004-of-00005.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00004-of-00005.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
242
+ "model.layers.32.input_layernorm.weight": "model-00004-of-00005.safetensors",
243
+ "model.layers.32.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
244
+ "model.layers.32.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
245
+ "model.layers.32.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
246
+ "model.layers.32.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
247
+ "model.layers.32.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
248
+ "model.layers.32.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
249
+ "model.layers.32.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
250
+ "model.layers.32.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
251
+ "model.layers.33.input_layernorm.weight": "model-00005-of-00005.safetensors",
252
+ "model.layers.33.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
253
+ "model.layers.33.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
254
+ "model.layers.33.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
255
+ "model.layers.33.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
256
+ "model.layers.33.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
257
+ "model.layers.33.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
258
+ "model.layers.33.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
259
+ "model.layers.33.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
260
+ "model.layers.34.input_layernorm.weight": "model-00005-of-00005.safetensors",
261
+ "model.layers.34.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
262
+ "model.layers.34.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
263
+ "model.layers.34.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
264
+ "model.layers.34.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
265
+ "model.layers.34.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
266
+ "model.layers.34.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
267
+ "model.layers.34.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
268
+ "model.layers.34.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
269
+ "model.layers.35.input_layernorm.weight": "model-00005-of-00005.safetensors",
270
+ "model.layers.35.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
271
+ "model.layers.35.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
272
+ "model.layers.35.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
273
+ "model.layers.35.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
274
+ "model.layers.35.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
275
+ "model.layers.35.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
276
+ "model.layers.35.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
277
+ "model.layers.35.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
278
+ "model.layers.36.input_layernorm.weight": "model-00005-of-00005.safetensors",
279
+ "model.layers.36.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
280
+ "model.layers.36.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
281
+ "model.layers.36.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
282
+ "model.layers.36.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
283
+ "model.layers.36.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
284
+ "model.layers.36.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
285
+ "model.layers.36.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
286
+ "model.layers.36.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
287
+ "model.layers.37.input_layernorm.weight": "model-00005-of-00005.safetensors",
288
+ "model.layers.37.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
289
+ "model.layers.37.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
290
+ "model.layers.37.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
291
+ "model.layers.37.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
292
+ "model.layers.37.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
293
+ "model.layers.37.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
294
+ "model.layers.37.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
295
+ "model.layers.37.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
296
+ "model.layers.38.input_layernorm.weight": "model-00005-of-00005.safetensors",
297
+ "model.layers.38.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
298
+ "model.layers.38.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
299
+ "model.layers.38.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
300
+ "model.layers.38.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
301
+ "model.layers.38.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
302
+ "model.layers.38.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
303
+ "model.layers.38.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
304
+ "model.layers.38.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
305
+ "model.layers.39.input_layernorm.weight": "model-00005-of-00005.safetensors",
306
+ "model.layers.39.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
307
+ "model.layers.39.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
308
+ "model.layers.39.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
309
+ "model.layers.39.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
310
+ "model.layers.39.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
311
+ "model.layers.39.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
312
+ "model.layers.39.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
313
+ "model.layers.39.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
314
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00005.safetensors",
315
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
316
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
317
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
318
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
319
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
320
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
321
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
322
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
323
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00005.safetensors",
324
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
325
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
326
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
327
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
328
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
329
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
330
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
331
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
332
+ "model.layers.6.input_layernorm.weight": "model-00002-of-00005.safetensors",
333
+ "model.layers.6.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
334
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
335
+ "model.layers.6.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
336
+ "model.layers.6.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
337
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
338
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
339
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
340
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
341
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00005.safetensors",
342
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
343
+ "model.layers.7.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
344
+ "model.layers.7.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
345
+ "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
346
+ "model.layers.7.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
347
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
348
+ "model.layers.7.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
349
+ "model.layers.7.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
350
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00005.safetensors",
351
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
352
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
353
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
354
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
355
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
356
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
357
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
358
+ "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
359
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00005.safetensors",
360
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
361
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
362
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
363
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
364
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
365
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
366
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
367
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
368
+ "model.norm.weight": "model-00005-of-00005.safetensors"
369
+ }
370
+ }
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5670d88ebc88a22600882bf1d00cfe253f1c92a0e61c826395faa3de3b2ce196
3
+ size 1064
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<pad>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:868ad0021d8fcb7c1da1debcabd7443fccd21697a51abc03b3c1abb52c64b91e
3
+ size 17078592
tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
trainer_state.json ADDED
@@ -0,0 +1,1608 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 500,
6
+ "global_step": 225,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0044444444444444444,
13
+ "grad_norm": 7.197563171386719,
14
+ "learning_rate": 2.5000000000000004e-07,
15
+ "loss": 1.3915,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.008888888888888889,
20
+ "grad_norm": 7.682923793792725,
21
+ "learning_rate": 5.000000000000001e-07,
22
+ "loss": 1.3854,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.013333333333333334,
27
+ "grad_norm": 9.152216911315918,
28
+ "learning_rate": 7.5e-07,
29
+ "loss": 1.3159,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.017777777777777778,
34
+ "grad_norm": 9.388493537902832,
35
+ "learning_rate": 1.0000000000000002e-06,
36
+ "loss": 1.3236,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.022222222222222223,
41
+ "grad_norm": 12.188794136047363,
42
+ "learning_rate": 1.25e-06,
43
+ "loss": 1.3502,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.02666666666666667,
48
+ "grad_norm": 12.245216369628906,
49
+ "learning_rate": 1.5e-06,
50
+ "loss": 1.404,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.03111111111111111,
55
+ "grad_norm": 19.210506439208984,
56
+ "learning_rate": 1.75e-06,
57
+ "loss": 1.4199,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.035555555555555556,
62
+ "grad_norm": 9.991368293762207,
63
+ "learning_rate": 2.0000000000000003e-06,
64
+ "loss": 1.3316,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.04,
69
+ "grad_norm": 6.724348545074463,
70
+ "learning_rate": 2.25e-06,
71
+ "loss": 1.4482,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.044444444444444446,
76
+ "grad_norm": 8.962543487548828,
77
+ "learning_rate": 2.5e-06,
78
+ "loss": 1.29,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.04888888888888889,
83
+ "grad_norm": 7.128359317779541,
84
+ "learning_rate": 2.7500000000000004e-06,
85
+ "loss": 1.3139,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.05333333333333334,
90
+ "grad_norm": 11.580962181091309,
91
+ "learning_rate": 3e-06,
92
+ "loss": 1.3238,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.057777777777777775,
97
+ "grad_norm": 8.380171775817871,
98
+ "learning_rate": 3.2500000000000002e-06,
99
+ "loss": 1.3434,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.06222222222222222,
104
+ "grad_norm": 5.92144250869751,
105
+ "learning_rate": 3.5e-06,
106
+ "loss": 1.2896,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.06666666666666667,
111
+ "grad_norm": 8.112162590026855,
112
+ "learning_rate": 3.7500000000000005e-06,
113
+ "loss": 1.2117,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.07111111111111111,
118
+ "grad_norm": 3.5406394004821777,
119
+ "learning_rate": 4.000000000000001e-06,
120
+ "loss": 1.2094,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.07555555555555556,
125
+ "grad_norm": 22.047605514526367,
126
+ "learning_rate": 4.25e-06,
127
+ "loss": 1.2027,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.08,
132
+ "grad_norm": 6.793862819671631,
133
+ "learning_rate": 4.5e-06,
134
+ "loss": 1.2434,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.08444444444444445,
139
+ "grad_norm": 9.382174491882324,
140
+ "learning_rate": 4.75e-06,
141
+ "loss": 1.3183,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.08888888888888889,
146
+ "grad_norm": 5.871135234832764,
147
+ "learning_rate": 5e-06,
148
+ "loss": 1.2432,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.09333333333333334,
153
+ "grad_norm": 17.656475067138672,
154
+ "learning_rate": 5.2500000000000006e-06,
155
+ "loss": 1.1843,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.09777777777777778,
160
+ "grad_norm": 10.098402976989746,
161
+ "learning_rate": 5.500000000000001e-06,
162
+ "loss": 1.3401,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.10222222222222223,
167
+ "grad_norm": 23.264266967773438,
168
+ "learning_rate": 5.75e-06,
169
+ "loss": 1.3025,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.10666666666666667,
174
+ "grad_norm": 4.140642166137695,
175
+ "learning_rate": 6e-06,
176
+ "loss": 1.2141,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.1111111111111111,
181
+ "grad_norm": 6.262714862823486,
182
+ "learning_rate": 6.25e-06,
183
+ "loss": 1.2665,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.11555555555555555,
188
+ "grad_norm": 6.946407794952393,
189
+ "learning_rate": 6.5000000000000004e-06,
190
+ "loss": 1.1989,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.12,
195
+ "grad_norm": 2.5363879203796387,
196
+ "learning_rate": 6.750000000000001e-06,
197
+ "loss": 1.1771,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.12444444444444444,
202
+ "grad_norm": 3.964658737182617,
203
+ "learning_rate": 7e-06,
204
+ "loss": 1.2362,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.1288888888888889,
209
+ "grad_norm": 2.513711452484131,
210
+ "learning_rate": 7.25e-06,
211
+ "loss": 1.2203,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.13333333333333333,
216
+ "grad_norm": 2.6071319580078125,
217
+ "learning_rate": 7.500000000000001e-06,
218
+ "loss": 1.167,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.13777777777777778,
223
+ "grad_norm": 3.0134849548339844,
224
+ "learning_rate": 7.75e-06,
225
+ "loss": 1.2139,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.14222222222222222,
230
+ "grad_norm": 2.4809670448303223,
231
+ "learning_rate": 8.000000000000001e-06,
232
+ "loss": 1.1603,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.14666666666666667,
237
+ "grad_norm": 3.1294925212860107,
238
+ "learning_rate": 8.25e-06,
239
+ "loss": 1.1922,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.1511111111111111,
244
+ "grad_norm": 2.703998565673828,
245
+ "learning_rate": 8.5e-06,
246
+ "loss": 1.1858,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.15555555555555556,
251
+ "grad_norm": 4.653899192810059,
252
+ "learning_rate": 8.750000000000001e-06,
253
+ "loss": 1.2678,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.16,
258
+ "grad_norm": 2.976705312728882,
259
+ "learning_rate": 9e-06,
260
+ "loss": 1.2004,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.16444444444444445,
265
+ "grad_norm": 3.332261323928833,
266
+ "learning_rate": 9.250000000000001e-06,
267
+ "loss": 1.2128,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.1688888888888889,
272
+ "grad_norm": 2.7455172538757324,
273
+ "learning_rate": 9.5e-06,
274
+ "loss": 1.2348,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.17333333333333334,
279
+ "grad_norm": 2.5534517765045166,
280
+ "learning_rate": 9.75e-06,
281
+ "loss": 1.1752,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.17777777777777778,
286
+ "grad_norm": 2.2505180835723877,
287
+ "learning_rate": 1e-05,
288
+ "loss": 1.1248,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.18222222222222223,
293
+ "grad_norm": 3.083693265914917,
294
+ "learning_rate": 9.999853218975136e-06,
295
+ "loss": 1.1466,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.18666666666666668,
300
+ "grad_norm": 2.871704339981079,
301
+ "learning_rate": 9.99941288451841e-06,
302
+ "loss": 1.1622,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.19111111111111112,
307
+ "grad_norm": 2.9086086750030518,
308
+ "learning_rate": 9.998679022482916e-06,
309
+ "loss": 1.1584,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.19555555555555557,
314
+ "grad_norm": 2.8458251953125,
315
+ "learning_rate": 9.997651675955467e-06,
316
+ "loss": 1.1556,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.2,
321
+ "grad_norm": 3.2609152793884277,
322
+ "learning_rate": 9.99633090525405e-06,
323
+ "loss": 1.1991,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.20444444444444446,
328
+ "grad_norm": 14.039426803588867,
329
+ "learning_rate": 9.9947167879243e-06,
330
+ "loss": 1.1318,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.2088888888888889,
335
+ "grad_norm": 3.4546499252319336,
336
+ "learning_rate": 9.992809418734932e-06,
337
+ "loss": 1.1987,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.21333333333333335,
342
+ "grad_norm": 3.3863046169281006,
343
+ "learning_rate": 9.99060890967219e-06,
344
+ "loss": 1.171,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.21777777777777776,
349
+ "grad_norm": 2.217785596847534,
350
+ "learning_rate": 9.988115389933263e-06,
351
+ "loss": 1.124,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.2222222222222222,
356
+ "grad_norm": 3.8226356506347656,
357
+ "learning_rate": 9.985329005918702e-06,
358
+ "loss": 1.2048,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.22666666666666666,
363
+ "grad_norm": 4.5612688064575195,
364
+ "learning_rate": 9.982249921223833e-06,
365
+ "loss": 1.1899,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.2311111111111111,
370
+ "grad_norm": 3.4833076000213623,
371
+ "learning_rate": 9.978878316629132e-06,
372
+ "loss": 1.1745,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.23555555555555555,
377
+ "grad_norm": 2.259718894958496,
378
+ "learning_rate": 9.975214390089637e-06,
379
+ "loss": 1.1016,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.24,
384
+ "grad_norm": 2.242814779281616,
385
+ "learning_rate": 9.9712583567233e-06,
386
+ "loss": 1.1984,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.24444444444444444,
391
+ "grad_norm": 4.208090305328369,
392
+ "learning_rate": 9.967010448798376e-06,
393
+ "loss": 1.1899,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.24888888888888888,
398
+ "grad_norm": 2.8487319946289062,
399
+ "learning_rate": 9.962470915719775e-06,
400
+ "loss": 1.1735,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.25333333333333335,
405
+ "grad_norm": 2.4001946449279785,
406
+ "learning_rate": 9.957640024014426e-06,
407
+ "loss": 1.1199,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.2577777777777778,
412
+ "grad_norm": 4.717513561248779,
413
+ "learning_rate": 9.952518057315624e-06,
414
+ "loss": 1.1234,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.26222222222222225,
419
+ "grad_norm": 2.7141494750976562,
420
+ "learning_rate": 9.947105316346372e-06,
421
+ "loss": 1.1619,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.26666666666666666,
426
+ "grad_norm": 2.610142946243286,
427
+ "learning_rate": 9.941402118901743e-06,
428
+ "loss": 1.2141,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.27111111111111114,
433
+ "grad_norm": 3.9055914878845215,
434
+ "learning_rate": 9.9354087998302e-06,
435
+ "loss": 1.1778,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.27555555555555555,
440
+ "grad_norm": 3.3144619464874268,
441
+ "learning_rate": 9.929125711013952e-06,
442
+ "loss": 1.1574,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.28,
447
+ "grad_norm": 2.429931640625,
448
+ "learning_rate": 9.922553221348281e-06,
449
+ "loss": 1.1524,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.28444444444444444,
454
+ "grad_norm": 2.495755195617676,
455
+ "learning_rate": 9.915691716719899e-06,
456
+ "loss": 1.1692,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.28888888888888886,
461
+ "grad_norm": 1.96566903591156,
462
+ "learning_rate": 9.908541599984276e-06,
463
+ "loss": 1.0634,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.29333333333333333,
468
+ "grad_norm": 2.161886215209961,
469
+ "learning_rate": 9.901103290941996e-06,
470
+ "loss": 1.1318,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.29777777777777775,
475
+ "grad_norm": 2.408609390258789,
476
+ "learning_rate": 9.893377226314113e-06,
477
+ "loss": 1.118,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.3022222222222222,
482
+ "grad_norm": 2.3472368717193604,
483
+ "learning_rate": 9.885363859716497e-06,
484
+ "loss": 1.1064,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.30666666666666664,
489
+ "grad_norm": 4.991092681884766,
490
+ "learning_rate": 9.877063661633213e-06,
491
+ "loss": 1.1629,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.3111111111111111,
496
+ "grad_norm": 2.2165753841400146,
497
+ "learning_rate": 9.868477119388897e-06,
498
+ "loss": 1.0692,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.31555555555555553,
503
+ "grad_norm": 3.0987343788146973,
504
+ "learning_rate": 9.859604737120131e-06,
505
+ "loss": 1.1878,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.32,
510
+ "grad_norm": 3.5139403343200684,
511
+ "learning_rate": 9.850447035745868e-06,
512
+ "loss": 1.1443,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.3244444444444444,
517
+ "grad_norm": 2.9309511184692383,
518
+ "learning_rate": 9.841004552936817e-06,
519
+ "loss": 1.1986,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.3288888888888889,
524
+ "grad_norm": 2.642705202102661,
525
+ "learning_rate": 9.831277843083904e-06,
526
+ "loss": 1.1076,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.3333333333333333,
531
+ "grad_norm": 2.53140926361084,
532
+ "learning_rate": 9.821267477265705e-06,
533
+ "loss": 1.1432,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.3377777777777778,
538
+ "grad_norm": 3.0417535305023193,
539
+ "learning_rate": 9.810974043214923e-06,
540
+ "loss": 1.1889,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.3422222222222222,
545
+ "grad_norm": 2.1667232513427734,
546
+ "learning_rate": 9.800398145283874e-06,
547
+ "loss": 1.1088,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.3466666666666667,
552
+ "grad_norm": 2.451881170272827,
553
+ "learning_rate": 9.789540404409017e-06,
554
+ "loss": 1.125,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.3511111111111111,
559
+ "grad_norm": 5.966605186462402,
560
+ "learning_rate": 9.778401458074482e-06,
561
+ "loss": 1.2031,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.35555555555555557,
566
+ "grad_norm": 2.767612934112549,
567
+ "learning_rate": 9.766981960274653e-06,
568
+ "loss": 1.1299,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.36,
573
+ "grad_norm": 2.8305821418762207,
574
+ "learning_rate": 9.755282581475769e-06,
575
+ "loss": 1.106,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.36444444444444446,
580
+ "grad_norm": 2.256387710571289,
581
+ "learning_rate": 9.74330400857655e-06,
582
+ "loss": 1.1994,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.3688888888888889,
587
+ "grad_norm": 2.9722063541412354,
588
+ "learning_rate": 9.731046944867883e-06,
589
+ "loss": 1.1182,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.37333333333333335,
594
+ "grad_norm": 3.528620958328247,
595
+ "learning_rate": 9.718512109991516e-06,
596
+ "loss": 1.2216,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.37777777777777777,
601
+ "grad_norm": 2.0519301891326904,
602
+ "learning_rate": 9.705700239897809e-06,
603
+ "loss": 1.1228,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.38222222222222224,
608
+ "grad_norm": 2.4317550659179688,
609
+ "learning_rate": 9.692612086802536e-06,
610
+ "loss": 1.164,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.38666666666666666,
615
+ "grad_norm": 3.0390419960021973,
616
+ "learning_rate": 9.679248419142704e-06,
617
+ "loss": 1.2052,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.39111111111111113,
622
+ "grad_norm": 2.4871633052825928,
623
+ "learning_rate": 9.665610021531447e-06,
624
+ "loss": 1.1605,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.39555555555555555,
629
+ "grad_norm": 3.762112617492676,
630
+ "learning_rate": 9.651697694711959e-06,
631
+ "loss": 1.1504,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.4,
636
+ "grad_norm": 18.623851776123047,
637
+ "learning_rate": 9.637512255510475e-06,
638
+ "loss": 1.173,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.40444444444444444,
643
+ "grad_norm": 2.8003592491149902,
644
+ "learning_rate": 9.623054536788315e-06,
645
+ "loss": 1.1239,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.4088888888888889,
650
+ "grad_norm": 2.560473918914795,
651
+ "learning_rate": 9.608325387392988e-06,
652
+ "loss": 1.1203,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.41333333333333333,
657
+ "grad_norm": 1.885018229484558,
658
+ "learning_rate": 9.593325672108352e-06,
659
+ "loss": 1.142,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.4177777777777778,
664
+ "grad_norm": 4.514256000518799,
665
+ "learning_rate": 9.578056271603837e-06,
666
+ "loss": 1.1398,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.4222222222222222,
671
+ "grad_norm": 2.7508609294891357,
672
+ "learning_rate": 9.562518082382751e-06,
673
+ "loss": 1.1355,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.4266666666666667,
678
+ "grad_norm": 2.800530433654785,
679
+ "learning_rate": 9.546712016729625e-06,
680
+ "loss": 1.1512,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.4311111111111111,
685
+ "grad_norm": 3.151304006576538,
686
+ "learning_rate": 9.530639002656665e-06,
687
+ "loss": 1.1215,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.43555555555555553,
692
+ "grad_norm": 2.7462916374206543,
693
+ "learning_rate": 9.514299983849267e-06,
694
+ "loss": 1.1412,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.44,
699
+ "grad_norm": 1.8580820560455322,
700
+ "learning_rate": 9.497695919610595e-06,
701
+ "loss": 1.088,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.4444444444444444,
706
+ "grad_norm": 2.2820510864257812,
707
+ "learning_rate": 9.480827784805278e-06,
708
+ "loss": 1.1844,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 0.4488888888888889,
713
+ "grad_norm": 1.8663792610168457,
714
+ "learning_rate": 9.463696569802163e-06,
715
+ "loss": 1.1218,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 0.4533333333333333,
720
+ "grad_norm": 2.3818678855895996,
721
+ "learning_rate": 9.446303280416167e-06,
722
+ "loss": 1.186,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 0.4577777777777778,
727
+ "grad_norm": 1.8850212097167969,
728
+ "learning_rate": 9.428648937849227e-06,
729
+ "loss": 1.0865,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 0.4622222222222222,
734
+ "grad_norm": 2.012317419052124,
735
+ "learning_rate": 9.410734578630344e-06,
736
+ "loss": 1.0468,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 0.4666666666666667,
741
+ "grad_norm": 2.9131033420562744,
742
+ "learning_rate": 9.392561254554712e-06,
743
+ "loss": 1.1631,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 0.4711111111111111,
748
+ "grad_norm": 3.2192587852478027,
749
+ "learning_rate": 9.374130032621993e-06,
750
+ "loss": 1.1361,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 0.47555555555555556,
755
+ "grad_norm": 2.818880319595337,
756
+ "learning_rate": 9.355441994973639e-06,
757
+ "loss": 1.1578,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 0.48,
762
+ "grad_norm": 3.6746394634246826,
763
+ "learning_rate": 9.336498238829383e-06,
764
+ "loss": 1.1542,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 0.48444444444444446,
769
+ "grad_norm": 3.4095306396484375,
770
+ "learning_rate": 9.317299876422797e-06,
771
+ "loss": 1.142,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 0.4888888888888889,
776
+ "grad_norm": 2.7571191787719727,
777
+ "learning_rate": 9.297848034936007e-06,
778
+ "loss": 1.1133,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 0.49333333333333335,
783
+ "grad_norm": 2.1086196899414062,
784
+ "learning_rate": 9.278143856433503e-06,
785
+ "loss": 1.1164,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 0.49777777777777776,
790
+ "grad_norm": 2.419229507446289,
791
+ "learning_rate": 9.258188497795093e-06,
792
+ "loss": 1.1713,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 0.5022222222222222,
797
+ "grad_norm": 2.4053385257720947,
798
+ "learning_rate": 9.237983130647973e-06,
799
+ "loss": 1.1185,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 0.5066666666666667,
804
+ "grad_norm": 2.489058017730713,
805
+ "learning_rate": 9.217528941297942e-06,
806
+ "loss": 1.168,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 0.5111111111111111,
811
+ "grad_norm": 2.2254421710968018,
812
+ "learning_rate": 9.196827130659752e-06,
813
+ "loss": 1.1715,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 0.5155555555555555,
818
+ "grad_norm": 2.17338228225708,
819
+ "learning_rate": 9.175878914186591e-06,
820
+ "loss": 1.1486,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 0.52,
825
+ "grad_norm": 3.704568386077881,
826
+ "learning_rate": 9.154685521798736e-06,
827
+ "loss": 1.2477,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 0.5244444444444445,
832
+ "grad_norm": 2.340566396713257,
833
+ "learning_rate": 9.13324819781133e-06,
834
+ "loss": 1.1748,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 0.5288888888888889,
839
+ "grad_norm": 2.876037359237671,
840
+ "learning_rate": 9.111568200861324e-06,
841
+ "loss": 1.1003,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 0.5333333333333333,
846
+ "grad_norm": 1.6906325817108154,
847
+ "learning_rate": 9.089646803833589e-06,
848
+ "loss": 1.0845,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 0.5377777777777778,
853
+ "grad_norm": 2.1755309104919434,
854
+ "learning_rate": 9.067485293786173e-06,
855
+ "loss": 1.2046,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 0.5422222222222223,
860
+ "grad_norm": 2.471137046813965,
861
+ "learning_rate": 9.045084971874738e-06,
862
+ "loss": 1.1749,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 0.5466666666666666,
867
+ "grad_norm": 2.135450839996338,
868
+ "learning_rate": 9.022447153276169e-06,
869
+ "loss": 1.1702,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 0.5511111111111111,
874
+ "grad_norm": 2.0650486946105957,
875
+ "learning_rate": 8.99957316711135e-06,
876
+ "loss": 1.1009,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 0.5555555555555556,
881
+ "grad_norm": 2.5196189880371094,
882
+ "learning_rate": 8.976464356367133e-06,
883
+ "loss": 1.1063,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 0.56,
888
+ "grad_norm": 2.1774826049804688,
889
+ "learning_rate": 8.95312207781749e-06,
890
+ "loss": 1.1902,
891
+ "step": 126
892
+ },
893
+ {
894
+ "epoch": 0.5644444444444444,
895
+ "grad_norm": 2.327805757522583,
896
+ "learning_rate": 8.929547701943849e-06,
897
+ "loss": 1.1152,
898
+ "step": 127
899
+ },
900
+ {
901
+ "epoch": 0.5688888888888889,
902
+ "grad_norm": 3.271408796310425,
903
+ "learning_rate": 8.905742612854628e-06,
904
+ "loss": 1.1846,
905
+ "step": 128
906
+ },
907
+ {
908
+ "epoch": 0.5733333333333334,
909
+ "grad_norm": 2.898059844970703,
910
+ "learning_rate": 8.881708208203977e-06,
911
+ "loss": 1.16,
912
+ "step": 129
913
+ },
914
+ {
915
+ "epoch": 0.5777777777777777,
916
+ "grad_norm": 2.6147210597991943,
917
+ "learning_rate": 8.857445899109716e-06,
918
+ "loss": 1.12,
919
+ "step": 130
920
+ },
921
+ {
922
+ "epoch": 0.5822222222222222,
923
+ "grad_norm": 3.8312957286834717,
924
+ "learning_rate": 8.832957110070482e-06,
925
+ "loss": 1.1535,
926
+ "step": 131
927
+ },
928
+ {
929
+ "epoch": 0.5866666666666667,
930
+ "grad_norm": 3.3056952953338623,
931
+ "learning_rate": 8.808243278882094e-06,
932
+ "loss": 1.0797,
933
+ "step": 132
934
+ },
935
+ {
936
+ "epoch": 0.5911111111111111,
937
+ "grad_norm": 3.1664161682128906,
938
+ "learning_rate": 8.783305856553143e-06,
939
+ "loss": 1.1774,
940
+ "step": 133
941
+ },
942
+ {
943
+ "epoch": 0.5955555555555555,
944
+ "grad_norm": 2.9546732902526855,
945
+ "learning_rate": 8.758146307219793e-06,
946
+ "loss": 1.213,
947
+ "step": 134
948
+ },
949
+ {
950
+ "epoch": 0.6,
951
+ "grad_norm": 1.9610460996627808,
952
+ "learning_rate": 8.732766108059814e-06,
953
+ "loss": 1.167,
954
+ "step": 135
955
+ },
956
+ {
957
+ "epoch": 0.6044444444444445,
958
+ "grad_norm": 2.216212749481201,
959
+ "learning_rate": 8.707166749205867e-06,
960
+ "loss": 1.0953,
961
+ "step": 136
962
+ },
963
+ {
964
+ "epoch": 0.6088888888888889,
965
+ "grad_norm": 5.400648593902588,
966
+ "learning_rate": 8.681349733658002e-06,
967
+ "loss": 1.085,
968
+ "step": 137
969
+ },
970
+ {
971
+ "epoch": 0.6133333333333333,
972
+ "grad_norm": 2.8066205978393555,
973
+ "learning_rate": 8.65531657719542e-06,
974
+ "loss": 1.1447,
975
+ "step": 138
976
+ },
977
+ {
978
+ "epoch": 0.6177777777777778,
979
+ "grad_norm": 3.9573774337768555,
980
+ "learning_rate": 8.629068808287476e-06,
981
+ "loss": 1.1372,
982
+ "step": 139
983
+ },
984
+ {
985
+ "epoch": 0.6222222222222222,
986
+ "grad_norm": 2.352977991104126,
987
+ "learning_rate": 8.602607968003935e-06,
988
+ "loss": 1.1005,
989
+ "step": 140
990
+ },
991
+ {
992
+ "epoch": 0.6266666666666667,
993
+ "grad_norm": 3.9835476875305176,
994
+ "learning_rate": 8.575935609924505e-06,
995
+ "loss": 1.1974,
996
+ "step": 141
997
+ },
998
+ {
999
+ "epoch": 0.6311111111111111,
1000
+ "grad_norm": 2.4645981788635254,
1001
+ "learning_rate": 8.549053300047602e-06,
1002
+ "loss": 1.0944,
1003
+ "step": 142
1004
+ },
1005
+ {
1006
+ "epoch": 0.6355555555555555,
1007
+ "grad_norm": 1.7835776805877686,
1008
+ "learning_rate": 8.521962616698428e-06,
1009
+ "loss": 1.1516,
1010
+ "step": 143
1011
+ },
1012
+ {
1013
+ "epoch": 0.64,
1014
+ "grad_norm": 2.5801022052764893,
1015
+ "learning_rate": 8.494665150436288e-06,
1016
+ "loss": 1.1421,
1017
+ "step": 144
1018
+ },
1019
+ {
1020
+ "epoch": 0.6444444444444445,
1021
+ "grad_norm": 2.424285650253296,
1022
+ "learning_rate": 8.467162503961209e-06,
1023
+ "loss": 1.147,
1024
+ "step": 145
1025
+ },
1026
+ {
1027
+ "epoch": 0.6488888888888888,
1028
+ "grad_norm": 2.7262933254241943,
1029
+ "learning_rate": 8.439456292019849e-06,
1030
+ "loss": 1.1269,
1031
+ "step": 146
1032
+ },
1033
+ {
1034
+ "epoch": 0.6533333333333333,
1035
+ "grad_norm": 1.9822264909744263,
1036
+ "learning_rate": 8.411548141310683e-06,
1037
+ "loss": 1.1161,
1038
+ "step": 147
1039
+ },
1040
+ {
1041
+ "epoch": 0.6577777777777778,
1042
+ "grad_norm": 1.773859977722168,
1043
+ "learning_rate": 8.383439690388491e-06,
1044
+ "loss": 1.0834,
1045
+ "step": 148
1046
+ },
1047
+ {
1048
+ "epoch": 0.6622222222222223,
1049
+ "grad_norm": 2.605008363723755,
1050
+ "learning_rate": 8.35513258956817e-06,
1051
+ "loss": 1.1789,
1052
+ "step": 149
1053
+ },
1054
+ {
1055
+ "epoch": 0.6666666666666666,
1056
+ "grad_norm": 2.594944477081299,
1057
+ "learning_rate": 8.326628500827826e-06,
1058
+ "loss": 1.1489,
1059
+ "step": 150
1060
+ },
1061
+ {
1062
+ "epoch": 0.6711111111111111,
1063
+ "grad_norm": 2.652006149291992,
1064
+ "learning_rate": 8.297929097711207e-06,
1065
+ "loss": 1.1225,
1066
+ "step": 151
1067
+ },
1068
+ {
1069
+ "epoch": 0.6755555555555556,
1070
+ "grad_norm": 3.7691638469696045,
1071
+ "learning_rate": 8.269036065229426e-06,
1072
+ "loss": 1.2454,
1073
+ "step": 152
1074
+ },
1075
+ {
1076
+ "epoch": 0.68,
1077
+ "grad_norm": 2.865312337875366,
1078
+ "learning_rate": 8.239951099762058e-06,
1079
+ "loss": 1.1437,
1080
+ "step": 153
1081
+ },
1082
+ {
1083
+ "epoch": 0.6844444444444444,
1084
+ "grad_norm": 2.1165366172790527,
1085
+ "learning_rate": 8.210675908957513e-06,
1086
+ "loss": 1.1353,
1087
+ "step": 154
1088
+ },
1089
+ {
1090
+ "epoch": 0.6888888888888889,
1091
+ "grad_norm": 2.63763427734375,
1092
+ "learning_rate": 8.1812122116328e-06,
1093
+ "loss": 1.1393,
1094
+ "step": 155
1095
+ },
1096
+ {
1097
+ "epoch": 0.6933333333333334,
1098
+ "grad_norm": 3.102932929992676,
1099
+ "learning_rate": 8.151561737672591e-06,
1100
+ "loss": 1.1366,
1101
+ "step": 156
1102
+ },
1103
+ {
1104
+ "epoch": 0.6977777777777778,
1105
+ "grad_norm": 3.0296387672424316,
1106
+ "learning_rate": 8.12172622792767e-06,
1107
+ "loss": 1.0632,
1108
+ "step": 157
1109
+ },
1110
+ {
1111
+ "epoch": 0.7022222222222222,
1112
+ "grad_norm": 2.647352933883667,
1113
+ "learning_rate": 8.091707434112717e-06,
1114
+ "loss": 1.0779,
1115
+ "step": 158
1116
+ },
1117
+ {
1118
+ "epoch": 0.7066666666666667,
1119
+ "grad_norm": 3.4690728187561035,
1120
+ "learning_rate": 8.061507118703456e-06,
1121
+ "loss": 1.187,
1122
+ "step": 159
1123
+ },
1124
+ {
1125
+ "epoch": 0.7111111111111111,
1126
+ "grad_norm": 2.914712905883789,
1127
+ "learning_rate": 8.031127054833192e-06,
1128
+ "loss": 1.1118,
1129
+ "step": 160
1130
+ },
1131
+ {
1132
+ "epoch": 0.7155555555555555,
1133
+ "grad_norm": 2.348532199859619,
1134
+ "learning_rate": 8.000569026188684e-06,
1135
+ "loss": 1.1566,
1136
+ "step": 161
1137
+ },
1138
+ {
1139
+ "epoch": 0.72,
1140
+ "grad_norm": 2.2149953842163086,
1141
+ "learning_rate": 7.969834826905441e-06,
1142
+ "loss": 1.1446,
1143
+ "step": 162
1144
+ },
1145
+ {
1146
+ "epoch": 0.7244444444444444,
1147
+ "grad_norm": 1.8673402070999146,
1148
+ "learning_rate": 7.938926261462366e-06,
1149
+ "loss": 1.1512,
1150
+ "step": 163
1151
+ },
1152
+ {
1153
+ "epoch": 0.7288888888888889,
1154
+ "grad_norm": 2.2096667289733887,
1155
+ "learning_rate": 7.90784514457583e-06,
1156
+ "loss": 1.0488,
1157
+ "step": 164
1158
+ },
1159
+ {
1160
+ "epoch": 0.7333333333333333,
1161
+ "grad_norm": 2.886953592300415,
1162
+ "learning_rate": 7.876593301093104e-06,
1163
+ "loss": 1.1158,
1164
+ "step": 165
1165
+ },
1166
+ {
1167
+ "epoch": 0.7377777777777778,
1168
+ "grad_norm": 3.801467180252075,
1169
+ "learning_rate": 7.845172565885237e-06,
1170
+ "loss": 1.1106,
1171
+ "step": 166
1172
+ },
1173
+ {
1174
+ "epoch": 0.7422222222222222,
1175
+ "grad_norm": 2.3027687072753906,
1176
+ "learning_rate": 7.813584783739314e-06,
1177
+ "loss": 1.1146,
1178
+ "step": 167
1179
+ },
1180
+ {
1181
+ "epoch": 0.7466666666666667,
1182
+ "grad_norm": 3.938884973526001,
1183
+ "learning_rate": 7.78183180925015e-06,
1184
+ "loss": 1.1328,
1185
+ "step": 168
1186
+ },
1187
+ {
1188
+ "epoch": 0.7511111111111111,
1189
+ "grad_norm": 2.19864821434021,
1190
+ "learning_rate": 7.749915506711402e-06,
1191
+ "loss": 1.1701,
1192
+ "step": 169
1193
+ },
1194
+ {
1195
+ "epoch": 0.7555555555555555,
1196
+ "grad_norm": 4.781134128570557,
1197
+ "learning_rate": 7.717837750006106e-06,
1198
+ "loss": 1.1709,
1199
+ "step": 170
1200
+ },
1201
+ {
1202
+ "epoch": 0.76,
1203
+ "grad_norm": 2.3147037029266357,
1204
+ "learning_rate": 7.685600422496666e-06,
1205
+ "loss": 1.0917,
1206
+ "step": 171
1207
+ },
1208
+ {
1209
+ "epoch": 0.7644444444444445,
1210
+ "grad_norm": 3.0294220447540283,
1211
+ "learning_rate": 7.653205416914267e-06,
1212
+ "loss": 1.1209,
1213
+ "step": 172
1214
+ },
1215
+ {
1216
+ "epoch": 0.7688888888888888,
1217
+ "grad_norm": 1.97251296043396,
1218
+ "learning_rate": 7.620654635247762e-06,
1219
+ "loss": 1.0584,
1220
+ "step": 173
1221
+ },
1222
+ {
1223
+ "epoch": 0.7733333333333333,
1224
+ "grad_norm": 4.131389141082764,
1225
+ "learning_rate": 7.587949988631982e-06,
1226
+ "loss": 1.171,
1227
+ "step": 174
1228
+ },
1229
+ {
1230
+ "epoch": 0.7777777777777778,
1231
+ "grad_norm": 2.2693028450012207,
1232
+ "learning_rate": 7.555093397235553e-06,
1233
+ "loss": 1.1358,
1234
+ "step": 175
1235
+ },
1236
+ {
1237
+ "epoch": 0.7822222222222223,
1238
+ "grad_norm": 2.0202383995056152,
1239
+ "learning_rate": 7.5220867901481335e-06,
1240
+ "loss": 1.1823,
1241
+ "step": 176
1242
+ },
1243
+ {
1244
+ "epoch": 0.7866666666666666,
1245
+ "grad_norm": 2.4606690406799316,
1246
+ "learning_rate": 7.488932105267171e-06,
1247
+ "loss": 1.0837,
1248
+ "step": 177
1249
+ },
1250
+ {
1251
+ "epoch": 0.7911111111111111,
1252
+ "grad_norm": 1.997691035270691,
1253
+ "learning_rate": 7.455631289184117e-06,
1254
+ "loss": 1.1091,
1255
+ "step": 178
1256
+ },
1257
+ {
1258
+ "epoch": 0.7955555555555556,
1259
+ "grad_norm": 2.143990993499756,
1260
+ "learning_rate": 7.422186297070136e-06,
1261
+ "loss": 1.1174,
1262
+ "step": 179
1263
+ },
1264
+ {
1265
+ "epoch": 0.8,
1266
+ "grad_norm": 3.189858913421631,
1267
+ "learning_rate": 7.388599092561315e-06,
1268
+ "loss": 1.1757,
1269
+ "step": 180
1270
+ },
1271
+ {
1272
+ "epoch": 0.8044444444444444,
1273
+ "grad_norm": 1.796143889427185,
1274
+ "learning_rate": 7.3548716476433756e-06,
1275
+ "loss": 1.1114,
1276
+ "step": 181
1277
+ },
1278
+ {
1279
+ "epoch": 0.8088888888888889,
1280
+ "grad_norm": 1.725069284439087,
1281
+ "learning_rate": 7.32100594253589e-06,
1282
+ "loss": 1.0613,
1283
+ "step": 182
1284
+ },
1285
+ {
1286
+ "epoch": 0.8133333333333334,
1287
+ "grad_norm": 2.555976152420044,
1288
+ "learning_rate": 7.2870039655760186e-06,
1289
+ "loss": 1.0673,
1290
+ "step": 183
1291
+ },
1292
+ {
1293
+ "epoch": 0.8177777777777778,
1294
+ "grad_norm": 2.573438882827759,
1295
+ "learning_rate": 7.252867713101772e-06,
1296
+ "loss": 1.1355,
1297
+ "step": 184
1298
+ },
1299
+ {
1300
+ "epoch": 0.8222222222222222,
1301
+ "grad_norm": 2.54061222076416,
1302
+ "learning_rate": 7.218599189334799e-06,
1303
+ "loss": 1.1363,
1304
+ "step": 185
1305
+ },
1306
+ {
1307
+ "epoch": 0.8266666666666667,
1308
+ "grad_norm": 2.8169195652008057,
1309
+ "learning_rate": 7.184200406262717e-06,
1310
+ "loss": 1.0974,
1311
+ "step": 186
1312
+ },
1313
+ {
1314
+ "epoch": 0.8311111111111111,
1315
+ "grad_norm": 10.035176277160645,
1316
+ "learning_rate": 7.149673383520978e-06,
1317
+ "loss": 1.1138,
1318
+ "step": 187
1319
+ },
1320
+ {
1321
+ "epoch": 0.8355555555555556,
1322
+ "grad_norm": 3.066096544265747,
1323
+ "learning_rate": 7.115020148274294e-06,
1324
+ "loss": 1.1197,
1325
+ "step": 188
1326
+ },
1327
+ {
1328
+ "epoch": 0.84,
1329
+ "grad_norm": 2.641267776489258,
1330
+ "learning_rate": 7.080242735097622e-06,
1331
+ "loss": 1.1566,
1332
+ "step": 189
1333
+ },
1334
+ {
1335
+ "epoch": 0.8444444444444444,
1336
+ "grad_norm": 3.2539026737213135,
1337
+ "learning_rate": 7.045343185856701e-06,
1338
+ "loss": 1.0788,
1339
+ "step": 190
1340
+ },
1341
+ {
1342
+ "epoch": 0.8488888888888889,
1343
+ "grad_norm": 3.5505993366241455,
1344
+ "learning_rate": 7.01032354958817e-06,
1345
+ "loss": 1.1023,
1346
+ "step": 191
1347
+ },
1348
+ {
1349
+ "epoch": 0.8533333333333334,
1350
+ "grad_norm": 2.408964157104492,
1351
+ "learning_rate": 6.975185882379272e-06,
1352
+ "loss": 1.1087,
1353
+ "step": 192
1354
+ },
1355
+ {
1356
+ "epoch": 0.8577777777777778,
1357
+ "grad_norm": 2.967325210571289,
1358
+ "learning_rate": 6.939932247247126e-06,
1359
+ "loss": 1.0942,
1360
+ "step": 193
1361
+ },
1362
+ {
1363
+ "epoch": 0.8622222222222222,
1364
+ "grad_norm": 1.98670494556427,
1365
+ "learning_rate": 6.9045647140176145e-06,
1366
+ "loss": 1.1288,
1367
+ "step": 194
1368
+ },
1369
+ {
1370
+ "epoch": 0.8666666666666667,
1371
+ "grad_norm": 2.2912962436676025,
1372
+ "learning_rate": 6.869085359203844e-06,
1373
+ "loss": 1.1148,
1374
+ "step": 195
1375
+ },
1376
+ {
1377
+ "epoch": 0.8711111111111111,
1378
+ "grad_norm": 2.9244866371154785,
1379
+ "learning_rate": 6.833496265884241e-06,
1380
+ "loss": 1.1047,
1381
+ "step": 196
1382
+ },
1383
+ {
1384
+ "epoch": 0.8755555555555555,
1385
+ "grad_norm": 3.550187349319458,
1386
+ "learning_rate": 6.79779952358024e-06,
1387
+ "loss": 1.1299,
1388
+ "step": 197
1389
+ },
1390
+ {
1391
+ "epoch": 0.88,
1392
+ "grad_norm": 2.448188066482544,
1393
+ "learning_rate": 6.76199722813361e-06,
1394
+ "loss": 1.0937,
1395
+ "step": 198
1396
+ },
1397
+ {
1398
+ "epoch": 0.8844444444444445,
1399
+ "grad_norm": 2.392951488494873,
1400
+ "learning_rate": 6.726091481583396e-06,
1401
+ "loss": 1.1075,
1402
+ "step": 199
1403
+ },
1404
+ {
1405
+ "epoch": 0.8888888888888888,
1406
+ "grad_norm": 1.764351487159729,
1407
+ "learning_rate": 6.690084392042514e-06,
1408
+ "loss": 1.0864,
1409
+ "step": 200
1410
+ },
1411
+ {
1412
+ "epoch": 0.8933333333333333,
1413
+ "grad_norm": 2.1497156620025635,
1414
+ "learning_rate": 6.653978073573962e-06,
1415
+ "loss": 1.0698,
1416
+ "step": 201
1417
+ },
1418
+ {
1419
+ "epoch": 0.8977777777777778,
1420
+ "grad_norm": 2.4440653324127197,
1421
+ "learning_rate": 6.6177746460667124e-06,
1422
+ "loss": 1.1207,
1423
+ "step": 202
1424
+ },
1425
+ {
1426
+ "epoch": 0.9022222222222223,
1427
+ "grad_norm": 5.237727165222168,
1428
+ "learning_rate": 6.581476235111244e-06,
1429
+ "loss": 1.2957,
1430
+ "step": 203
1431
+ },
1432
+ {
1433
+ "epoch": 0.9066666666666666,
1434
+ "grad_norm": 2.54868745803833,
1435
+ "learning_rate": 6.545084971874738e-06,
1436
+ "loss": 1.1072,
1437
+ "step": 204
1438
+ },
1439
+ {
1440
+ "epoch": 0.9111111111111111,
1441
+ "grad_norm": 2.269233465194702,
1442
+ "learning_rate": 6.508602992975963e-06,
1443
+ "loss": 1.096,
1444
+ "step": 205
1445
+ },
1446
+ {
1447
+ "epoch": 0.9155555555555556,
1448
+ "grad_norm": 1.835715413093567,
1449
+ "learning_rate": 6.472032440359817e-06,
1450
+ "loss": 1.0722,
1451
+ "step": 206
1452
+ },
1453
+ {
1454
+ "epoch": 0.92,
1455
+ "grad_norm": 2.5577235221862793,
1456
+ "learning_rate": 6.43537546117158e-06,
1457
+ "loss": 1.1194,
1458
+ "step": 207
1459
+ },
1460
+ {
1461
+ "epoch": 0.9244444444444444,
1462
+ "grad_norm": 2.0571846961975098,
1463
+ "learning_rate": 6.398634207630841e-06,
1464
+ "loss": 1.1089,
1465
+ "step": 208
1466
+ },
1467
+ {
1468
+ "epoch": 0.9288888888888889,
1469
+ "grad_norm": 3.0140180587768555,
1470
+ "learning_rate": 6.361810836905138e-06,
1471
+ "loss": 1.2144,
1472
+ "step": 209
1473
+ },
1474
+ {
1475
+ "epoch": 0.9333333333333333,
1476
+ "grad_norm": 2.731870412826538,
1477
+ "learning_rate": 6.32490751098331e-06,
1478
+ "loss": 1.1493,
1479
+ "step": 210
1480
+ },
1481
+ {
1482
+ "epoch": 0.9377777777777778,
1483
+ "grad_norm": 2.427889347076416,
1484
+ "learning_rate": 6.287926396548556e-06,
1485
+ "loss": 1.0504,
1486
+ "step": 211
1487
+ },
1488
+ {
1489
+ "epoch": 0.9422222222222222,
1490
+ "grad_norm": 2.487750291824341,
1491
+ "learning_rate": 6.250869664851226e-06,
1492
+ "loss": 1.0908,
1493
+ "step": 212
1494
+ },
1495
+ {
1496
+ "epoch": 0.9466666666666667,
1497
+ "grad_norm": 2.3912594318389893,
1498
+ "learning_rate": 6.213739491581347e-06,
1499
+ "loss": 1.1216,
1500
+ "step": 213
1501
+ },
1502
+ {
1503
+ "epoch": 0.9511111111111111,
1504
+ "grad_norm": 3.4675991535186768,
1505
+ "learning_rate": 6.176538056740871e-06,
1506
+ "loss": 1.0171,
1507
+ "step": 214
1508
+ },
1509
+ {
1510
+ "epoch": 0.9555555555555556,
1511
+ "grad_norm": 1.81716787815094,
1512
+ "learning_rate": 6.139267544515689e-06,
1513
+ "loss": 1.044,
1514
+ "step": 215
1515
+ },
1516
+ {
1517
+ "epoch": 0.96,
1518
+ "grad_norm": 2.6640546321868896,
1519
+ "learning_rate": 6.101930143147395e-06,
1520
+ "loss": 1.1029,
1521
+ "step": 216
1522
+ },
1523
+ {
1524
+ "epoch": 0.9644444444444444,
1525
+ "grad_norm": 2.501460313796997,
1526
+ "learning_rate": 6.064528044804805e-06,
1527
+ "loss": 1.1141,
1528
+ "step": 217
1529
+ },
1530
+ {
1531
+ "epoch": 0.9688888888888889,
1532
+ "grad_norm": 2.3960464000701904,
1533
+ "learning_rate": 6.0270634454552494e-06,
1534
+ "loss": 1.0526,
1535
+ "step": 218
1536
+ },
1537
+ {
1538
+ "epoch": 0.9733333333333334,
1539
+ "grad_norm": 2.989225387573242,
1540
+ "learning_rate": 5.989538544735644e-06,
1541
+ "loss": 1.1437,
1542
+ "step": 219
1543
+ },
1544
+ {
1545
+ "epoch": 0.9777777777777777,
1546
+ "grad_norm": 1.963538646697998,
1547
+ "learning_rate": 5.951955545823342e-06,
1548
+ "loss": 1.0998,
1549
+ "step": 220
1550
+ },
1551
+ {
1552
+ "epoch": 0.9822222222222222,
1553
+ "grad_norm": 2.2665040493011475,
1554
+ "learning_rate": 5.9143166553067846e-06,
1555
+ "loss": 1.1062,
1556
+ "step": 221
1557
+ },
1558
+ {
1559
+ "epoch": 0.9866666666666667,
1560
+ "grad_norm": 2.201535701751709,
1561
+ "learning_rate": 5.87662408305594e-06,
1562
+ "loss": 1.042,
1563
+ "step": 222
1564
+ },
1565
+ {
1566
+ "epoch": 0.9911111111111112,
1567
+ "grad_norm": 2.513442039489746,
1568
+ "learning_rate": 5.8388800420925616e-06,
1569
+ "loss": 1.0733,
1570
+ "step": 223
1571
+ },
1572
+ {
1573
+ "epoch": 0.9955555555555555,
1574
+ "grad_norm": 2.0468199253082275,
1575
+ "learning_rate": 5.801086748460255e-06,
1576
+ "loss": 1.1171,
1577
+ "step": 224
1578
+ },
1579
+ {
1580
+ "epoch": 1.0,
1581
+ "grad_norm": 3.2198939323425293,
1582
+ "learning_rate": 5.763246421094373e-06,
1583
+ "loss": 1.1027,
1584
+ "step": 225
1585
+ }
1586
+ ],
1587
+ "logging_steps": 1,
1588
+ "max_steps": 450,
1589
+ "num_input_tokens_seen": 0,
1590
+ "num_train_epochs": 2,
1591
+ "save_steps": 225,
1592
+ "stateful_callbacks": {
1593
+ "TrainerControl": {
1594
+ "args": {
1595
+ "should_epoch_stop": false,
1596
+ "should_evaluate": false,
1597
+ "should_log": false,
1598
+ "should_save": true,
1599
+ "should_training_stop": false
1600
+ },
1601
+ "attributes": {}
1602
+ }
1603
+ },
1604
+ "total_flos": 8.193854425949798e+18,
1605
+ "train_batch_size": 1,
1606
+ "trial_name": null,
1607
+ "trial_params": null
1608
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a3207917e04aabf6853d89ab3b2aeca98a0b9185a3edbbbfdb5d657f1c5252af
3
+ size 8568
vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
zero_to_fp32.py ADDED
@@ -0,0 +1,760 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import gc
25
+ import json
26
+ import numpy as np
27
+ from tqdm import tqdm
28
+ from collections import OrderedDict
29
+ from dataclasses import dataclass
30
+
31
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
32
+ # DeepSpeed data structures it has to be available in the current python environment.
33
+ from deepspeed.utils import logger
34
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
35
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
36
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
37
+
38
+
39
+ @dataclass
40
+ class zero_model_state:
41
+ buffers: dict()
42
+ param_shapes: dict()
43
+ shared_params: list
44
+ ds_version: int
45
+ frozen_param_shapes: dict()
46
+ frozen_param_fragments: dict()
47
+
48
+
49
+ debug = 0
50
+
51
+ # load to cpu
52
+ device = torch.device('cpu')
53
+
54
+
55
+ def atoi(text):
56
+ return int(text) if text.isdigit() else text
57
+
58
+
59
+ def natural_keys(text):
60
+ '''
61
+ alist.sort(key=natural_keys) sorts in human order
62
+ http://nedbatchelder.com/blog/200712/human_sorting.html
63
+ (See Toothy's implementation in the comments)
64
+ '''
65
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
66
+
67
+
68
+ def get_model_state_file(checkpoint_dir, zero_stage):
69
+ if not os.path.isdir(checkpoint_dir):
70
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
71
+
72
+ # there should be only one file
73
+ if zero_stage <= 2:
74
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
75
+ elif zero_stage == 3:
76
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
77
+
78
+ if not os.path.exists(file):
79
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
80
+
81
+ return file
82
+
83
+
84
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
85
+ # XXX: need to test that this simple glob rule works for multi-node setup too
86
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
87
+
88
+ if len(ckpt_files) == 0:
89
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
90
+
91
+ return ckpt_files
92
+
93
+
94
+ def get_optim_files(checkpoint_dir):
95
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
96
+
97
+
98
+ def get_model_state_files(checkpoint_dir):
99
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
100
+
101
+
102
+ def parse_model_states(files):
103
+ zero_model_states = []
104
+ for file in files:
105
+ state_dict = torch.load(file, map_location=device, weights_only=False)
106
+
107
+ if BUFFER_NAMES not in state_dict:
108
+ raise ValueError(f"{file} is not a model state checkpoint")
109
+ buffer_names = state_dict[BUFFER_NAMES]
110
+ if debug:
111
+ print("Found buffers:", buffer_names)
112
+
113
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
114
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
115
+ param_shapes = state_dict[PARAM_SHAPES]
116
+
117
+ # collect parameters that are included in param_shapes
118
+ param_names = []
119
+ for s in param_shapes:
120
+ for name in s.keys():
121
+ param_names.append(name)
122
+
123
+ # update with frozen parameters
124
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
125
+ if frozen_param_shapes is not None:
126
+ if debug:
127
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
128
+ param_names += list(frozen_param_shapes.keys())
129
+
130
+ # handle shared params
131
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
132
+
133
+ ds_version = state_dict.get(DS_VERSION, None)
134
+
135
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
136
+
137
+ z_model_state = zero_model_state(buffers=buffers,
138
+ param_shapes=param_shapes,
139
+ shared_params=shared_params,
140
+ ds_version=ds_version,
141
+ frozen_param_shapes=frozen_param_shapes,
142
+ frozen_param_fragments=frozen_param_fragments)
143
+ zero_model_states.append(z_model_state)
144
+
145
+ return zero_model_states
146
+
147
+
148
+ def parse_optim_states(files, ds_checkpoint_dir):
149
+ total_files = len(files)
150
+ state_dicts = []
151
+ for f in tqdm(files, desc='Loading checkpoint shards'):
152
+ state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
153
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
154
+ # and also handle the case where it was already removed by another helper script
155
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
156
+ state_dicts.append(state_dict)
157
+
158
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
159
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
160
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
161
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
162
+
163
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
164
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
165
+ # use the max of the partition_count to get the dp world_size.
166
+
167
+ if type(world_size) is list:
168
+ world_size = max(world_size)
169
+
170
+ if world_size != total_files:
171
+ raise ValueError(
172
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
173
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
174
+ )
175
+
176
+ # the groups are named differently in each stage
177
+ if zero_stage <= 2:
178
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
179
+ elif zero_stage == 3:
180
+ fp32_groups_key = FP32_FLAT_GROUPS
181
+ else:
182
+ raise ValueError(f"unknown zero stage {zero_stage}")
183
+
184
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
185
+ return zero_stage, world_size, fp32_flat_groups
186
+
187
+
188
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
189
+ """
190
+ Returns fp32 state_dict reconstructed from ds checkpoint
191
+
192
+ Args:
193
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
194
+
195
+ """
196
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
197
+
198
+ optim_files = get_optim_files(ds_checkpoint_dir)
199
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
200
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
201
+
202
+ model_files = get_model_state_files(ds_checkpoint_dir)
203
+
204
+ zero_model_states = parse_model_states(model_files)
205
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
206
+
207
+ if zero_stage <= 2:
208
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
209
+ exclude_frozen_parameters)
210
+ elif zero_stage == 3:
211
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
212
+ exclude_frozen_parameters)
213
+
214
+
215
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
+ return
218
+
219
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
+
222
+ if debug:
223
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
+
226
+ wanted_params = len(frozen_param_shapes)
227
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
+ print(f'Frozen params: Have {avail_numel} numels to process.')
230
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
+
232
+ total_params = 0
233
+ total_numel = 0
234
+ for name, shape in frozen_param_shapes.items():
235
+ total_params += 1
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+
239
+ state_dict[name] = frozen_param_fragments[name]
240
+
241
+ if debug:
242
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
+
244
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
+
246
+
247
+ def _has_callable(obj, fn):
248
+ attr = getattr(obj, fn, None)
249
+ return callable(attr)
250
+
251
+
252
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
253
+ param_shapes = zero_model_states[0].param_shapes
254
+
255
+ # Reconstruction protocol:
256
+ #
257
+ # XXX: document this
258
+
259
+ if debug:
260
+ for i in range(world_size):
261
+ for j in range(len(fp32_flat_groups[0])):
262
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
263
+
264
+ # XXX: memory usage doubles here (zero2)
265
+ num_param_groups = len(fp32_flat_groups[0])
266
+ merged_single_partition_of_fp32_groups = []
267
+ for i in range(num_param_groups):
268
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
269
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
270
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
271
+ avail_numel = sum(
272
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
273
+
274
+ if debug:
275
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
276
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
277
+ # not asserting if there is a mismatch due to possible padding
278
+ print(f"Have {avail_numel} numels to process.")
279
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
280
+
281
+ # params
282
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
283
+ # out-of-core computing solution
284
+ total_numel = 0
285
+ total_params = 0
286
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
287
+ offset = 0
288
+ avail_numel = full_single_fp32_vector.numel()
289
+ for name, shape in shapes.items():
290
+
291
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
292
+ total_numel += unpartitioned_numel
293
+ total_params += 1
294
+
295
+ if debug:
296
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
297
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
298
+ offset += unpartitioned_numel
299
+
300
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
301
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
302
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
303
+ # live optimizer object, so we are checking that the numbers are within the right range
304
+ align_to = 2 * world_size
305
+
306
+ def zero2_align(x):
307
+ return align_to * math.ceil(x / align_to)
308
+
309
+ if debug:
310
+ print(f"original offset={offset}, avail_numel={avail_numel}")
311
+
312
+ offset = zero2_align(offset)
313
+ avail_numel = zero2_align(avail_numel)
314
+
315
+ if debug:
316
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
317
+
318
+ # Sanity check
319
+ if offset != avail_numel:
320
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
321
+
322
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
323
+
324
+
325
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
326
+ exclude_frozen_parameters):
327
+ state_dict = OrderedDict()
328
+
329
+ # buffers
330
+ buffers = zero_model_states[0].buffers
331
+ state_dict.update(buffers)
332
+ if debug:
333
+ print(f"added {len(buffers)} buffers")
334
+
335
+ if not exclude_frozen_parameters:
336
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
337
+
338
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
339
+
340
+ # recover shared parameters
341
+ for pair in zero_model_states[0].shared_params:
342
+ if pair[1] in state_dict:
343
+ state_dict[pair[0]] = state_dict[pair[1]]
344
+
345
+ return state_dict
346
+
347
+
348
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
349
+ remainder = unpartitioned_numel % world_size
350
+ padding_numel = (world_size - remainder) if remainder else 0
351
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
352
+ return partitioned_numel, padding_numel
353
+
354
+
355
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
356
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
357
+ return
358
+
359
+ if debug:
360
+ for i in range(world_size):
361
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
362
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
363
+
364
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
365
+ wanted_params = len(frozen_param_shapes)
366
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
367
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
368
+ print(f'Frozen params: Have {avail_numel} numels to process.')
369
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
370
+
371
+ total_params = 0
372
+ total_numel = 0
373
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
374
+ total_params += 1
375
+ unpartitioned_numel = shape.numel()
376
+ total_numel += unpartitioned_numel
377
+
378
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
379
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
380
+
381
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
382
+
383
+ if debug:
384
+ print(
385
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
386
+ )
387
+
388
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
389
+
390
+
391
+ class GatheredTensor:
392
+ """
393
+ A pseudo tensor that collects partitioned weights.
394
+ It is more memory efficient when there are multiple groups.
395
+ """
396
+
397
+ def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
398
+ self.flat_groups = flat_groups
399
+ self.flat_groups_offset = flat_groups_offset
400
+ self.offset = offset
401
+ self.partitioned_numel = partitioned_numel
402
+ self.shape = shape
403
+ self.dtype = self.flat_groups[0][0].dtype
404
+
405
+ def contiguous(self):
406
+ """
407
+ Merge partitioned weights from flat_groups into a single tensor.
408
+ """
409
+ end_idx = self.offset + self.partitioned_numel
410
+ world_size = len(self.flat_groups)
411
+ pad_flat_param_chunks = []
412
+
413
+ for rank_i in range(world_size):
414
+ # for each rank, we need to collect weights from related group/groups
415
+ flat_groups_at_rank_i = self.flat_groups[rank_i]
416
+ start_group_id = None
417
+ end_group_id = None
418
+ for group_id in range(len(self.flat_groups_offset)):
419
+ if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
420
+ start_group_id = group_id
421
+ if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
422
+ end_group_id = group_id
423
+ break
424
+ # collect weights from related group/groups
425
+ for group_id in range(start_group_id, end_group_id + 1):
426
+ flat_tensor = flat_groups_at_rank_i[group_id]
427
+ start_offset = self.offset - self.flat_groups_offset[group_id]
428
+ end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
429
+ pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
430
+
431
+ # collect weights from all ranks
432
+ pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
433
+ param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
434
+ return param
435
+
436
+
437
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
438
+ param_shapes = zero_model_states[0].param_shapes
439
+ avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
440
+
441
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
442
+ # param, re-consolidating each param, while dealing with padding if any
443
+
444
+ # merge list of dicts, preserving order
445
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
446
+
447
+ if debug:
448
+ for i in range(world_size):
449
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
450
+
451
+ wanted_params = len(param_shapes)
452
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
453
+ # not asserting if there is a mismatch due to possible padding
454
+ avail_numel = fp32_flat_groups[0].numel() * world_size
455
+ print(f"Trainable params: Have {avail_numel} numels to process.")
456
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
457
+
458
+ # params
459
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
460
+ # out-of-core computing solution
461
+ offset = 0
462
+ total_numel = 0
463
+ total_params = 0
464
+ flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
465
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
466
+ unpartitioned_numel = shape.numel()
467
+ total_numel += unpartitioned_numel
468
+ total_params += 1
469
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
470
+
471
+ if debug:
472
+ print(
473
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
474
+ )
475
+
476
+ # memory efficient tensor
477
+ tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
478
+ state_dict[name] = tensor
479
+ offset += partitioned_numel
480
+
481
+ offset *= world_size
482
+
483
+ # Sanity check
484
+ if offset != avail_numel:
485
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
486
+
487
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
488
+
489
+
490
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
491
+ exclude_frozen_parameters):
492
+ state_dict = OrderedDict()
493
+
494
+ # buffers
495
+ buffers = zero_model_states[0].buffers
496
+ state_dict.update(buffers)
497
+ if debug:
498
+ print(f"added {len(buffers)} buffers")
499
+
500
+ if not exclude_frozen_parameters:
501
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
502
+
503
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
504
+
505
+ # recover shared parameters
506
+ for pair in zero_model_states[0].shared_params:
507
+ if pair[1] in state_dict:
508
+ state_dict[pair[0]] = state_dict[pair[1]]
509
+
510
+ return state_dict
511
+
512
+
513
+ def to_torch_tensor(state_dict, return_empty_tensor=False):
514
+ """
515
+ Convert state_dict of GatheredTensor to torch tensor
516
+ """
517
+ torch_state_dict = {}
518
+ converted_tensors = {}
519
+ for name, tensor in state_dict.items():
520
+ tensor_id = id(tensor)
521
+ if tensor_id in converted_tensors: # shared tensors
522
+ shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
523
+ torch_state_dict[name] = shared_tensor
524
+ else:
525
+ converted_tensors[tensor_id] = name
526
+ if return_empty_tensor:
527
+ torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
528
+ else:
529
+ torch_state_dict[name] = tensor.contiguous()
530
+ return torch_state_dict
531
+
532
+
533
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
534
+ tag=None,
535
+ exclude_frozen_parameters=False,
536
+ lazy_mode=False):
537
+ """
538
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
539
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
540
+ via a model hub.
541
+
542
+ Args:
543
+ - ``checkpoint_dir``: path to the desired checkpoint folder
544
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
545
+ - ``exclude_frozen_parameters``: exclude frozen parameters
546
+ - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
547
+ Convert the pesduo tensor to torch tensor by ``.contiguous()``
548
+
549
+ Returns:
550
+ - pytorch ``state_dict``
551
+
552
+ A typical usage might be ::
553
+
554
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
555
+ # do the training and checkpoint saving
556
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
557
+ model = model.cpu() # move to cpu
558
+ model.load_state_dict(state_dict)
559
+ # submit to model hub or save the model to share with others
560
+
561
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
562
+ application. i.e. you will need to re-initialize the deepspeed engine, since
563
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
564
+
565
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
566
+
567
+ Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
568
+ You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
569
+ the checkpoint. Or you can load state_dict in lazy mode ::
570
+
571
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
572
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
573
+ for name, lazy_tensor in state_dict.item():
574
+ tensor = lazy_tensor.contiguous() # to cpu
575
+ print(name, tensor)
576
+ # del tensor to release memory if it no longer in use
577
+ """
578
+ if tag is None:
579
+ latest_path = os.path.join(checkpoint_dir, 'latest')
580
+ if os.path.isfile(latest_path):
581
+ with open(latest_path, 'r') as fd:
582
+ tag = fd.read().strip()
583
+ else:
584
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
585
+
586
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
587
+
588
+ if not os.path.isdir(ds_checkpoint_dir):
589
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
590
+
591
+ state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
592
+ if lazy_mode:
593
+ return state_dict
594
+ else:
595
+ return to_torch_tensor(state_dict)
596
+
597
+
598
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
599
+ output_dir,
600
+ max_shard_size="5GB",
601
+ safe_serialization=False,
602
+ tag=None,
603
+ exclude_frozen_parameters=False):
604
+ """
605
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
606
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
607
+
608
+ Args:
609
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
610
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
611
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
612
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
613
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
614
+ - ``exclude_frozen_parameters``: exclude frozen parameters
615
+ """
616
+
617
+ # Dependency pre-check
618
+ if safe_serialization:
619
+ try:
620
+ from safetensors.torch import save_file
621
+ except ImportError:
622
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
623
+ raise
624
+ if max_shard_size is not None:
625
+ try:
626
+ from huggingface_hub import split_torch_state_dict_into_shards
627
+ except ImportError:
628
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
629
+ raise
630
+
631
+ # Convert zero checkpoint to state_dict
632
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
633
+ tag,
634
+ exclude_frozen_parameters,
635
+ lazy_mode=True)
636
+
637
+ # Shard the model if it is too big.
638
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
639
+ if max_shard_size is not None:
640
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
641
+ # an memory-efficient approach for sharding
642
+ empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
643
+ state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
644
+ filename_pattern=filename_pattern,
645
+ max_shard_size=max_shard_size)
646
+ else:
647
+ from collections import namedtuple
648
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
649
+ state_dict_split = StateDictSplit(is_sharded=False,
650
+ filename_to_tensors={weights_name: list(state_dict.keys())})
651
+
652
+ # Save the model by shard
653
+ os.makedirs(output_dir, exist_ok=True)
654
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
655
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
656
+ shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
657
+ shard_state_dict = to_torch_tensor(shard_state_dict)
658
+ output_path = os.path.join(output_dir, shard_file)
659
+ if safe_serialization:
660
+ save_file(shard_state_dict, output_path, metadata={"format": "pt"})
661
+ else:
662
+ torch.save(shard_state_dict, output_path)
663
+ # release the memory of current shard
664
+ for tensor_name in list(shard_state_dict.keys()):
665
+ del state_dict[tensor_name]
666
+ del shard_state_dict[tensor_name]
667
+ del shard_state_dict
668
+ gc.collect()
669
+
670
+ # Save index if sharded
671
+ if state_dict_split.is_sharded:
672
+ index = {
673
+ "metadata": state_dict_split.metadata,
674
+ "weight_map": state_dict_split.tensor_to_filename,
675
+ }
676
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
677
+ save_index_file = os.path.join(output_dir, save_index_file)
678
+ with open(save_index_file, "w", encoding="utf-8") as f:
679
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
680
+ f.write(content)
681
+
682
+
683
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
684
+ """
685
+ 1. Put the provided model to cpu
686
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
687
+ 3. Load it into the provided model
688
+
689
+ Args:
690
+ - ``model``: the model object to update
691
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
692
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
693
+
694
+ Returns:
695
+ - ``model`: modified model
696
+
697
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
698
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
699
+ conveniently placed for you in the checkpoint folder.
700
+
701
+ A typical usage might be ::
702
+
703
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
704
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
705
+ # submit to model hub or save the model to share with others
706
+
707
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
708
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
709
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
710
+
711
+ """
712
+ logger.info(f"Extracting fp32 weights")
713
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
714
+
715
+ logger.info(f"Overwriting model with fp32 weights")
716
+ model = model.cpu()
717
+ model.load_state_dict(state_dict, strict=False)
718
+
719
+ return model
720
+
721
+
722
+ if __name__ == "__main__":
723
+ parser = argparse.ArgumentParser()
724
+ parser.add_argument("checkpoint_dir",
725
+ type=str,
726
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
727
+ parser.add_argument("output_dir",
728
+ type=str,
729
+ help="directory to the pytorch fp32 state_dict output files"
730
+ "(e.g. path/checkpoint-12-output/)")
731
+ parser.add_argument(
732
+ "--max_shard_size",
733
+ type=str,
734
+ default="5GB",
735
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
736
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
737
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
738
+ "without CPU OOM issues.")
739
+ parser.add_argument(
740
+ "--safe_serialization",
741
+ default=False,
742
+ action='store_true',
743
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
744
+ parser.add_argument("-t",
745
+ "--tag",
746
+ type=str,
747
+ default=None,
748
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
749
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
750
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
751
+ args = parser.parse_args()
752
+
753
+ debug = args.debug
754
+
755
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
756
+ args.output_dir,
757
+ max_shard_size=args.max_shard_size,
758
+ safe_serialization=args.safe_serialization,
759
+ tag=args.tag,
760
+ exclude_frozen_parameters=args.exclude_frozen_parameters)