taozi555 commited on
Commit
f3c1b5c
·
verified ·
1 Parent(s): 7d784d7

Training in progress, step 419, checkpoint

Browse files
.gitattributes CHANGED
@@ -35,3 +35,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
  checkpoint-227/tokenizer.json filter=lfs diff=lfs merge=lfs -text
 
 
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
  checkpoint-227/tokenizer.json filter=lfs diff=lfs merge=lfs -text
38
+ checkpoint-419/tokenizer.json filter=lfs diff=lfs merge=lfs -text
checkpoint-419/config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "LlamaForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 128000,
8
+ "eos_token_id": 128009,
9
+ "head_dim": 128,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 4096,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 14336,
14
+ "max_position_embeddings": 131072,
15
+ "mlp_bias": false,
16
+ "model_type": "llama",
17
+ "num_attention_heads": 32,
18
+ "num_hidden_layers": 32,
19
+ "num_key_value_heads": 8,
20
+ "pretraining_tp": 1,
21
+ "rms_norm_eps": 1e-05,
22
+ "rope_scaling": {
23
+ "factor": 8.0,
24
+ "high_freq_factor": 4.0,
25
+ "low_freq_factor": 1.0,
26
+ "original_max_position_embeddings": 8192,
27
+ "rope_type": "llama3"
28
+ },
29
+ "rope_theta": 500000.0,
30
+ "tie_word_embeddings": false,
31
+ "torch_dtype": "bfloat16",
32
+ "transformers_version": "4.51.1",
33
+ "use_cache": false,
34
+ "vocab_size": 128256
35
+ }
checkpoint-419/generation_config.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 128000,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 128001,
6
+ 128008,
7
+ 128009
8
+ ],
9
+ "temperature": 0.6,
10
+ "top_p": 0.9,
11
+ "transformers_version": "4.51.1"
12
+ }
checkpoint-419/global_step419/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd5affe994d7e40d67154027b182e11215b0eac81bcf8fcb9cb38a631fef9f33
3
+ size 24217512847
checkpoint-419/global_step419/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:73d493daf2c22d49690c63551c239585da92656eadaf2655144ffc5a5d9efa3a
3
+ size 24217512847
checkpoint-419/global_step419/zero_pp_rank_0_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fb0d797ee33b89625f5de919e89360edecb40559719e623b1528efdde8cc4f2d
3
+ size 151845
checkpoint-419/global_step419/zero_pp_rank_1_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bc4b0555462b1a7e77a256e3caee327e0fd0ed5c6ac8391917dfa467fdefb282
3
+ size 151845
checkpoint-419/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step419
checkpoint-419/model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:132bd6e87c992b845bb1557570cef16ea2f0ee59f7bf7e6e4fd52fc0fb52cf27
3
+ size 4976698672
checkpoint-419/model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:940faecb2817abe834f81a32b6e3ae609d664802554081fa8930ed58bb18edaa
3
+ size 4999802720
checkpoint-419/model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cddeff4b187d9e98053ac3b7fa557f24646884fff54bea13653e12f2e2d86f45
3
+ size 4915916176
checkpoint-419/model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4759f3211a761b6346af14ac90262da2c0c0f8f5bcf59198d9a76e844edc9adc
3
+ size 1168138808
checkpoint-419/model.safetensors.index.json ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 16060522496
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00004-of-00004.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
242
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
243
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
244
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
245
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
246
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
247
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
248
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
249
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
250
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
251
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
252
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
253
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
254
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
255
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
256
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
257
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
258
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
259
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
260
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
261
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
262
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
263
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
265
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
266
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
267
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
268
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
269
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
270
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
271
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
272
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
273
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
274
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
275
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
276
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
277
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
278
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00004.safetensors",
279
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
280
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
281
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
282
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
283
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
284
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
285
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
286
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
287
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
288
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
289
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
290
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
291
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
292
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
293
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
294
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
295
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
296
+ "model.norm.weight": "model-00004-of-00004.safetensors"
297
+ }
298
+ }
checkpoint-419/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5760f1347dfb235ea1535097ed60f32852e195369a850d128196e21060244ece
3
+ size 14512
checkpoint-419/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:46c3975c377d1a0e4265d8759569136468ef63d7f0908f40a33f1ddcab855fa1
3
+ size 14512
checkpoint-419/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:002f0fa934388364ec53934305a110b18b623d792c1166c5ea913eb6eb6725f1
3
+ size 1064
checkpoint-419/special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|begin_of_text|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|eot_id|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|end_of_text|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
checkpoint-419/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b9e4e7fb171f92fd137b777cc2714bf87d11576700a1dcd7a399e7bbe39537b
3
+ size 17209920
checkpoint-419/tokenizer_config.json ADDED
@@ -0,0 +1,2064 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "128000": {
4
+ "content": "<|begin_of_text|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "128001": {
12
+ "content": "<|end_of_text|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "128002": {
20
+ "content": "<|reserved_special_token_0|>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "128003": {
28
+ "content": "<|reserved_special_token_1|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "128004": {
36
+ "content": "<|finetune_right_pad_id|>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "128005": {
44
+ "content": "<|reserved_special_token_2|>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "128006": {
52
+ "content": "<|start_header_id|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "128007": {
60
+ "content": "<|end_header_id|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "128008": {
68
+ "content": "<|eom_id|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "128009": {
76
+ "content": "<|eot_id|>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "128010": {
84
+ "content": "<|python_tag|>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "128011": {
92
+ "content": "<|reserved_special_token_3|>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "128012": {
100
+ "content": "<|reserved_special_token_4|>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "128013": {
108
+ "content": "<|reserved_special_token_5|>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ },
115
+ "128014": {
116
+ "content": "<|reserved_special_token_6|>",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": true
122
+ },
123
+ "128015": {
124
+ "content": "<|reserved_special_token_7|>",
125
+ "lstrip": false,
126
+ "normalized": false,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": true
130
+ },
131
+ "128016": {
132
+ "content": "<|reserved_special_token_8|>",
133
+ "lstrip": false,
134
+ "normalized": false,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": true
138
+ },
139
+ "128017": {
140
+ "content": "<|reserved_special_token_9|>",
141
+ "lstrip": false,
142
+ "normalized": false,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": true
146
+ },
147
+ "128018": {
148
+ "content": "<|reserved_special_token_10|>",
149
+ "lstrip": false,
150
+ "normalized": false,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": true
154
+ },
155
+ "128019": {
156
+ "content": "<|reserved_special_token_11|>",
157
+ "lstrip": false,
158
+ "normalized": false,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": true
162
+ },
163
+ "128020": {
164
+ "content": "<|reserved_special_token_12|>",
165
+ "lstrip": false,
166
+ "normalized": false,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": true
170
+ },
171
+ "128021": {
172
+ "content": "<|reserved_special_token_13|>",
173
+ "lstrip": false,
174
+ "normalized": false,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": true
178
+ },
179
+ "128022": {
180
+ "content": "<|reserved_special_token_14|>",
181
+ "lstrip": false,
182
+ "normalized": false,
183
+ "rstrip": false,
184
+ "single_word": false,
185
+ "special": true
186
+ },
187
+ "128023": {
188
+ "content": "<|reserved_special_token_15|>",
189
+ "lstrip": false,
190
+ "normalized": false,
191
+ "rstrip": false,
192
+ "single_word": false,
193
+ "special": true
194
+ },
195
+ "128024": {
196
+ "content": "<|reserved_special_token_16|>",
197
+ "lstrip": false,
198
+ "normalized": false,
199
+ "rstrip": false,
200
+ "single_word": false,
201
+ "special": true
202
+ },
203
+ "128025": {
204
+ "content": "<|reserved_special_token_17|>",
205
+ "lstrip": false,
206
+ "normalized": false,
207
+ "rstrip": false,
208
+ "single_word": false,
209
+ "special": true
210
+ },
211
+ "128026": {
212
+ "content": "<|reserved_special_token_18|>",
213
+ "lstrip": false,
214
+ "normalized": false,
215
+ "rstrip": false,
216
+ "single_word": false,
217
+ "special": true
218
+ },
219
+ "128027": {
220
+ "content": "<|reserved_special_token_19|>",
221
+ "lstrip": false,
222
+ "normalized": false,
223
+ "rstrip": false,
224
+ "single_word": false,
225
+ "special": true
226
+ },
227
+ "128028": {
228
+ "content": "<|reserved_special_token_20|>",
229
+ "lstrip": false,
230
+ "normalized": false,
231
+ "rstrip": false,
232
+ "single_word": false,
233
+ "special": true
234
+ },
235
+ "128029": {
236
+ "content": "<|reserved_special_token_21|>",
237
+ "lstrip": false,
238
+ "normalized": false,
239
+ "rstrip": false,
240
+ "single_word": false,
241
+ "special": true
242
+ },
243
+ "128030": {
244
+ "content": "<|reserved_special_token_22|>",
245
+ "lstrip": false,
246
+ "normalized": false,
247
+ "rstrip": false,
248
+ "single_word": false,
249
+ "special": true
250
+ },
251
+ "128031": {
252
+ "content": "<|reserved_special_token_23|>",
253
+ "lstrip": false,
254
+ "normalized": false,
255
+ "rstrip": false,
256
+ "single_word": false,
257
+ "special": true
258
+ },
259
+ "128032": {
260
+ "content": "<|reserved_special_token_24|>",
261
+ "lstrip": false,
262
+ "normalized": false,
263
+ "rstrip": false,
264
+ "single_word": false,
265
+ "special": true
266
+ },
267
+ "128033": {
268
+ "content": "<|reserved_special_token_25|>",
269
+ "lstrip": false,
270
+ "normalized": false,
271
+ "rstrip": false,
272
+ "single_word": false,
273
+ "special": true
274
+ },
275
+ "128034": {
276
+ "content": "<|reserved_special_token_26|>",
277
+ "lstrip": false,
278
+ "normalized": false,
279
+ "rstrip": false,
280
+ "single_word": false,
281
+ "special": true
282
+ },
283
+ "128035": {
284
+ "content": "<|reserved_special_token_27|>",
285
+ "lstrip": false,
286
+ "normalized": false,
287
+ "rstrip": false,
288
+ "single_word": false,
289
+ "special": true
290
+ },
291
+ "128036": {
292
+ "content": "<|reserved_special_token_28|>",
293
+ "lstrip": false,
294
+ "normalized": false,
295
+ "rstrip": false,
296
+ "single_word": false,
297
+ "special": true
298
+ },
299
+ "128037": {
300
+ "content": "<|reserved_special_token_29|>",
301
+ "lstrip": false,
302
+ "normalized": false,
303
+ "rstrip": false,
304
+ "single_word": false,
305
+ "special": true
306
+ },
307
+ "128038": {
308
+ "content": "<|reserved_special_token_30|>",
309
+ "lstrip": false,
310
+ "normalized": false,
311
+ "rstrip": false,
312
+ "single_word": false,
313
+ "special": true
314
+ },
315
+ "128039": {
316
+ "content": "<|reserved_special_token_31|>",
317
+ "lstrip": false,
318
+ "normalized": false,
319
+ "rstrip": false,
320
+ "single_word": false,
321
+ "special": true
322
+ },
323
+ "128040": {
324
+ "content": "<|reserved_special_token_32|>",
325
+ "lstrip": false,
326
+ "normalized": false,
327
+ "rstrip": false,
328
+ "single_word": false,
329
+ "special": true
330
+ },
331
+ "128041": {
332
+ "content": "<|reserved_special_token_33|>",
333
+ "lstrip": false,
334
+ "normalized": false,
335
+ "rstrip": false,
336
+ "single_word": false,
337
+ "special": true
338
+ },
339
+ "128042": {
340
+ "content": "<|reserved_special_token_34|>",
341
+ "lstrip": false,
342
+ "normalized": false,
343
+ "rstrip": false,
344
+ "single_word": false,
345
+ "special": true
346
+ },
347
+ "128043": {
348
+ "content": "<|reserved_special_token_35|>",
349
+ "lstrip": false,
350
+ "normalized": false,
351
+ "rstrip": false,
352
+ "single_word": false,
353
+ "special": true
354
+ },
355
+ "128044": {
356
+ "content": "<|reserved_special_token_36|>",
357
+ "lstrip": false,
358
+ "normalized": false,
359
+ "rstrip": false,
360
+ "single_word": false,
361
+ "special": true
362
+ },
363
+ "128045": {
364
+ "content": "<|reserved_special_token_37|>",
365
+ "lstrip": false,
366
+ "normalized": false,
367
+ "rstrip": false,
368
+ "single_word": false,
369
+ "special": true
370
+ },
371
+ "128046": {
372
+ "content": "<|reserved_special_token_38|>",
373
+ "lstrip": false,
374
+ "normalized": false,
375
+ "rstrip": false,
376
+ "single_word": false,
377
+ "special": true
378
+ },
379
+ "128047": {
380
+ "content": "<|reserved_special_token_39|>",
381
+ "lstrip": false,
382
+ "normalized": false,
383
+ "rstrip": false,
384
+ "single_word": false,
385
+ "special": true
386
+ },
387
+ "128048": {
388
+ "content": "<|reserved_special_token_40|>",
389
+ "lstrip": false,
390
+ "normalized": false,
391
+ "rstrip": false,
392
+ "single_word": false,
393
+ "special": true
394
+ },
395
+ "128049": {
396
+ "content": "<|reserved_special_token_41|>",
397
+ "lstrip": false,
398
+ "normalized": false,
399
+ "rstrip": false,
400
+ "single_word": false,
401
+ "special": true
402
+ },
403
+ "128050": {
404
+ "content": "<|reserved_special_token_42|>",
405
+ "lstrip": false,
406
+ "normalized": false,
407
+ "rstrip": false,
408
+ "single_word": false,
409
+ "special": true
410
+ },
411
+ "128051": {
412
+ "content": "<|reserved_special_token_43|>",
413
+ "lstrip": false,
414
+ "normalized": false,
415
+ "rstrip": false,
416
+ "single_word": false,
417
+ "special": true
418
+ },
419
+ "128052": {
420
+ "content": "<|reserved_special_token_44|>",
421
+ "lstrip": false,
422
+ "normalized": false,
423
+ "rstrip": false,
424
+ "single_word": false,
425
+ "special": true
426
+ },
427
+ "128053": {
428
+ "content": "<|reserved_special_token_45|>",
429
+ "lstrip": false,
430
+ "normalized": false,
431
+ "rstrip": false,
432
+ "single_word": false,
433
+ "special": true
434
+ },
435
+ "128054": {
436
+ "content": "<|reserved_special_token_46|>",
437
+ "lstrip": false,
438
+ "normalized": false,
439
+ "rstrip": false,
440
+ "single_word": false,
441
+ "special": true
442
+ },
443
+ "128055": {
444
+ "content": "<|reserved_special_token_47|>",
445
+ "lstrip": false,
446
+ "normalized": false,
447
+ "rstrip": false,
448
+ "single_word": false,
449
+ "special": true
450
+ },
451
+ "128056": {
452
+ "content": "<|reserved_special_token_48|>",
453
+ "lstrip": false,
454
+ "normalized": false,
455
+ "rstrip": false,
456
+ "single_word": false,
457
+ "special": true
458
+ },
459
+ "128057": {
460
+ "content": "<|reserved_special_token_49|>",
461
+ "lstrip": false,
462
+ "normalized": false,
463
+ "rstrip": false,
464
+ "single_word": false,
465
+ "special": true
466
+ },
467
+ "128058": {
468
+ "content": "<|reserved_special_token_50|>",
469
+ "lstrip": false,
470
+ "normalized": false,
471
+ "rstrip": false,
472
+ "single_word": false,
473
+ "special": true
474
+ },
475
+ "128059": {
476
+ "content": "<|reserved_special_token_51|>",
477
+ "lstrip": false,
478
+ "normalized": false,
479
+ "rstrip": false,
480
+ "single_word": false,
481
+ "special": true
482
+ },
483
+ "128060": {
484
+ "content": "<|reserved_special_token_52|>",
485
+ "lstrip": false,
486
+ "normalized": false,
487
+ "rstrip": false,
488
+ "single_word": false,
489
+ "special": true
490
+ },
491
+ "128061": {
492
+ "content": "<|reserved_special_token_53|>",
493
+ "lstrip": false,
494
+ "normalized": false,
495
+ "rstrip": false,
496
+ "single_word": false,
497
+ "special": true
498
+ },
499
+ "128062": {
500
+ "content": "<|reserved_special_token_54|>",
501
+ "lstrip": false,
502
+ "normalized": false,
503
+ "rstrip": false,
504
+ "single_word": false,
505
+ "special": true
506
+ },
507
+ "128063": {
508
+ "content": "<|reserved_special_token_55|>",
509
+ "lstrip": false,
510
+ "normalized": false,
511
+ "rstrip": false,
512
+ "single_word": false,
513
+ "special": true
514
+ },
515
+ "128064": {
516
+ "content": "<|reserved_special_token_56|>",
517
+ "lstrip": false,
518
+ "normalized": false,
519
+ "rstrip": false,
520
+ "single_word": false,
521
+ "special": true
522
+ },
523
+ "128065": {
524
+ "content": "<|reserved_special_token_57|>",
525
+ "lstrip": false,
526
+ "normalized": false,
527
+ "rstrip": false,
528
+ "single_word": false,
529
+ "special": true
530
+ },
531
+ "128066": {
532
+ "content": "<|reserved_special_token_58|>",
533
+ "lstrip": false,
534
+ "normalized": false,
535
+ "rstrip": false,
536
+ "single_word": false,
537
+ "special": true
538
+ },
539
+ "128067": {
540
+ "content": "<|reserved_special_token_59|>",
541
+ "lstrip": false,
542
+ "normalized": false,
543
+ "rstrip": false,
544
+ "single_word": false,
545
+ "special": true
546
+ },
547
+ "128068": {
548
+ "content": "<|reserved_special_token_60|>",
549
+ "lstrip": false,
550
+ "normalized": false,
551
+ "rstrip": false,
552
+ "single_word": false,
553
+ "special": true
554
+ },
555
+ "128069": {
556
+ "content": "<|reserved_special_token_61|>",
557
+ "lstrip": false,
558
+ "normalized": false,
559
+ "rstrip": false,
560
+ "single_word": false,
561
+ "special": true
562
+ },
563
+ "128070": {
564
+ "content": "<|reserved_special_token_62|>",
565
+ "lstrip": false,
566
+ "normalized": false,
567
+ "rstrip": false,
568
+ "single_word": false,
569
+ "special": true
570
+ },
571
+ "128071": {
572
+ "content": "<|reserved_special_token_63|>",
573
+ "lstrip": false,
574
+ "normalized": false,
575
+ "rstrip": false,
576
+ "single_word": false,
577
+ "special": true
578
+ },
579
+ "128072": {
580
+ "content": "<|reserved_special_token_64|>",
581
+ "lstrip": false,
582
+ "normalized": false,
583
+ "rstrip": false,
584
+ "single_word": false,
585
+ "special": true
586
+ },
587
+ "128073": {
588
+ "content": "<|reserved_special_token_65|>",
589
+ "lstrip": false,
590
+ "normalized": false,
591
+ "rstrip": false,
592
+ "single_word": false,
593
+ "special": true
594
+ },
595
+ "128074": {
596
+ "content": "<|reserved_special_token_66|>",
597
+ "lstrip": false,
598
+ "normalized": false,
599
+ "rstrip": false,
600
+ "single_word": false,
601
+ "special": true
602
+ },
603
+ "128075": {
604
+ "content": "<|reserved_special_token_67|>",
605
+ "lstrip": false,
606
+ "normalized": false,
607
+ "rstrip": false,
608
+ "single_word": false,
609
+ "special": true
610
+ },
611
+ "128076": {
612
+ "content": "<|reserved_special_token_68|>",
613
+ "lstrip": false,
614
+ "normalized": false,
615
+ "rstrip": false,
616
+ "single_word": false,
617
+ "special": true
618
+ },
619
+ "128077": {
620
+ "content": "<|reserved_special_token_69|>",
621
+ "lstrip": false,
622
+ "normalized": false,
623
+ "rstrip": false,
624
+ "single_word": false,
625
+ "special": true
626
+ },
627
+ "128078": {
628
+ "content": "<|reserved_special_token_70|>",
629
+ "lstrip": false,
630
+ "normalized": false,
631
+ "rstrip": false,
632
+ "single_word": false,
633
+ "special": true
634
+ },
635
+ "128079": {
636
+ "content": "<|reserved_special_token_71|>",
637
+ "lstrip": false,
638
+ "normalized": false,
639
+ "rstrip": false,
640
+ "single_word": false,
641
+ "special": true
642
+ },
643
+ "128080": {
644
+ "content": "<|reserved_special_token_72|>",
645
+ "lstrip": false,
646
+ "normalized": false,
647
+ "rstrip": false,
648
+ "single_word": false,
649
+ "special": true
650
+ },
651
+ "128081": {
652
+ "content": "<|reserved_special_token_73|>",
653
+ "lstrip": false,
654
+ "normalized": false,
655
+ "rstrip": false,
656
+ "single_word": false,
657
+ "special": true
658
+ },
659
+ "128082": {
660
+ "content": "<|reserved_special_token_74|>",
661
+ "lstrip": false,
662
+ "normalized": false,
663
+ "rstrip": false,
664
+ "single_word": false,
665
+ "special": true
666
+ },
667
+ "128083": {
668
+ "content": "<|reserved_special_token_75|>",
669
+ "lstrip": false,
670
+ "normalized": false,
671
+ "rstrip": false,
672
+ "single_word": false,
673
+ "special": true
674
+ },
675
+ "128084": {
676
+ "content": "<|reserved_special_token_76|>",
677
+ "lstrip": false,
678
+ "normalized": false,
679
+ "rstrip": false,
680
+ "single_word": false,
681
+ "special": true
682
+ },
683
+ "128085": {
684
+ "content": "<|reserved_special_token_77|>",
685
+ "lstrip": false,
686
+ "normalized": false,
687
+ "rstrip": false,
688
+ "single_word": false,
689
+ "special": true
690
+ },
691
+ "128086": {
692
+ "content": "<|reserved_special_token_78|>",
693
+ "lstrip": false,
694
+ "normalized": false,
695
+ "rstrip": false,
696
+ "single_word": false,
697
+ "special": true
698
+ },
699
+ "128087": {
700
+ "content": "<|reserved_special_token_79|>",
701
+ "lstrip": false,
702
+ "normalized": false,
703
+ "rstrip": false,
704
+ "single_word": false,
705
+ "special": true
706
+ },
707
+ "128088": {
708
+ "content": "<|reserved_special_token_80|>",
709
+ "lstrip": false,
710
+ "normalized": false,
711
+ "rstrip": false,
712
+ "single_word": false,
713
+ "special": true
714
+ },
715
+ "128089": {
716
+ "content": "<|reserved_special_token_81|>",
717
+ "lstrip": false,
718
+ "normalized": false,
719
+ "rstrip": false,
720
+ "single_word": false,
721
+ "special": true
722
+ },
723
+ "128090": {
724
+ "content": "<|reserved_special_token_82|>",
725
+ "lstrip": false,
726
+ "normalized": false,
727
+ "rstrip": false,
728
+ "single_word": false,
729
+ "special": true
730
+ },
731
+ "128091": {
732
+ "content": "<|reserved_special_token_83|>",
733
+ "lstrip": false,
734
+ "normalized": false,
735
+ "rstrip": false,
736
+ "single_word": false,
737
+ "special": true
738
+ },
739
+ "128092": {
740
+ "content": "<|reserved_special_token_84|>",
741
+ "lstrip": false,
742
+ "normalized": false,
743
+ "rstrip": false,
744
+ "single_word": false,
745
+ "special": true
746
+ },
747
+ "128093": {
748
+ "content": "<|reserved_special_token_85|>",
749
+ "lstrip": false,
750
+ "normalized": false,
751
+ "rstrip": false,
752
+ "single_word": false,
753
+ "special": true
754
+ },
755
+ "128094": {
756
+ "content": "<|reserved_special_token_86|>",
757
+ "lstrip": false,
758
+ "normalized": false,
759
+ "rstrip": false,
760
+ "single_word": false,
761
+ "special": true
762
+ },
763
+ "128095": {
764
+ "content": "<|reserved_special_token_87|>",
765
+ "lstrip": false,
766
+ "normalized": false,
767
+ "rstrip": false,
768
+ "single_word": false,
769
+ "special": true
770
+ },
771
+ "128096": {
772
+ "content": "<|reserved_special_token_88|>",
773
+ "lstrip": false,
774
+ "normalized": false,
775
+ "rstrip": false,
776
+ "single_word": false,
777
+ "special": true
778
+ },
779
+ "128097": {
780
+ "content": "<|reserved_special_token_89|>",
781
+ "lstrip": false,
782
+ "normalized": false,
783
+ "rstrip": false,
784
+ "single_word": false,
785
+ "special": true
786
+ },
787
+ "128098": {
788
+ "content": "<|reserved_special_token_90|>",
789
+ "lstrip": false,
790
+ "normalized": false,
791
+ "rstrip": false,
792
+ "single_word": false,
793
+ "special": true
794
+ },
795
+ "128099": {
796
+ "content": "<|reserved_special_token_91|>",
797
+ "lstrip": false,
798
+ "normalized": false,
799
+ "rstrip": false,
800
+ "single_word": false,
801
+ "special": true
802
+ },
803
+ "128100": {
804
+ "content": "<|reserved_special_token_92|>",
805
+ "lstrip": false,
806
+ "normalized": false,
807
+ "rstrip": false,
808
+ "single_word": false,
809
+ "special": true
810
+ },
811
+ "128101": {
812
+ "content": "<|reserved_special_token_93|>",
813
+ "lstrip": false,
814
+ "normalized": false,
815
+ "rstrip": false,
816
+ "single_word": false,
817
+ "special": true
818
+ },
819
+ "128102": {
820
+ "content": "<|reserved_special_token_94|>",
821
+ "lstrip": false,
822
+ "normalized": false,
823
+ "rstrip": false,
824
+ "single_word": false,
825
+ "special": true
826
+ },
827
+ "128103": {
828
+ "content": "<|reserved_special_token_95|>",
829
+ "lstrip": false,
830
+ "normalized": false,
831
+ "rstrip": false,
832
+ "single_word": false,
833
+ "special": true
834
+ },
835
+ "128104": {
836
+ "content": "<|reserved_special_token_96|>",
837
+ "lstrip": false,
838
+ "normalized": false,
839
+ "rstrip": false,
840
+ "single_word": false,
841
+ "special": true
842
+ },
843
+ "128105": {
844
+ "content": "<|reserved_special_token_97|>",
845
+ "lstrip": false,
846
+ "normalized": false,
847
+ "rstrip": false,
848
+ "single_word": false,
849
+ "special": true
850
+ },
851
+ "128106": {
852
+ "content": "<|reserved_special_token_98|>",
853
+ "lstrip": false,
854
+ "normalized": false,
855
+ "rstrip": false,
856
+ "single_word": false,
857
+ "special": true
858
+ },
859
+ "128107": {
860
+ "content": "<|reserved_special_token_99|>",
861
+ "lstrip": false,
862
+ "normalized": false,
863
+ "rstrip": false,
864
+ "single_word": false,
865
+ "special": true
866
+ },
867
+ "128108": {
868
+ "content": "<|reserved_special_token_100|>",
869
+ "lstrip": false,
870
+ "normalized": false,
871
+ "rstrip": false,
872
+ "single_word": false,
873
+ "special": true
874
+ },
875
+ "128109": {
876
+ "content": "<|reserved_special_token_101|>",
877
+ "lstrip": false,
878
+ "normalized": false,
879
+ "rstrip": false,
880
+ "single_word": false,
881
+ "special": true
882
+ },
883
+ "128110": {
884
+ "content": "<|reserved_special_token_102|>",
885
+ "lstrip": false,
886
+ "normalized": false,
887
+ "rstrip": false,
888
+ "single_word": false,
889
+ "special": true
890
+ },
891
+ "128111": {
892
+ "content": "<|reserved_special_token_103|>",
893
+ "lstrip": false,
894
+ "normalized": false,
895
+ "rstrip": false,
896
+ "single_word": false,
897
+ "special": true
898
+ },
899
+ "128112": {
900
+ "content": "<|reserved_special_token_104|>",
901
+ "lstrip": false,
902
+ "normalized": false,
903
+ "rstrip": false,
904
+ "single_word": false,
905
+ "special": true
906
+ },
907
+ "128113": {
908
+ "content": "<|reserved_special_token_105|>",
909
+ "lstrip": false,
910
+ "normalized": false,
911
+ "rstrip": false,
912
+ "single_word": false,
913
+ "special": true
914
+ },
915
+ "128114": {
916
+ "content": "<|reserved_special_token_106|>",
917
+ "lstrip": false,
918
+ "normalized": false,
919
+ "rstrip": false,
920
+ "single_word": false,
921
+ "special": true
922
+ },
923
+ "128115": {
924
+ "content": "<|reserved_special_token_107|>",
925
+ "lstrip": false,
926
+ "normalized": false,
927
+ "rstrip": false,
928
+ "single_word": false,
929
+ "special": true
930
+ },
931
+ "128116": {
932
+ "content": "<|reserved_special_token_108|>",
933
+ "lstrip": false,
934
+ "normalized": false,
935
+ "rstrip": false,
936
+ "single_word": false,
937
+ "special": true
938
+ },
939
+ "128117": {
940
+ "content": "<|reserved_special_token_109|>",
941
+ "lstrip": false,
942
+ "normalized": false,
943
+ "rstrip": false,
944
+ "single_word": false,
945
+ "special": true
946
+ },
947
+ "128118": {
948
+ "content": "<|reserved_special_token_110|>",
949
+ "lstrip": false,
950
+ "normalized": false,
951
+ "rstrip": false,
952
+ "single_word": false,
953
+ "special": true
954
+ },
955
+ "128119": {
956
+ "content": "<|reserved_special_token_111|>",
957
+ "lstrip": false,
958
+ "normalized": false,
959
+ "rstrip": false,
960
+ "single_word": false,
961
+ "special": true
962
+ },
963
+ "128120": {
964
+ "content": "<|reserved_special_token_112|>",
965
+ "lstrip": false,
966
+ "normalized": false,
967
+ "rstrip": false,
968
+ "single_word": false,
969
+ "special": true
970
+ },
971
+ "128121": {
972
+ "content": "<|reserved_special_token_113|>",
973
+ "lstrip": false,
974
+ "normalized": false,
975
+ "rstrip": false,
976
+ "single_word": false,
977
+ "special": true
978
+ },
979
+ "128122": {
980
+ "content": "<|reserved_special_token_114|>",
981
+ "lstrip": false,
982
+ "normalized": false,
983
+ "rstrip": false,
984
+ "single_word": false,
985
+ "special": true
986
+ },
987
+ "128123": {
988
+ "content": "<|reserved_special_token_115|>",
989
+ "lstrip": false,
990
+ "normalized": false,
991
+ "rstrip": false,
992
+ "single_word": false,
993
+ "special": true
994
+ },
995
+ "128124": {
996
+ "content": "<|reserved_special_token_116|>",
997
+ "lstrip": false,
998
+ "normalized": false,
999
+ "rstrip": false,
1000
+ "single_word": false,
1001
+ "special": true
1002
+ },
1003
+ "128125": {
1004
+ "content": "<|reserved_special_token_117|>",
1005
+ "lstrip": false,
1006
+ "normalized": false,
1007
+ "rstrip": false,
1008
+ "single_word": false,
1009
+ "special": true
1010
+ },
1011
+ "128126": {
1012
+ "content": "<|reserved_special_token_118|>",
1013
+ "lstrip": false,
1014
+ "normalized": false,
1015
+ "rstrip": false,
1016
+ "single_word": false,
1017
+ "special": true
1018
+ },
1019
+ "128127": {
1020
+ "content": "<|reserved_special_token_119|>",
1021
+ "lstrip": false,
1022
+ "normalized": false,
1023
+ "rstrip": false,
1024
+ "single_word": false,
1025
+ "special": true
1026
+ },
1027
+ "128128": {
1028
+ "content": "<|reserved_special_token_120|>",
1029
+ "lstrip": false,
1030
+ "normalized": false,
1031
+ "rstrip": false,
1032
+ "single_word": false,
1033
+ "special": true
1034
+ },
1035
+ "128129": {
1036
+ "content": "<|reserved_special_token_121|>",
1037
+ "lstrip": false,
1038
+ "normalized": false,
1039
+ "rstrip": false,
1040
+ "single_word": false,
1041
+ "special": true
1042
+ },
1043
+ "128130": {
1044
+ "content": "<|reserved_special_token_122|>",
1045
+ "lstrip": false,
1046
+ "normalized": false,
1047
+ "rstrip": false,
1048
+ "single_word": false,
1049
+ "special": true
1050
+ },
1051
+ "128131": {
1052
+ "content": "<|reserved_special_token_123|>",
1053
+ "lstrip": false,
1054
+ "normalized": false,
1055
+ "rstrip": false,
1056
+ "single_word": false,
1057
+ "special": true
1058
+ },
1059
+ "128132": {
1060
+ "content": "<|reserved_special_token_124|>",
1061
+ "lstrip": false,
1062
+ "normalized": false,
1063
+ "rstrip": false,
1064
+ "single_word": false,
1065
+ "special": true
1066
+ },
1067
+ "128133": {
1068
+ "content": "<|reserved_special_token_125|>",
1069
+ "lstrip": false,
1070
+ "normalized": false,
1071
+ "rstrip": false,
1072
+ "single_word": false,
1073
+ "special": true
1074
+ },
1075
+ "128134": {
1076
+ "content": "<|reserved_special_token_126|>",
1077
+ "lstrip": false,
1078
+ "normalized": false,
1079
+ "rstrip": false,
1080
+ "single_word": false,
1081
+ "special": true
1082
+ },
1083
+ "128135": {
1084
+ "content": "<|reserved_special_token_127|>",
1085
+ "lstrip": false,
1086
+ "normalized": false,
1087
+ "rstrip": false,
1088
+ "single_word": false,
1089
+ "special": true
1090
+ },
1091
+ "128136": {
1092
+ "content": "<|reserved_special_token_128|>",
1093
+ "lstrip": false,
1094
+ "normalized": false,
1095
+ "rstrip": false,
1096
+ "single_word": false,
1097
+ "special": true
1098
+ },
1099
+ "128137": {
1100
+ "content": "<|reserved_special_token_129|>",
1101
+ "lstrip": false,
1102
+ "normalized": false,
1103
+ "rstrip": false,
1104
+ "single_word": false,
1105
+ "special": true
1106
+ },
1107
+ "128138": {
1108
+ "content": "<|reserved_special_token_130|>",
1109
+ "lstrip": false,
1110
+ "normalized": false,
1111
+ "rstrip": false,
1112
+ "single_word": false,
1113
+ "special": true
1114
+ },
1115
+ "128139": {
1116
+ "content": "<|reserved_special_token_131|>",
1117
+ "lstrip": false,
1118
+ "normalized": false,
1119
+ "rstrip": false,
1120
+ "single_word": false,
1121
+ "special": true
1122
+ },
1123
+ "128140": {
1124
+ "content": "<|reserved_special_token_132|>",
1125
+ "lstrip": false,
1126
+ "normalized": false,
1127
+ "rstrip": false,
1128
+ "single_word": false,
1129
+ "special": true
1130
+ },
1131
+ "128141": {
1132
+ "content": "<|reserved_special_token_133|>",
1133
+ "lstrip": false,
1134
+ "normalized": false,
1135
+ "rstrip": false,
1136
+ "single_word": false,
1137
+ "special": true
1138
+ },
1139
+ "128142": {
1140
+ "content": "<|reserved_special_token_134|>",
1141
+ "lstrip": false,
1142
+ "normalized": false,
1143
+ "rstrip": false,
1144
+ "single_word": false,
1145
+ "special": true
1146
+ },
1147
+ "128143": {
1148
+ "content": "<|reserved_special_token_135|>",
1149
+ "lstrip": false,
1150
+ "normalized": false,
1151
+ "rstrip": false,
1152
+ "single_word": false,
1153
+ "special": true
1154
+ },
1155
+ "128144": {
1156
+ "content": "<|reserved_special_token_136|>",
1157
+ "lstrip": false,
1158
+ "normalized": false,
1159
+ "rstrip": false,
1160
+ "single_word": false,
1161
+ "special": true
1162
+ },
1163
+ "128145": {
1164
+ "content": "<|reserved_special_token_137|>",
1165
+ "lstrip": false,
1166
+ "normalized": false,
1167
+ "rstrip": false,
1168
+ "single_word": false,
1169
+ "special": true
1170
+ },
1171
+ "128146": {
1172
+ "content": "<|reserved_special_token_138|>",
1173
+ "lstrip": false,
1174
+ "normalized": false,
1175
+ "rstrip": false,
1176
+ "single_word": false,
1177
+ "special": true
1178
+ },
1179
+ "128147": {
1180
+ "content": "<|reserved_special_token_139|>",
1181
+ "lstrip": false,
1182
+ "normalized": false,
1183
+ "rstrip": false,
1184
+ "single_word": false,
1185
+ "special": true
1186
+ },
1187
+ "128148": {
1188
+ "content": "<|reserved_special_token_140|>",
1189
+ "lstrip": false,
1190
+ "normalized": false,
1191
+ "rstrip": false,
1192
+ "single_word": false,
1193
+ "special": true
1194
+ },
1195
+ "128149": {
1196
+ "content": "<|reserved_special_token_141|>",
1197
+ "lstrip": false,
1198
+ "normalized": false,
1199
+ "rstrip": false,
1200
+ "single_word": false,
1201
+ "special": true
1202
+ },
1203
+ "128150": {
1204
+ "content": "<|reserved_special_token_142|>",
1205
+ "lstrip": false,
1206
+ "normalized": false,
1207
+ "rstrip": false,
1208
+ "single_word": false,
1209
+ "special": true
1210
+ },
1211
+ "128151": {
1212
+ "content": "<|reserved_special_token_143|>",
1213
+ "lstrip": false,
1214
+ "normalized": false,
1215
+ "rstrip": false,
1216
+ "single_word": false,
1217
+ "special": true
1218
+ },
1219
+ "128152": {
1220
+ "content": "<|reserved_special_token_144|>",
1221
+ "lstrip": false,
1222
+ "normalized": false,
1223
+ "rstrip": false,
1224
+ "single_word": false,
1225
+ "special": true
1226
+ },
1227
+ "128153": {
1228
+ "content": "<|reserved_special_token_145|>",
1229
+ "lstrip": false,
1230
+ "normalized": false,
1231
+ "rstrip": false,
1232
+ "single_word": false,
1233
+ "special": true
1234
+ },
1235
+ "128154": {
1236
+ "content": "<|reserved_special_token_146|>",
1237
+ "lstrip": false,
1238
+ "normalized": false,
1239
+ "rstrip": false,
1240
+ "single_word": false,
1241
+ "special": true
1242
+ },
1243
+ "128155": {
1244
+ "content": "<|reserved_special_token_147|>",
1245
+ "lstrip": false,
1246
+ "normalized": false,
1247
+ "rstrip": false,
1248
+ "single_word": false,
1249
+ "special": true
1250
+ },
1251
+ "128156": {
1252
+ "content": "<|reserved_special_token_148|>",
1253
+ "lstrip": false,
1254
+ "normalized": false,
1255
+ "rstrip": false,
1256
+ "single_word": false,
1257
+ "special": true
1258
+ },
1259
+ "128157": {
1260
+ "content": "<|reserved_special_token_149|>",
1261
+ "lstrip": false,
1262
+ "normalized": false,
1263
+ "rstrip": false,
1264
+ "single_word": false,
1265
+ "special": true
1266
+ },
1267
+ "128158": {
1268
+ "content": "<|reserved_special_token_150|>",
1269
+ "lstrip": false,
1270
+ "normalized": false,
1271
+ "rstrip": false,
1272
+ "single_word": false,
1273
+ "special": true
1274
+ },
1275
+ "128159": {
1276
+ "content": "<|reserved_special_token_151|>",
1277
+ "lstrip": false,
1278
+ "normalized": false,
1279
+ "rstrip": false,
1280
+ "single_word": false,
1281
+ "special": true
1282
+ },
1283
+ "128160": {
1284
+ "content": "<|reserved_special_token_152|>",
1285
+ "lstrip": false,
1286
+ "normalized": false,
1287
+ "rstrip": false,
1288
+ "single_word": false,
1289
+ "special": true
1290
+ },
1291
+ "128161": {
1292
+ "content": "<|reserved_special_token_153|>",
1293
+ "lstrip": false,
1294
+ "normalized": false,
1295
+ "rstrip": false,
1296
+ "single_word": false,
1297
+ "special": true
1298
+ },
1299
+ "128162": {
1300
+ "content": "<|reserved_special_token_154|>",
1301
+ "lstrip": false,
1302
+ "normalized": false,
1303
+ "rstrip": false,
1304
+ "single_word": false,
1305
+ "special": true
1306
+ },
1307
+ "128163": {
1308
+ "content": "<|reserved_special_token_155|>",
1309
+ "lstrip": false,
1310
+ "normalized": false,
1311
+ "rstrip": false,
1312
+ "single_word": false,
1313
+ "special": true
1314
+ },
1315
+ "128164": {
1316
+ "content": "<|reserved_special_token_156|>",
1317
+ "lstrip": false,
1318
+ "normalized": false,
1319
+ "rstrip": false,
1320
+ "single_word": false,
1321
+ "special": true
1322
+ },
1323
+ "128165": {
1324
+ "content": "<|reserved_special_token_157|>",
1325
+ "lstrip": false,
1326
+ "normalized": false,
1327
+ "rstrip": false,
1328
+ "single_word": false,
1329
+ "special": true
1330
+ },
1331
+ "128166": {
1332
+ "content": "<|reserved_special_token_158|>",
1333
+ "lstrip": false,
1334
+ "normalized": false,
1335
+ "rstrip": false,
1336
+ "single_word": false,
1337
+ "special": true
1338
+ },
1339
+ "128167": {
1340
+ "content": "<|reserved_special_token_159|>",
1341
+ "lstrip": false,
1342
+ "normalized": false,
1343
+ "rstrip": false,
1344
+ "single_word": false,
1345
+ "special": true
1346
+ },
1347
+ "128168": {
1348
+ "content": "<|reserved_special_token_160|>",
1349
+ "lstrip": false,
1350
+ "normalized": false,
1351
+ "rstrip": false,
1352
+ "single_word": false,
1353
+ "special": true
1354
+ },
1355
+ "128169": {
1356
+ "content": "<|reserved_special_token_161|>",
1357
+ "lstrip": false,
1358
+ "normalized": false,
1359
+ "rstrip": false,
1360
+ "single_word": false,
1361
+ "special": true
1362
+ },
1363
+ "128170": {
1364
+ "content": "<|reserved_special_token_162|>",
1365
+ "lstrip": false,
1366
+ "normalized": false,
1367
+ "rstrip": false,
1368
+ "single_word": false,
1369
+ "special": true
1370
+ },
1371
+ "128171": {
1372
+ "content": "<|reserved_special_token_163|>",
1373
+ "lstrip": false,
1374
+ "normalized": false,
1375
+ "rstrip": false,
1376
+ "single_word": false,
1377
+ "special": true
1378
+ },
1379
+ "128172": {
1380
+ "content": "<|reserved_special_token_164|>",
1381
+ "lstrip": false,
1382
+ "normalized": false,
1383
+ "rstrip": false,
1384
+ "single_word": false,
1385
+ "special": true
1386
+ },
1387
+ "128173": {
1388
+ "content": "<|reserved_special_token_165|>",
1389
+ "lstrip": false,
1390
+ "normalized": false,
1391
+ "rstrip": false,
1392
+ "single_word": false,
1393
+ "special": true
1394
+ },
1395
+ "128174": {
1396
+ "content": "<|reserved_special_token_166|>",
1397
+ "lstrip": false,
1398
+ "normalized": false,
1399
+ "rstrip": false,
1400
+ "single_word": false,
1401
+ "special": true
1402
+ },
1403
+ "128175": {
1404
+ "content": "<|reserved_special_token_167|>",
1405
+ "lstrip": false,
1406
+ "normalized": false,
1407
+ "rstrip": false,
1408
+ "single_word": false,
1409
+ "special": true
1410
+ },
1411
+ "128176": {
1412
+ "content": "<|reserved_special_token_168|>",
1413
+ "lstrip": false,
1414
+ "normalized": false,
1415
+ "rstrip": false,
1416
+ "single_word": false,
1417
+ "special": true
1418
+ },
1419
+ "128177": {
1420
+ "content": "<|reserved_special_token_169|>",
1421
+ "lstrip": false,
1422
+ "normalized": false,
1423
+ "rstrip": false,
1424
+ "single_word": false,
1425
+ "special": true
1426
+ },
1427
+ "128178": {
1428
+ "content": "<|reserved_special_token_170|>",
1429
+ "lstrip": false,
1430
+ "normalized": false,
1431
+ "rstrip": false,
1432
+ "single_word": false,
1433
+ "special": true
1434
+ },
1435
+ "128179": {
1436
+ "content": "<|reserved_special_token_171|>",
1437
+ "lstrip": false,
1438
+ "normalized": false,
1439
+ "rstrip": false,
1440
+ "single_word": false,
1441
+ "special": true
1442
+ },
1443
+ "128180": {
1444
+ "content": "<|reserved_special_token_172|>",
1445
+ "lstrip": false,
1446
+ "normalized": false,
1447
+ "rstrip": false,
1448
+ "single_word": false,
1449
+ "special": true
1450
+ },
1451
+ "128181": {
1452
+ "content": "<|reserved_special_token_173|>",
1453
+ "lstrip": false,
1454
+ "normalized": false,
1455
+ "rstrip": false,
1456
+ "single_word": false,
1457
+ "special": true
1458
+ },
1459
+ "128182": {
1460
+ "content": "<|reserved_special_token_174|>",
1461
+ "lstrip": false,
1462
+ "normalized": false,
1463
+ "rstrip": false,
1464
+ "single_word": false,
1465
+ "special": true
1466
+ },
1467
+ "128183": {
1468
+ "content": "<|reserved_special_token_175|>",
1469
+ "lstrip": false,
1470
+ "normalized": false,
1471
+ "rstrip": false,
1472
+ "single_word": false,
1473
+ "special": true
1474
+ },
1475
+ "128184": {
1476
+ "content": "<|reserved_special_token_176|>",
1477
+ "lstrip": false,
1478
+ "normalized": false,
1479
+ "rstrip": false,
1480
+ "single_word": false,
1481
+ "special": true
1482
+ },
1483
+ "128185": {
1484
+ "content": "<|reserved_special_token_177|>",
1485
+ "lstrip": false,
1486
+ "normalized": false,
1487
+ "rstrip": false,
1488
+ "single_word": false,
1489
+ "special": true
1490
+ },
1491
+ "128186": {
1492
+ "content": "<|reserved_special_token_178|>",
1493
+ "lstrip": false,
1494
+ "normalized": false,
1495
+ "rstrip": false,
1496
+ "single_word": false,
1497
+ "special": true
1498
+ },
1499
+ "128187": {
1500
+ "content": "<|reserved_special_token_179|>",
1501
+ "lstrip": false,
1502
+ "normalized": false,
1503
+ "rstrip": false,
1504
+ "single_word": false,
1505
+ "special": true
1506
+ },
1507
+ "128188": {
1508
+ "content": "<|reserved_special_token_180|>",
1509
+ "lstrip": false,
1510
+ "normalized": false,
1511
+ "rstrip": false,
1512
+ "single_word": false,
1513
+ "special": true
1514
+ },
1515
+ "128189": {
1516
+ "content": "<|reserved_special_token_181|>",
1517
+ "lstrip": false,
1518
+ "normalized": false,
1519
+ "rstrip": false,
1520
+ "single_word": false,
1521
+ "special": true
1522
+ },
1523
+ "128190": {
1524
+ "content": "<|reserved_special_token_182|>",
1525
+ "lstrip": false,
1526
+ "normalized": false,
1527
+ "rstrip": false,
1528
+ "single_word": false,
1529
+ "special": true
1530
+ },
1531
+ "128191": {
1532
+ "content": "<|reserved_special_token_183|>",
1533
+ "lstrip": false,
1534
+ "normalized": false,
1535
+ "rstrip": false,
1536
+ "single_word": false,
1537
+ "special": true
1538
+ },
1539
+ "128192": {
1540
+ "content": "<|reserved_special_token_184|>",
1541
+ "lstrip": false,
1542
+ "normalized": false,
1543
+ "rstrip": false,
1544
+ "single_word": false,
1545
+ "special": true
1546
+ },
1547
+ "128193": {
1548
+ "content": "<|reserved_special_token_185|>",
1549
+ "lstrip": false,
1550
+ "normalized": false,
1551
+ "rstrip": false,
1552
+ "single_word": false,
1553
+ "special": true
1554
+ },
1555
+ "128194": {
1556
+ "content": "<|reserved_special_token_186|>",
1557
+ "lstrip": false,
1558
+ "normalized": false,
1559
+ "rstrip": false,
1560
+ "single_word": false,
1561
+ "special": true
1562
+ },
1563
+ "128195": {
1564
+ "content": "<|reserved_special_token_187|>",
1565
+ "lstrip": false,
1566
+ "normalized": false,
1567
+ "rstrip": false,
1568
+ "single_word": false,
1569
+ "special": true
1570
+ },
1571
+ "128196": {
1572
+ "content": "<|reserved_special_token_188|>",
1573
+ "lstrip": false,
1574
+ "normalized": false,
1575
+ "rstrip": false,
1576
+ "single_word": false,
1577
+ "special": true
1578
+ },
1579
+ "128197": {
1580
+ "content": "<|reserved_special_token_189|>",
1581
+ "lstrip": false,
1582
+ "normalized": false,
1583
+ "rstrip": false,
1584
+ "single_word": false,
1585
+ "special": true
1586
+ },
1587
+ "128198": {
1588
+ "content": "<|reserved_special_token_190|>",
1589
+ "lstrip": false,
1590
+ "normalized": false,
1591
+ "rstrip": false,
1592
+ "single_word": false,
1593
+ "special": true
1594
+ },
1595
+ "128199": {
1596
+ "content": "<|reserved_special_token_191|>",
1597
+ "lstrip": false,
1598
+ "normalized": false,
1599
+ "rstrip": false,
1600
+ "single_word": false,
1601
+ "special": true
1602
+ },
1603
+ "128200": {
1604
+ "content": "<|reserved_special_token_192|>",
1605
+ "lstrip": false,
1606
+ "normalized": false,
1607
+ "rstrip": false,
1608
+ "single_word": false,
1609
+ "special": true
1610
+ },
1611
+ "128201": {
1612
+ "content": "<|reserved_special_token_193|>",
1613
+ "lstrip": false,
1614
+ "normalized": false,
1615
+ "rstrip": false,
1616
+ "single_word": false,
1617
+ "special": true
1618
+ },
1619
+ "128202": {
1620
+ "content": "<|reserved_special_token_194|>",
1621
+ "lstrip": false,
1622
+ "normalized": false,
1623
+ "rstrip": false,
1624
+ "single_word": false,
1625
+ "special": true
1626
+ },
1627
+ "128203": {
1628
+ "content": "<|reserved_special_token_195|>",
1629
+ "lstrip": false,
1630
+ "normalized": false,
1631
+ "rstrip": false,
1632
+ "single_word": false,
1633
+ "special": true
1634
+ },
1635
+ "128204": {
1636
+ "content": "<|reserved_special_token_196|>",
1637
+ "lstrip": false,
1638
+ "normalized": false,
1639
+ "rstrip": false,
1640
+ "single_word": false,
1641
+ "special": true
1642
+ },
1643
+ "128205": {
1644
+ "content": "<|reserved_special_token_197|>",
1645
+ "lstrip": false,
1646
+ "normalized": false,
1647
+ "rstrip": false,
1648
+ "single_word": false,
1649
+ "special": true
1650
+ },
1651
+ "128206": {
1652
+ "content": "<|reserved_special_token_198|>",
1653
+ "lstrip": false,
1654
+ "normalized": false,
1655
+ "rstrip": false,
1656
+ "single_word": false,
1657
+ "special": true
1658
+ },
1659
+ "128207": {
1660
+ "content": "<|reserved_special_token_199|>",
1661
+ "lstrip": false,
1662
+ "normalized": false,
1663
+ "rstrip": false,
1664
+ "single_word": false,
1665
+ "special": true
1666
+ },
1667
+ "128208": {
1668
+ "content": "<|reserved_special_token_200|>",
1669
+ "lstrip": false,
1670
+ "normalized": false,
1671
+ "rstrip": false,
1672
+ "single_word": false,
1673
+ "special": true
1674
+ },
1675
+ "128209": {
1676
+ "content": "<|reserved_special_token_201|>",
1677
+ "lstrip": false,
1678
+ "normalized": false,
1679
+ "rstrip": false,
1680
+ "single_word": false,
1681
+ "special": true
1682
+ },
1683
+ "128210": {
1684
+ "content": "<|reserved_special_token_202|>",
1685
+ "lstrip": false,
1686
+ "normalized": false,
1687
+ "rstrip": false,
1688
+ "single_word": false,
1689
+ "special": true
1690
+ },
1691
+ "128211": {
1692
+ "content": "<|reserved_special_token_203|>",
1693
+ "lstrip": false,
1694
+ "normalized": false,
1695
+ "rstrip": false,
1696
+ "single_word": false,
1697
+ "special": true
1698
+ },
1699
+ "128212": {
1700
+ "content": "<|reserved_special_token_204|>",
1701
+ "lstrip": false,
1702
+ "normalized": false,
1703
+ "rstrip": false,
1704
+ "single_word": false,
1705
+ "special": true
1706
+ },
1707
+ "128213": {
1708
+ "content": "<|reserved_special_token_205|>",
1709
+ "lstrip": false,
1710
+ "normalized": false,
1711
+ "rstrip": false,
1712
+ "single_word": false,
1713
+ "special": true
1714
+ },
1715
+ "128214": {
1716
+ "content": "<|reserved_special_token_206|>",
1717
+ "lstrip": false,
1718
+ "normalized": false,
1719
+ "rstrip": false,
1720
+ "single_word": false,
1721
+ "special": true
1722
+ },
1723
+ "128215": {
1724
+ "content": "<|reserved_special_token_207|>",
1725
+ "lstrip": false,
1726
+ "normalized": false,
1727
+ "rstrip": false,
1728
+ "single_word": false,
1729
+ "special": true
1730
+ },
1731
+ "128216": {
1732
+ "content": "<|reserved_special_token_208|>",
1733
+ "lstrip": false,
1734
+ "normalized": false,
1735
+ "rstrip": false,
1736
+ "single_word": false,
1737
+ "special": true
1738
+ },
1739
+ "128217": {
1740
+ "content": "<|reserved_special_token_209|>",
1741
+ "lstrip": false,
1742
+ "normalized": false,
1743
+ "rstrip": false,
1744
+ "single_word": false,
1745
+ "special": true
1746
+ },
1747
+ "128218": {
1748
+ "content": "<|reserved_special_token_210|>",
1749
+ "lstrip": false,
1750
+ "normalized": false,
1751
+ "rstrip": false,
1752
+ "single_word": false,
1753
+ "special": true
1754
+ },
1755
+ "128219": {
1756
+ "content": "<|reserved_special_token_211|>",
1757
+ "lstrip": false,
1758
+ "normalized": false,
1759
+ "rstrip": false,
1760
+ "single_word": false,
1761
+ "special": true
1762
+ },
1763
+ "128220": {
1764
+ "content": "<|reserved_special_token_212|>",
1765
+ "lstrip": false,
1766
+ "normalized": false,
1767
+ "rstrip": false,
1768
+ "single_word": false,
1769
+ "special": true
1770
+ },
1771
+ "128221": {
1772
+ "content": "<|reserved_special_token_213|>",
1773
+ "lstrip": false,
1774
+ "normalized": false,
1775
+ "rstrip": false,
1776
+ "single_word": false,
1777
+ "special": true
1778
+ },
1779
+ "128222": {
1780
+ "content": "<|reserved_special_token_214|>",
1781
+ "lstrip": false,
1782
+ "normalized": false,
1783
+ "rstrip": false,
1784
+ "single_word": false,
1785
+ "special": true
1786
+ },
1787
+ "128223": {
1788
+ "content": "<|reserved_special_token_215|>",
1789
+ "lstrip": false,
1790
+ "normalized": false,
1791
+ "rstrip": false,
1792
+ "single_word": false,
1793
+ "special": true
1794
+ },
1795
+ "128224": {
1796
+ "content": "<|reserved_special_token_216|>",
1797
+ "lstrip": false,
1798
+ "normalized": false,
1799
+ "rstrip": false,
1800
+ "single_word": false,
1801
+ "special": true
1802
+ },
1803
+ "128225": {
1804
+ "content": "<|reserved_special_token_217|>",
1805
+ "lstrip": false,
1806
+ "normalized": false,
1807
+ "rstrip": false,
1808
+ "single_word": false,
1809
+ "special": true
1810
+ },
1811
+ "128226": {
1812
+ "content": "<|reserved_special_token_218|>",
1813
+ "lstrip": false,
1814
+ "normalized": false,
1815
+ "rstrip": false,
1816
+ "single_word": false,
1817
+ "special": true
1818
+ },
1819
+ "128227": {
1820
+ "content": "<|reserved_special_token_219|>",
1821
+ "lstrip": false,
1822
+ "normalized": false,
1823
+ "rstrip": false,
1824
+ "single_word": false,
1825
+ "special": true
1826
+ },
1827
+ "128228": {
1828
+ "content": "<|reserved_special_token_220|>",
1829
+ "lstrip": false,
1830
+ "normalized": false,
1831
+ "rstrip": false,
1832
+ "single_word": false,
1833
+ "special": true
1834
+ },
1835
+ "128229": {
1836
+ "content": "<|reserved_special_token_221|>",
1837
+ "lstrip": false,
1838
+ "normalized": false,
1839
+ "rstrip": false,
1840
+ "single_word": false,
1841
+ "special": true
1842
+ },
1843
+ "128230": {
1844
+ "content": "<|reserved_special_token_222|>",
1845
+ "lstrip": false,
1846
+ "normalized": false,
1847
+ "rstrip": false,
1848
+ "single_word": false,
1849
+ "special": true
1850
+ },
1851
+ "128231": {
1852
+ "content": "<|reserved_special_token_223|>",
1853
+ "lstrip": false,
1854
+ "normalized": false,
1855
+ "rstrip": false,
1856
+ "single_word": false,
1857
+ "special": true
1858
+ },
1859
+ "128232": {
1860
+ "content": "<|reserved_special_token_224|>",
1861
+ "lstrip": false,
1862
+ "normalized": false,
1863
+ "rstrip": false,
1864
+ "single_word": false,
1865
+ "special": true
1866
+ },
1867
+ "128233": {
1868
+ "content": "<|reserved_special_token_225|>",
1869
+ "lstrip": false,
1870
+ "normalized": false,
1871
+ "rstrip": false,
1872
+ "single_word": false,
1873
+ "special": true
1874
+ },
1875
+ "128234": {
1876
+ "content": "<|reserved_special_token_226|>",
1877
+ "lstrip": false,
1878
+ "normalized": false,
1879
+ "rstrip": false,
1880
+ "single_word": false,
1881
+ "special": true
1882
+ },
1883
+ "128235": {
1884
+ "content": "<|reserved_special_token_227|>",
1885
+ "lstrip": false,
1886
+ "normalized": false,
1887
+ "rstrip": false,
1888
+ "single_word": false,
1889
+ "special": true
1890
+ },
1891
+ "128236": {
1892
+ "content": "<|reserved_special_token_228|>",
1893
+ "lstrip": false,
1894
+ "normalized": false,
1895
+ "rstrip": false,
1896
+ "single_word": false,
1897
+ "special": true
1898
+ },
1899
+ "128237": {
1900
+ "content": "<|reserved_special_token_229|>",
1901
+ "lstrip": false,
1902
+ "normalized": false,
1903
+ "rstrip": false,
1904
+ "single_word": false,
1905
+ "special": true
1906
+ },
1907
+ "128238": {
1908
+ "content": "<|reserved_special_token_230|>",
1909
+ "lstrip": false,
1910
+ "normalized": false,
1911
+ "rstrip": false,
1912
+ "single_word": false,
1913
+ "special": true
1914
+ },
1915
+ "128239": {
1916
+ "content": "<|reserved_special_token_231|>",
1917
+ "lstrip": false,
1918
+ "normalized": false,
1919
+ "rstrip": false,
1920
+ "single_word": false,
1921
+ "special": true
1922
+ },
1923
+ "128240": {
1924
+ "content": "<|reserved_special_token_232|>",
1925
+ "lstrip": false,
1926
+ "normalized": false,
1927
+ "rstrip": false,
1928
+ "single_word": false,
1929
+ "special": true
1930
+ },
1931
+ "128241": {
1932
+ "content": "<|reserved_special_token_233|>",
1933
+ "lstrip": false,
1934
+ "normalized": false,
1935
+ "rstrip": false,
1936
+ "single_word": false,
1937
+ "special": true
1938
+ },
1939
+ "128242": {
1940
+ "content": "<|reserved_special_token_234|>",
1941
+ "lstrip": false,
1942
+ "normalized": false,
1943
+ "rstrip": false,
1944
+ "single_word": false,
1945
+ "special": true
1946
+ },
1947
+ "128243": {
1948
+ "content": "<|reserved_special_token_235|>",
1949
+ "lstrip": false,
1950
+ "normalized": false,
1951
+ "rstrip": false,
1952
+ "single_word": false,
1953
+ "special": true
1954
+ },
1955
+ "128244": {
1956
+ "content": "<|reserved_special_token_236|>",
1957
+ "lstrip": false,
1958
+ "normalized": false,
1959
+ "rstrip": false,
1960
+ "single_word": false,
1961
+ "special": true
1962
+ },
1963
+ "128245": {
1964
+ "content": "<|reserved_special_token_237|>",
1965
+ "lstrip": false,
1966
+ "normalized": false,
1967
+ "rstrip": false,
1968
+ "single_word": false,
1969
+ "special": true
1970
+ },
1971
+ "128246": {
1972
+ "content": "<|reserved_special_token_238|>",
1973
+ "lstrip": false,
1974
+ "normalized": false,
1975
+ "rstrip": false,
1976
+ "single_word": false,
1977
+ "special": true
1978
+ },
1979
+ "128247": {
1980
+ "content": "<|reserved_special_token_239|>",
1981
+ "lstrip": false,
1982
+ "normalized": false,
1983
+ "rstrip": false,
1984
+ "single_word": false,
1985
+ "special": true
1986
+ },
1987
+ "128248": {
1988
+ "content": "<|reserved_special_token_240|>",
1989
+ "lstrip": false,
1990
+ "normalized": false,
1991
+ "rstrip": false,
1992
+ "single_word": false,
1993
+ "special": true
1994
+ },
1995
+ "128249": {
1996
+ "content": "<|reserved_special_token_241|>",
1997
+ "lstrip": false,
1998
+ "normalized": false,
1999
+ "rstrip": false,
2000
+ "single_word": false,
2001
+ "special": true
2002
+ },
2003
+ "128250": {
2004
+ "content": "<|reserved_special_token_242|>",
2005
+ "lstrip": false,
2006
+ "normalized": false,
2007
+ "rstrip": false,
2008
+ "single_word": false,
2009
+ "special": true
2010
+ },
2011
+ "128251": {
2012
+ "content": "<|reserved_special_token_243|>",
2013
+ "lstrip": false,
2014
+ "normalized": false,
2015
+ "rstrip": false,
2016
+ "single_word": false,
2017
+ "special": true
2018
+ },
2019
+ "128252": {
2020
+ "content": "<|reserved_special_token_244|>",
2021
+ "lstrip": false,
2022
+ "normalized": false,
2023
+ "rstrip": false,
2024
+ "single_word": false,
2025
+ "special": true
2026
+ },
2027
+ "128253": {
2028
+ "content": "<|reserved_special_token_245|>",
2029
+ "lstrip": false,
2030
+ "normalized": false,
2031
+ "rstrip": false,
2032
+ "single_word": false,
2033
+ "special": true
2034
+ },
2035
+ "128254": {
2036
+ "content": "<|reserved_special_token_246|>",
2037
+ "lstrip": false,
2038
+ "normalized": false,
2039
+ "rstrip": false,
2040
+ "single_word": false,
2041
+ "special": true
2042
+ },
2043
+ "128255": {
2044
+ "content": "<|reserved_special_token_247|>",
2045
+ "lstrip": false,
2046
+ "normalized": false,
2047
+ "rstrip": false,
2048
+ "single_word": false,
2049
+ "special": true
2050
+ }
2051
+ },
2052
+ "bos_token": "<|begin_of_text|>",
2053
+ "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{% if add_generation_prompt %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}{% endif %}",
2054
+ "clean_up_tokenization_spaces": true,
2055
+ "eos_token": "<|eot_id|>",
2056
+ "extra_special_tokens": {},
2057
+ "model_input_names": [
2058
+ "input_ids",
2059
+ "attention_mask"
2060
+ ],
2061
+ "model_max_length": 131072,
2062
+ "pad_token": "<|end_of_text|>",
2063
+ "tokenizer_class": "PreTrainedTokenizer"
2064
+ }
checkpoint-419/trainer_state.json ADDED
@@ -0,0 +1,2983 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 0.5001492091912861,
6
+ "eval_steps": 279,
7
+ "global_step": 419,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.001193673530289466,
14
+ "grad_norm": 8.16114303780401,
15
+ "learning_rate": 0.0,
16
+ "loss": 1.2384,
17
+ "step": 1
18
+ },
19
+ {
20
+ "epoch": 0.001193673530289466,
21
+ "eval_loss": 1.2247389554977417,
22
+ "eval_runtime": 377.0756,
23
+ "eval_samples_per_second": 29.405,
24
+ "eval_steps_per_second": 14.703,
25
+ "step": 1
26
+ },
27
+ {
28
+ "epoch": 0.002387347060578932,
29
+ "grad_norm": 8.47871027916886,
30
+ "learning_rate": 1.2500000000000002e-07,
31
+ "loss": 1.2206,
32
+ "step": 2
33
+ },
34
+ {
35
+ "epoch": 0.0035810205908683975,
36
+ "grad_norm": 9.074249796948349,
37
+ "learning_rate": 2.5000000000000004e-07,
38
+ "loss": 1.2612,
39
+ "step": 3
40
+ },
41
+ {
42
+ "epoch": 0.004774694121157864,
43
+ "grad_norm": 8.46395449442453,
44
+ "learning_rate": 3.75e-07,
45
+ "loss": 1.2244,
46
+ "step": 4
47
+ },
48
+ {
49
+ "epoch": 0.005968367651447329,
50
+ "grad_norm": 8.623468246740337,
51
+ "learning_rate": 5.000000000000001e-07,
52
+ "loss": 1.2237,
53
+ "step": 5
54
+ },
55
+ {
56
+ "epoch": 0.007162041181736795,
57
+ "grad_norm": 8.009333963998843,
58
+ "learning_rate": 6.25e-07,
59
+ "loss": 1.1959,
60
+ "step": 6
61
+ },
62
+ {
63
+ "epoch": 0.008355714712026261,
64
+ "grad_norm": 7.985626918976279,
65
+ "learning_rate": 7.5e-07,
66
+ "loss": 1.1517,
67
+ "step": 7
68
+ },
69
+ {
70
+ "epoch": 0.009549388242315727,
71
+ "grad_norm": 7.7914409534481095,
72
+ "learning_rate": 8.75e-07,
73
+ "loss": 1.1721,
74
+ "step": 8
75
+ },
76
+ {
77
+ "epoch": 0.010743061772605193,
78
+ "grad_norm": 7.439660012763994,
79
+ "learning_rate": 1.0000000000000002e-06,
80
+ "loss": 1.2006,
81
+ "step": 9
82
+ },
83
+ {
84
+ "epoch": 0.011936735302894658,
85
+ "grad_norm": 4.8095912529024405,
86
+ "learning_rate": 1.125e-06,
87
+ "loss": 1.2075,
88
+ "step": 10
89
+ },
90
+ {
91
+ "epoch": 0.013130408833184124,
92
+ "grad_norm": 3.891998890477489,
93
+ "learning_rate": 1.25e-06,
94
+ "loss": 1.148,
95
+ "step": 11
96
+ },
97
+ {
98
+ "epoch": 0.01432408236347359,
99
+ "grad_norm": 3.259994639596157,
100
+ "learning_rate": 1.3750000000000002e-06,
101
+ "loss": 1.1158,
102
+ "step": 12
103
+ },
104
+ {
105
+ "epoch": 0.015517755893763056,
106
+ "grad_norm": 4.11327402736425,
107
+ "learning_rate": 1.5e-06,
108
+ "loss": 1.1558,
109
+ "step": 13
110
+ },
111
+ {
112
+ "epoch": 0.016711429424052522,
113
+ "grad_norm": 5.241297644735645,
114
+ "learning_rate": 1.6250000000000001e-06,
115
+ "loss": 1.112,
116
+ "step": 14
117
+ },
118
+ {
119
+ "epoch": 0.017905102954341987,
120
+ "grad_norm": 4.83489746805021,
121
+ "learning_rate": 1.75e-06,
122
+ "loss": 1.059,
123
+ "step": 15
124
+ },
125
+ {
126
+ "epoch": 0.019098776484631454,
127
+ "grad_norm": 4.926431898693722,
128
+ "learning_rate": 1.8750000000000003e-06,
129
+ "loss": 1.2208,
130
+ "step": 16
131
+ },
132
+ {
133
+ "epoch": 0.02029245001492092,
134
+ "grad_norm": 3.8781961339772217,
135
+ "learning_rate": 2.0000000000000003e-06,
136
+ "loss": 1.1505,
137
+ "step": 17
138
+ },
139
+ {
140
+ "epoch": 0.021486123545210387,
141
+ "grad_norm": 2.543621117165087,
142
+ "learning_rate": 2.125e-06,
143
+ "loss": 1.1362,
144
+ "step": 18
145
+ },
146
+ {
147
+ "epoch": 0.02267979707549985,
148
+ "grad_norm": 2.1009860488188368,
149
+ "learning_rate": 2.25e-06,
150
+ "loss": 1.0701,
151
+ "step": 19
152
+ },
153
+ {
154
+ "epoch": 0.023873470605789315,
155
+ "grad_norm": 1.8927575511303283,
156
+ "learning_rate": 2.375e-06,
157
+ "loss": 1.0381,
158
+ "step": 20
159
+ },
160
+ {
161
+ "epoch": 0.025067144136078783,
162
+ "grad_norm": 1.7163748223593238,
163
+ "learning_rate": 2.5e-06,
164
+ "loss": 1.0771,
165
+ "step": 21
166
+ },
167
+ {
168
+ "epoch": 0.026260817666368248,
169
+ "grad_norm": 1.4814021734613099,
170
+ "learning_rate": 2.6250000000000003e-06,
171
+ "loss": 1.06,
172
+ "step": 22
173
+ },
174
+ {
175
+ "epoch": 0.027454491196657715,
176
+ "grad_norm": 1.292017848420993,
177
+ "learning_rate": 2.7500000000000004e-06,
178
+ "loss": 1.0334,
179
+ "step": 23
180
+ },
181
+ {
182
+ "epoch": 0.02864816472694718,
183
+ "grad_norm": 1.2760011449446051,
184
+ "learning_rate": 2.875e-06,
185
+ "loss": 0.9496,
186
+ "step": 24
187
+ },
188
+ {
189
+ "epoch": 0.029841838257236644,
190
+ "grad_norm": 1.5611299892461064,
191
+ "learning_rate": 3e-06,
192
+ "loss": 1.0631,
193
+ "step": 25
194
+ },
195
+ {
196
+ "epoch": 0.031035511787526112,
197
+ "grad_norm": 1.5071399385518096,
198
+ "learning_rate": 3.125e-06,
199
+ "loss": 1.0503,
200
+ "step": 26
201
+ },
202
+ {
203
+ "epoch": 0.03222918531781558,
204
+ "grad_norm": 1.4011246881564738,
205
+ "learning_rate": 3.2500000000000002e-06,
206
+ "loss": 0.9864,
207
+ "step": 27
208
+ },
209
+ {
210
+ "epoch": 0.033422858848105044,
211
+ "grad_norm": 1.3575328401932647,
212
+ "learning_rate": 3.3750000000000003e-06,
213
+ "loss": 1.037,
214
+ "step": 28
215
+ },
216
+ {
217
+ "epoch": 0.03461653237839451,
218
+ "grad_norm": 1.347922922109771,
219
+ "learning_rate": 3.5e-06,
220
+ "loss": 1.0007,
221
+ "step": 29
222
+ },
223
+ {
224
+ "epoch": 0.03581020590868397,
225
+ "grad_norm": 1.3032805970679422,
226
+ "learning_rate": 3.625e-06,
227
+ "loss": 1.0191,
228
+ "step": 30
229
+ },
230
+ {
231
+ "epoch": 0.03700387943897344,
232
+ "grad_norm": 1.2401790084146032,
233
+ "learning_rate": 3.7500000000000005e-06,
234
+ "loss": 0.9624,
235
+ "step": 31
236
+ },
237
+ {
238
+ "epoch": 0.03819755296926291,
239
+ "grad_norm": 1.2794209814081245,
240
+ "learning_rate": 3.875e-06,
241
+ "loss": 1.0257,
242
+ "step": 32
243
+ },
244
+ {
245
+ "epoch": 0.03939122649955237,
246
+ "grad_norm": 1.4446359015526915,
247
+ "learning_rate": 4.000000000000001e-06,
248
+ "loss": 1.0076,
249
+ "step": 33
250
+ },
251
+ {
252
+ "epoch": 0.04058490002984184,
253
+ "grad_norm": 1.3110810974574507,
254
+ "learning_rate": 4.125e-06,
255
+ "loss": 0.9771,
256
+ "step": 34
257
+ },
258
+ {
259
+ "epoch": 0.0417785735601313,
260
+ "grad_norm": 1.2219402025041668,
261
+ "learning_rate": 4.25e-06,
262
+ "loss": 0.9595,
263
+ "step": 35
264
+ },
265
+ {
266
+ "epoch": 0.04297224709042077,
267
+ "grad_norm": 1.2409147982217572,
268
+ "learning_rate": 4.3750000000000005e-06,
269
+ "loss": 0.9904,
270
+ "step": 36
271
+ },
272
+ {
273
+ "epoch": 0.04416592062071024,
274
+ "grad_norm": 1.3508715258107795,
275
+ "learning_rate": 4.5e-06,
276
+ "loss": 0.9698,
277
+ "step": 37
278
+ },
279
+ {
280
+ "epoch": 0.0453595941509997,
281
+ "grad_norm": 1.1392387957219212,
282
+ "learning_rate": 4.625000000000001e-06,
283
+ "loss": 0.9517,
284
+ "step": 38
285
+ },
286
+ {
287
+ "epoch": 0.046553267681289166,
288
+ "grad_norm": 1.175657348183339,
289
+ "learning_rate": 4.75e-06,
290
+ "loss": 0.9738,
291
+ "step": 39
292
+ },
293
+ {
294
+ "epoch": 0.04774694121157863,
295
+ "grad_norm": 1.29451100293097,
296
+ "learning_rate": 4.875e-06,
297
+ "loss": 1.015,
298
+ "step": 40
299
+ },
300
+ {
301
+ "epoch": 0.0489406147418681,
302
+ "grad_norm": 1.0777298510039686,
303
+ "learning_rate": 5e-06,
304
+ "loss": 0.9782,
305
+ "step": 41
306
+ },
307
+ {
308
+ "epoch": 0.050134288272157566,
309
+ "grad_norm": 0.9876049508091342,
310
+ "learning_rate": 4.999995379323966e-06,
311
+ "loss": 0.8986,
312
+ "step": 42
313
+ },
314
+ {
315
+ "epoch": 0.05132796180244703,
316
+ "grad_norm": 1.099457410326718,
317
+ "learning_rate": 4.999981517312945e-06,
318
+ "loss": 0.9397,
319
+ "step": 43
320
+ },
321
+ {
322
+ "epoch": 0.052521635332736495,
323
+ "grad_norm": 1.2100440309282297,
324
+ "learning_rate": 4.999958414018178e-06,
325
+ "loss": 0.9756,
326
+ "step": 44
327
+ },
328
+ {
329
+ "epoch": 0.05371530886302596,
330
+ "grad_norm": 1.1305259086159474,
331
+ "learning_rate": 4.999926069525066e-06,
332
+ "loss": 0.9714,
333
+ "step": 45
334
+ },
335
+ {
336
+ "epoch": 0.05490898239331543,
337
+ "grad_norm": 1.0989207268618686,
338
+ "learning_rate": 4.9998844839531746e-06,
339
+ "loss": 0.9344,
340
+ "step": 46
341
+ },
342
+ {
343
+ "epoch": 0.056102655923604895,
344
+ "grad_norm": 1.1398334118236317,
345
+ "learning_rate": 4.999833657456224e-06,
346
+ "loss": 0.9495,
347
+ "step": 47
348
+ },
349
+ {
350
+ "epoch": 0.05729632945389436,
351
+ "grad_norm": 1.1293435303709396,
352
+ "learning_rate": 4.999773590222098e-06,
353
+ "loss": 0.9222,
354
+ "step": 48
355
+ },
356
+ {
357
+ "epoch": 0.058490002984183824,
358
+ "grad_norm": 1.017087531351413,
359
+ "learning_rate": 4.9997042824728365e-06,
360
+ "loss": 0.8748,
361
+ "step": 49
362
+ },
363
+ {
364
+ "epoch": 0.05968367651447329,
365
+ "grad_norm": 1.1258466933903977,
366
+ "learning_rate": 4.999625734464639e-06,
367
+ "loss": 0.9609,
368
+ "step": 50
369
+ },
370
+ {
371
+ "epoch": 0.06087735004476276,
372
+ "grad_norm": 1.0209775313724632,
373
+ "learning_rate": 4.999537946487862e-06,
374
+ "loss": 0.9179,
375
+ "step": 51
376
+ },
377
+ {
378
+ "epoch": 0.062071023575052224,
379
+ "grad_norm": 1.166110386790191,
380
+ "learning_rate": 4.999440918867016e-06,
381
+ "loss": 0.8819,
382
+ "step": 52
383
+ },
384
+ {
385
+ "epoch": 0.06326469710534169,
386
+ "grad_norm": 1.1351149008586316,
387
+ "learning_rate": 4.9993346519607685e-06,
388
+ "loss": 0.8704,
389
+ "step": 53
390
+ },
391
+ {
392
+ "epoch": 0.06445837063563116,
393
+ "grad_norm": 1.2014927628973993,
394
+ "learning_rate": 4.9992191461619384e-06,
395
+ "loss": 0.8879,
396
+ "step": 54
397
+ },
398
+ {
399
+ "epoch": 0.06565204416592062,
400
+ "grad_norm": 1.2912944317710835,
401
+ "learning_rate": 4.9990944018975e-06,
402
+ "loss": 0.9883,
403
+ "step": 55
404
+ },
405
+ {
406
+ "epoch": 0.06684571769621009,
407
+ "grad_norm": 1.0990357747364996,
408
+ "learning_rate": 4.998960419628573e-06,
409
+ "loss": 0.8552,
410
+ "step": 56
411
+ },
412
+ {
413
+ "epoch": 0.06803939122649955,
414
+ "grad_norm": 1.1749242302529268,
415
+ "learning_rate": 4.99881719985043e-06,
416
+ "loss": 0.9289,
417
+ "step": 57
418
+ },
419
+ {
420
+ "epoch": 0.06923306475678902,
421
+ "grad_norm": 1.1416138380576308,
422
+ "learning_rate": 4.998664743092487e-06,
423
+ "loss": 0.8816,
424
+ "step": 58
425
+ },
426
+ {
427
+ "epoch": 0.07042673828707849,
428
+ "grad_norm": 1.0989269231311176,
429
+ "learning_rate": 4.998503049918308e-06,
430
+ "loss": 0.914,
431
+ "step": 59
432
+ },
433
+ {
434
+ "epoch": 0.07162041181736795,
435
+ "grad_norm": 1.061068993065825,
436
+ "learning_rate": 4.998332120925598e-06,
437
+ "loss": 0.884,
438
+ "step": 60
439
+ },
440
+ {
441
+ "epoch": 0.07281408534765742,
442
+ "grad_norm": 1.1286732153102872,
443
+ "learning_rate": 4.998151956746204e-06,
444
+ "loss": 0.8633,
445
+ "step": 61
446
+ },
447
+ {
448
+ "epoch": 0.07400775887794687,
449
+ "grad_norm": 1.1770687865566731,
450
+ "learning_rate": 4.997962558046109e-06,
451
+ "loss": 0.9322,
452
+ "step": 62
453
+ },
454
+ {
455
+ "epoch": 0.07520143240823635,
456
+ "grad_norm": 1.0614639945429885,
457
+ "learning_rate": 4.997763925525433e-06,
458
+ "loss": 0.8853,
459
+ "step": 63
460
+ },
461
+ {
462
+ "epoch": 0.07639510593852582,
463
+ "grad_norm": 1.0831541750852,
464
+ "learning_rate": 4.99755605991843e-06,
465
+ "loss": 0.8573,
466
+ "step": 64
467
+ },
468
+ {
469
+ "epoch": 0.07758877946881527,
470
+ "grad_norm": 1.0506713962732483,
471
+ "learning_rate": 4.997338961993483e-06,
472
+ "loss": 0.8369,
473
+ "step": 65
474
+ },
475
+ {
476
+ "epoch": 0.07878245299910475,
477
+ "grad_norm": 1.0962691367409116,
478
+ "learning_rate": 4.997112632553104e-06,
479
+ "loss": 0.9228,
480
+ "step": 66
481
+ },
482
+ {
483
+ "epoch": 0.07997612652939422,
484
+ "grad_norm": 1.0345560521905983,
485
+ "learning_rate": 4.9968770724339284e-06,
486
+ "loss": 0.8476,
487
+ "step": 67
488
+ },
489
+ {
490
+ "epoch": 0.08116980005968367,
491
+ "grad_norm": 1.0969300499561807,
492
+ "learning_rate": 4.996632282506714e-06,
493
+ "loss": 0.8793,
494
+ "step": 68
495
+ },
496
+ {
497
+ "epoch": 0.08236347358997315,
498
+ "grad_norm": 1.0777700101385033,
499
+ "learning_rate": 4.996378263676337e-06,
500
+ "loss": 0.8464,
501
+ "step": 69
502
+ },
503
+ {
504
+ "epoch": 0.0835571471202626,
505
+ "grad_norm": 1.0760968526682098,
506
+ "learning_rate": 4.996115016881788e-06,
507
+ "loss": 0.8998,
508
+ "step": 70
509
+ },
510
+ {
511
+ "epoch": 0.08475082065055208,
512
+ "grad_norm": 1.1678040527069657,
513
+ "learning_rate": 4.995842543096171e-06,
514
+ "loss": 0.9122,
515
+ "step": 71
516
+ },
517
+ {
518
+ "epoch": 0.08594449418084155,
519
+ "grad_norm": 1.07731981266689,
520
+ "learning_rate": 4.9955608433266934e-06,
521
+ "loss": 0.8386,
522
+ "step": 72
523
+ },
524
+ {
525
+ "epoch": 0.087138167711131,
526
+ "grad_norm": 1.297888828978233,
527
+ "learning_rate": 4.995269918614672e-06,
528
+ "loss": 0.8945,
529
+ "step": 73
530
+ },
531
+ {
532
+ "epoch": 0.08833184124142048,
533
+ "grad_norm": 1.1408935228222659,
534
+ "learning_rate": 4.994969770035523e-06,
535
+ "loss": 0.8548,
536
+ "step": 74
537
+ },
538
+ {
539
+ "epoch": 0.08952551477170993,
540
+ "grad_norm": 1.0573172294992146,
541
+ "learning_rate": 4.994660398698755e-06,
542
+ "loss": 0.8896,
543
+ "step": 75
544
+ },
545
+ {
546
+ "epoch": 0.0907191883019994,
547
+ "grad_norm": 1.1870512065956376,
548
+ "learning_rate": 4.994341805747974e-06,
549
+ "loss": 0.8428,
550
+ "step": 76
551
+ },
552
+ {
553
+ "epoch": 0.09191286183228888,
554
+ "grad_norm": 1.1767792325463364,
555
+ "learning_rate": 4.99401399236087e-06,
556
+ "loss": 0.8854,
557
+ "step": 77
558
+ },
559
+ {
560
+ "epoch": 0.09310653536257833,
561
+ "grad_norm": 1.1733632166017016,
562
+ "learning_rate": 4.993676959749221e-06,
563
+ "loss": 0.8359,
564
+ "step": 78
565
+ },
566
+ {
567
+ "epoch": 0.0943002088928678,
568
+ "grad_norm": 1.168122428967752,
569
+ "learning_rate": 4.993330709158879e-06,
570
+ "loss": 0.9055,
571
+ "step": 79
572
+ },
573
+ {
574
+ "epoch": 0.09549388242315726,
575
+ "grad_norm": 1.1161660017475175,
576
+ "learning_rate": 4.992975241869776e-06,
577
+ "loss": 0.8217,
578
+ "step": 80
579
+ },
580
+ {
581
+ "epoch": 0.09668755595344673,
582
+ "grad_norm": 1.2226228718020973,
583
+ "learning_rate": 4.99261055919591e-06,
584
+ "loss": 0.8574,
585
+ "step": 81
586
+ },
587
+ {
588
+ "epoch": 0.0978812294837362,
589
+ "grad_norm": 1.1584273725751542,
590
+ "learning_rate": 4.992236662485346e-06,
591
+ "loss": 0.8365,
592
+ "step": 82
593
+ },
594
+ {
595
+ "epoch": 0.09907490301402566,
596
+ "grad_norm": 1.1636195971387586,
597
+ "learning_rate": 4.9918535531202075e-06,
598
+ "loss": 0.8985,
599
+ "step": 83
600
+ },
601
+ {
602
+ "epoch": 0.10026857654431513,
603
+ "grad_norm": 1.2855272207779183,
604
+ "learning_rate": 4.991461232516675e-06,
605
+ "loss": 0.8305,
606
+ "step": 84
607
+ },
608
+ {
609
+ "epoch": 0.10146225007460459,
610
+ "grad_norm": 1.1308363940389612,
611
+ "learning_rate": 4.991059702124976e-06,
612
+ "loss": 0.819,
613
+ "step": 85
614
+ },
615
+ {
616
+ "epoch": 0.10265592360489406,
617
+ "grad_norm": 1.1543993257508203,
618
+ "learning_rate": 4.990648963429387e-06,
619
+ "loss": 0.8702,
620
+ "step": 86
621
+ },
622
+ {
623
+ "epoch": 0.10384959713518353,
624
+ "grad_norm": 1.349313529314071,
625
+ "learning_rate": 4.990229017948217e-06,
626
+ "loss": 0.8519,
627
+ "step": 87
628
+ },
629
+ {
630
+ "epoch": 0.10504327066547299,
631
+ "grad_norm": 1.09965470628552,
632
+ "learning_rate": 4.989799867233815e-06,
633
+ "loss": 0.8627,
634
+ "step": 88
635
+ },
636
+ {
637
+ "epoch": 0.10623694419576246,
638
+ "grad_norm": 1.1370315208165804,
639
+ "learning_rate": 4.98936151287255e-06,
640
+ "loss": 0.8496,
641
+ "step": 89
642
+ },
643
+ {
644
+ "epoch": 0.10743061772605192,
645
+ "grad_norm": 1.1872879419869933,
646
+ "learning_rate": 4.98891395648482e-06,
647
+ "loss": 0.8343,
648
+ "step": 90
649
+ },
650
+ {
651
+ "epoch": 0.10862429125634139,
652
+ "grad_norm": 1.1061958932042313,
653
+ "learning_rate": 4.988457199725034e-06,
654
+ "loss": 0.8297,
655
+ "step": 91
656
+ },
657
+ {
658
+ "epoch": 0.10981796478663086,
659
+ "grad_norm": 1.3027114198402223,
660
+ "learning_rate": 4.9879912442816126e-06,
661
+ "loss": 0.8866,
662
+ "step": 92
663
+ },
664
+ {
665
+ "epoch": 0.11101163831692032,
666
+ "grad_norm": 1.314238053408892,
667
+ "learning_rate": 4.987516091876979e-06,
668
+ "loss": 0.8491,
669
+ "step": 93
670
+ },
671
+ {
672
+ "epoch": 0.11220531184720979,
673
+ "grad_norm": 1.1979509083460977,
674
+ "learning_rate": 4.987031744267554e-06,
675
+ "loss": 0.8703,
676
+ "step": 94
677
+ },
678
+ {
679
+ "epoch": 0.11339898537749925,
680
+ "grad_norm": 1.234194872455364,
681
+ "learning_rate": 4.986538203243748e-06,
682
+ "loss": 0.8446,
683
+ "step": 95
684
+ },
685
+ {
686
+ "epoch": 0.11459265890778872,
687
+ "grad_norm": 1.0957514650184408,
688
+ "learning_rate": 4.986035470629955e-06,
689
+ "loss": 0.8096,
690
+ "step": 96
691
+ },
692
+ {
693
+ "epoch": 0.11578633243807819,
694
+ "grad_norm": 1.1234554432924009,
695
+ "learning_rate": 4.9855235482845466e-06,
696
+ "loss": 0.8044,
697
+ "step": 97
698
+ },
699
+ {
700
+ "epoch": 0.11698000596836765,
701
+ "grad_norm": 1.049189288237806,
702
+ "learning_rate": 4.9850024380998655e-06,
703
+ "loss": 0.8193,
704
+ "step": 98
705
+ },
706
+ {
707
+ "epoch": 0.11817367949865712,
708
+ "grad_norm": 1.0985847135524742,
709
+ "learning_rate": 4.984472142002216e-06,
710
+ "loss": 0.8372,
711
+ "step": 99
712
+ },
713
+ {
714
+ "epoch": 0.11936735302894658,
715
+ "grad_norm": 1.1124501715562143,
716
+ "learning_rate": 4.983932661951859e-06,
717
+ "loss": 0.8114,
718
+ "step": 100
719
+ },
720
+ {
721
+ "epoch": 0.12056102655923605,
722
+ "grad_norm": 1.1094171803008324,
723
+ "learning_rate": 4.9833839999430065e-06,
724
+ "loss": 0.8427,
725
+ "step": 101
726
+ },
727
+ {
728
+ "epoch": 0.12175470008952552,
729
+ "grad_norm": 1.1042304519119917,
730
+ "learning_rate": 4.982826158003808e-06,
731
+ "loss": 0.8536,
732
+ "step": 102
733
+ },
734
+ {
735
+ "epoch": 0.12294837361981498,
736
+ "grad_norm": 1.09018073189874,
737
+ "learning_rate": 4.982259138196349e-06,
738
+ "loss": 0.8446,
739
+ "step": 103
740
+ },
741
+ {
742
+ "epoch": 0.12414204715010445,
743
+ "grad_norm": 1.1105099719277685,
744
+ "learning_rate": 4.981682942616643e-06,
745
+ "loss": 0.8256,
746
+ "step": 104
747
+ },
748
+ {
749
+ "epoch": 0.12533572068039392,
750
+ "grad_norm": 1.2208595723131699,
751
+ "learning_rate": 4.981097573394618e-06,
752
+ "loss": 0.8081,
753
+ "step": 105
754
+ },
755
+ {
756
+ "epoch": 0.12652939421068338,
757
+ "grad_norm": 1.0866825223378307,
758
+ "learning_rate": 4.980503032694118e-06,
759
+ "loss": 0.7415,
760
+ "step": 106
761
+ },
762
+ {
763
+ "epoch": 0.12772306774097283,
764
+ "grad_norm": 1.2365667742638329,
765
+ "learning_rate": 4.979899322712885e-06,
766
+ "loss": 0.8064,
767
+ "step": 107
768
+ },
769
+ {
770
+ "epoch": 0.12891674127126232,
771
+ "grad_norm": 1.2028095795753095,
772
+ "learning_rate": 4.979286445682558e-06,
773
+ "loss": 0.8153,
774
+ "step": 108
775
+ },
776
+ {
777
+ "epoch": 0.13011041480155178,
778
+ "grad_norm": 1.2054961617763407,
779
+ "learning_rate": 4.978664403868664e-06,
780
+ "loss": 0.8302,
781
+ "step": 109
782
+ },
783
+ {
784
+ "epoch": 0.13130408833184123,
785
+ "grad_norm": 1.2460181051686399,
786
+ "learning_rate": 4.978033199570602e-06,
787
+ "loss": 0.8538,
788
+ "step": 110
789
+ },
790
+ {
791
+ "epoch": 0.13249776186213072,
792
+ "grad_norm": 1.218146180548586,
793
+ "learning_rate": 4.977392835121649e-06,
794
+ "loss": 0.8437,
795
+ "step": 111
796
+ },
797
+ {
798
+ "epoch": 0.13369143539242018,
799
+ "grad_norm": 1.1112170995013697,
800
+ "learning_rate": 4.976743312888934e-06,
801
+ "loss": 0.7917,
802
+ "step": 112
803
+ },
804
+ {
805
+ "epoch": 0.13488510892270963,
806
+ "grad_norm": 1.2250435472005108,
807
+ "learning_rate": 4.976084635273445e-06,
808
+ "loss": 0.8517,
809
+ "step": 113
810
+ },
811
+ {
812
+ "epoch": 0.1360787824529991,
813
+ "grad_norm": 1.248560391747664,
814
+ "learning_rate": 4.9754168047100095e-06,
815
+ "loss": 0.8364,
816
+ "step": 114
817
+ },
818
+ {
819
+ "epoch": 0.13727245598328858,
820
+ "grad_norm": 1.4057157658992752,
821
+ "learning_rate": 4.974739823667292e-06,
822
+ "loss": 0.8428,
823
+ "step": 115
824
+ },
825
+ {
826
+ "epoch": 0.13846612951357803,
827
+ "grad_norm": 1.232101520188445,
828
+ "learning_rate": 4.974053694647779e-06,
829
+ "loss": 0.8019,
830
+ "step": 116
831
+ },
832
+ {
833
+ "epoch": 0.1396598030438675,
834
+ "grad_norm": 1.0691739882049396,
835
+ "learning_rate": 4.973358420187776e-06,
836
+ "loss": 0.7876,
837
+ "step": 117
838
+ },
839
+ {
840
+ "epoch": 0.14085347657415698,
841
+ "grad_norm": 1.0990717855699714,
842
+ "learning_rate": 4.972654002857392e-06,
843
+ "loss": 0.8062,
844
+ "step": 118
845
+ },
846
+ {
847
+ "epoch": 0.14204715010444643,
848
+ "grad_norm": 1.1914019305541128,
849
+ "learning_rate": 4.9719404452605345e-06,
850
+ "loss": 0.824,
851
+ "step": 119
852
+ },
853
+ {
854
+ "epoch": 0.1432408236347359,
855
+ "grad_norm": 1.248534127601636,
856
+ "learning_rate": 4.971217750034899e-06,
857
+ "loss": 0.8595,
858
+ "step": 120
859
+ },
860
+ {
861
+ "epoch": 0.14443449716502538,
862
+ "grad_norm": 1.1363883709126494,
863
+ "learning_rate": 4.970485919851958e-06,
864
+ "loss": 0.7774,
865
+ "step": 121
866
+ },
867
+ {
868
+ "epoch": 0.14562817069531483,
869
+ "grad_norm": 1.192101050796341,
870
+ "learning_rate": 4.969744957416951e-06,
871
+ "loss": 0.7547,
872
+ "step": 122
873
+ },
874
+ {
875
+ "epoch": 0.1468218442256043,
876
+ "grad_norm": 1.10790877586813,
877
+ "learning_rate": 4.968994865468876e-06,
878
+ "loss": 0.8087,
879
+ "step": 123
880
+ },
881
+ {
882
+ "epoch": 0.14801551775589375,
883
+ "grad_norm": 1.5631572663942805,
884
+ "learning_rate": 4.968235646780479e-06,
885
+ "loss": 0.8512,
886
+ "step": 124
887
+ },
888
+ {
889
+ "epoch": 0.14920919128618323,
890
+ "grad_norm": 1.2566894341004975,
891
+ "learning_rate": 4.967467304158242e-06,
892
+ "loss": 0.8073,
893
+ "step": 125
894
+ },
895
+ {
896
+ "epoch": 0.1504028648164727,
897
+ "grad_norm": 1.2197632966265681,
898
+ "learning_rate": 4.9666898404423755e-06,
899
+ "loss": 0.7886,
900
+ "step": 126
901
+ },
902
+ {
903
+ "epoch": 0.15159653834676215,
904
+ "grad_norm": 1.1342051167019487,
905
+ "learning_rate": 4.965903258506806e-06,
906
+ "loss": 0.795,
907
+ "step": 127
908
+ },
909
+ {
910
+ "epoch": 0.15279021187705163,
911
+ "grad_norm": 1.109864145510677,
912
+ "learning_rate": 4.965107561259166e-06,
913
+ "loss": 0.8079,
914
+ "step": 128
915
+ },
916
+ {
917
+ "epoch": 0.1539838854073411,
918
+ "grad_norm": 1.1953603077930386,
919
+ "learning_rate": 4.964302751640782e-06,
920
+ "loss": 0.7621,
921
+ "step": 129
922
+ },
923
+ {
924
+ "epoch": 0.15517755893763055,
925
+ "grad_norm": 1.1382695927374318,
926
+ "learning_rate": 4.9634888326266665e-06,
927
+ "loss": 0.7612,
928
+ "step": 130
929
+ },
930
+ {
931
+ "epoch": 0.15637123246792003,
932
+ "grad_norm": 1.1079042802908126,
933
+ "learning_rate": 4.962665807225503e-06,
934
+ "loss": 0.7882,
935
+ "step": 131
936
+ },
937
+ {
938
+ "epoch": 0.1575649059982095,
939
+ "grad_norm": 1.1881329570436796,
940
+ "learning_rate": 4.961833678479639e-06,
941
+ "loss": 0.7843,
942
+ "step": 132
943
+ },
944
+ {
945
+ "epoch": 0.15875857952849895,
946
+ "grad_norm": 1.219136491476124,
947
+ "learning_rate": 4.960992449465073e-06,
948
+ "loss": 0.7609,
949
+ "step": 133
950
+ },
951
+ {
952
+ "epoch": 0.15995225305878844,
953
+ "grad_norm": 1.1300470130912046,
954
+ "learning_rate": 4.9601421232914435e-06,
955
+ "loss": 0.7713,
956
+ "step": 134
957
+ },
958
+ {
959
+ "epoch": 0.1611459265890779,
960
+ "grad_norm": 1.2443157752142076,
961
+ "learning_rate": 4.959282703102013e-06,
962
+ "loss": 0.7944,
963
+ "step": 135
964
+ },
965
+ {
966
+ "epoch": 0.16233960011936735,
967
+ "grad_norm": 1.2537008022769138,
968
+ "learning_rate": 4.958414192073665e-06,
969
+ "loss": 0.785,
970
+ "step": 136
971
+ },
972
+ {
973
+ "epoch": 0.1635332736496568,
974
+ "grad_norm": 1.1669056420133548,
975
+ "learning_rate": 4.957536593416887e-06,
976
+ "loss": 0.7743,
977
+ "step": 137
978
+ },
979
+ {
980
+ "epoch": 0.1647269471799463,
981
+ "grad_norm": 1.3588053892144505,
982
+ "learning_rate": 4.956649910375757e-06,
983
+ "loss": 0.7943,
984
+ "step": 138
985
+ },
986
+ {
987
+ "epoch": 0.16592062071023575,
988
+ "grad_norm": 1.4775062989961492,
989
+ "learning_rate": 4.955754146227934e-06,
990
+ "loss": 0.761,
991
+ "step": 139
992
+ },
993
+ {
994
+ "epoch": 0.1671142942405252,
995
+ "grad_norm": 1.3286915838523645,
996
+ "learning_rate": 4.954849304284649e-06,
997
+ "loss": 0.8195,
998
+ "step": 140
999
+ },
1000
+ {
1001
+ "epoch": 0.1683079677708147,
1002
+ "grad_norm": 1.698625154491963,
1003
+ "learning_rate": 4.9539353878906855e-06,
1004
+ "loss": 0.7483,
1005
+ "step": 141
1006
+ },
1007
+ {
1008
+ "epoch": 0.16950164130110415,
1009
+ "grad_norm": 1.5149991463502988,
1010
+ "learning_rate": 4.953012400424373e-06,
1011
+ "loss": 0.7382,
1012
+ "step": 142
1013
+ },
1014
+ {
1015
+ "epoch": 0.1706953148313936,
1016
+ "grad_norm": 1.8018380897847472,
1017
+ "learning_rate": 4.952080345297573e-06,
1018
+ "loss": 0.8065,
1019
+ "step": 143
1020
+ },
1021
+ {
1022
+ "epoch": 0.1718889883616831,
1023
+ "grad_norm": 1.974668240659228,
1024
+ "learning_rate": 4.951139225955666e-06,
1025
+ "loss": 0.7603,
1026
+ "step": 144
1027
+ },
1028
+ {
1029
+ "epoch": 0.17308266189197255,
1030
+ "grad_norm": 1.3490501205848957,
1031
+ "learning_rate": 4.950189045877536e-06,
1032
+ "loss": 0.7718,
1033
+ "step": 145
1034
+ },
1035
+ {
1036
+ "epoch": 0.174276335422262,
1037
+ "grad_norm": 2.0029868054669704,
1038
+ "learning_rate": 4.9492298085755645e-06,
1039
+ "loss": 0.7727,
1040
+ "step": 146
1041
+ },
1042
+ {
1043
+ "epoch": 0.17547000895255147,
1044
+ "grad_norm": 1.2543801528507452,
1045
+ "learning_rate": 4.94826151759561e-06,
1046
+ "loss": 0.8365,
1047
+ "step": 147
1048
+ },
1049
+ {
1050
+ "epoch": 0.17666368248284095,
1051
+ "grad_norm": 1.3454571859146043,
1052
+ "learning_rate": 4.9472841765169995e-06,
1053
+ "loss": 0.8399,
1054
+ "step": 148
1055
+ },
1056
+ {
1057
+ "epoch": 0.1778573560131304,
1058
+ "grad_norm": 1.104388470919368,
1059
+ "learning_rate": 4.946297788952515e-06,
1060
+ "loss": 0.7765,
1061
+ "step": 149
1062
+ },
1063
+ {
1064
+ "epoch": 0.17905102954341987,
1065
+ "grad_norm": 1.2845752585530912,
1066
+ "learning_rate": 4.945302358548379e-06,
1067
+ "loss": 0.8399,
1068
+ "step": 150
1069
+ },
1070
+ {
1071
+ "epoch": 0.18024470307370935,
1072
+ "grad_norm": 1.38666460741284,
1073
+ "learning_rate": 4.944297888984239e-06,
1074
+ "loss": 0.8114,
1075
+ "step": 151
1076
+ },
1077
+ {
1078
+ "epoch": 0.1814383766039988,
1079
+ "grad_norm": 1.294939717819466,
1080
+ "learning_rate": 4.943284383973159e-06,
1081
+ "loss": 0.7287,
1082
+ "step": 152
1083
+ },
1084
+ {
1085
+ "epoch": 0.18263205013428827,
1086
+ "grad_norm": 1.0350534121793518,
1087
+ "learning_rate": 4.9422618472616005e-06,
1088
+ "loss": 0.7641,
1089
+ "step": 153
1090
+ },
1091
+ {
1092
+ "epoch": 0.18382572366457775,
1093
+ "grad_norm": 1.2604270595475044,
1094
+ "learning_rate": 4.941230282629413e-06,
1095
+ "loss": 0.856,
1096
+ "step": 154
1097
+ },
1098
+ {
1099
+ "epoch": 0.1850193971948672,
1100
+ "grad_norm": 1.4459296581352967,
1101
+ "learning_rate": 4.940189693889819e-06,
1102
+ "loss": 0.8014,
1103
+ "step": 155
1104
+ },
1105
+ {
1106
+ "epoch": 0.18621307072515667,
1107
+ "grad_norm": 1.4006999891427907,
1108
+ "learning_rate": 4.939140084889393e-06,
1109
+ "loss": 0.7809,
1110
+ "step": 156
1111
+ },
1112
+ {
1113
+ "epoch": 0.18740674425544612,
1114
+ "grad_norm": 1.1961002337638094,
1115
+ "learning_rate": 4.938081459508061e-06,
1116
+ "loss": 0.6918,
1117
+ "step": 157
1118
+ },
1119
+ {
1120
+ "epoch": 0.1886004177857356,
1121
+ "grad_norm": 2.311534488689422,
1122
+ "learning_rate": 4.937013821659074e-06,
1123
+ "loss": 0.7907,
1124
+ "step": 158
1125
+ },
1126
+ {
1127
+ "epoch": 0.18979409131602507,
1128
+ "grad_norm": 1.2653651062834335,
1129
+ "learning_rate": 4.935937175288999e-06,
1130
+ "loss": 0.7393,
1131
+ "step": 159
1132
+ },
1133
+ {
1134
+ "epoch": 0.19098776484631452,
1135
+ "grad_norm": 1.2203924343875887,
1136
+ "learning_rate": 4.934851524377703e-06,
1137
+ "loss": 0.779,
1138
+ "step": 160
1139
+ },
1140
+ {
1141
+ "epoch": 0.192181438376604,
1142
+ "grad_norm": 1.4196639804720872,
1143
+ "learning_rate": 4.933756872938338e-06,
1144
+ "loss": 0.7693,
1145
+ "step": 161
1146
+ },
1147
+ {
1148
+ "epoch": 0.19337511190689347,
1149
+ "grad_norm": 1.5375267721740755,
1150
+ "learning_rate": 4.93265322501733e-06,
1151
+ "loss": 0.7428,
1152
+ "step": 162
1153
+ },
1154
+ {
1155
+ "epoch": 0.19456878543718292,
1156
+ "grad_norm": 1.1285713164450155,
1157
+ "learning_rate": 4.931540584694356e-06,
1158
+ "loss": 0.7569,
1159
+ "step": 163
1160
+ },
1161
+ {
1162
+ "epoch": 0.1957624589674724,
1163
+ "grad_norm": 1.5604293357086574,
1164
+ "learning_rate": 4.930418956082339e-06,
1165
+ "loss": 0.8006,
1166
+ "step": 164
1167
+ },
1168
+ {
1169
+ "epoch": 0.19695613249776187,
1170
+ "grad_norm": 1.3070516179192826,
1171
+ "learning_rate": 4.929288343327423e-06,
1172
+ "loss": 0.7604,
1173
+ "step": 165
1174
+ },
1175
+ {
1176
+ "epoch": 0.19814980602805132,
1177
+ "grad_norm": 1.1644097946917475,
1178
+ "learning_rate": 4.928148750608965e-06,
1179
+ "loss": 0.775,
1180
+ "step": 166
1181
+ },
1182
+ {
1183
+ "epoch": 0.19934347955834078,
1184
+ "grad_norm": 1.482255753807923,
1185
+ "learning_rate": 4.927000182139516e-06,
1186
+ "loss": 0.716,
1187
+ "step": 167
1188
+ },
1189
+ {
1190
+ "epoch": 0.20053715308863027,
1191
+ "grad_norm": 1.3635195623605272,
1192
+ "learning_rate": 4.925842642164806e-06,
1193
+ "loss": 0.7361,
1194
+ "step": 168
1195
+ },
1196
+ {
1197
+ "epoch": 0.20173082661891972,
1198
+ "grad_norm": 1.1101114682804836,
1199
+ "learning_rate": 4.924676134963729e-06,
1200
+ "loss": 0.6757,
1201
+ "step": 169
1202
+ },
1203
+ {
1204
+ "epoch": 0.20292450014920918,
1205
+ "grad_norm": 2.3068740765877895,
1206
+ "learning_rate": 4.923500664848327e-06,
1207
+ "loss": 0.7764,
1208
+ "step": 170
1209
+ },
1210
+ {
1211
+ "epoch": 0.20411817367949867,
1212
+ "grad_norm": 1.5055501328011494,
1213
+ "learning_rate": 4.922316236163771e-06,
1214
+ "loss": 0.6933,
1215
+ "step": 171
1216
+ },
1217
+ {
1218
+ "epoch": 0.20531184720978812,
1219
+ "grad_norm": 1.2582812088169284,
1220
+ "learning_rate": 4.921122853288353e-06,
1221
+ "loss": 0.7629,
1222
+ "step": 172
1223
+ },
1224
+ {
1225
+ "epoch": 0.20650552074007758,
1226
+ "grad_norm": 1.2992244424010069,
1227
+ "learning_rate": 4.9199205206334595e-06,
1228
+ "loss": 0.7659,
1229
+ "step": 173
1230
+ },
1231
+ {
1232
+ "epoch": 0.20769919427036707,
1233
+ "grad_norm": 1.299795847544305,
1234
+ "learning_rate": 4.918709242643563e-06,
1235
+ "loss": 0.6963,
1236
+ "step": 174
1237
+ },
1238
+ {
1239
+ "epoch": 0.20889286780065652,
1240
+ "grad_norm": 1.469667567259723,
1241
+ "learning_rate": 4.917489023796202e-06,
1242
+ "loss": 0.71,
1243
+ "step": 175
1244
+ },
1245
+ {
1246
+ "epoch": 0.21008654133094598,
1247
+ "grad_norm": 1.2820417691715331,
1248
+ "learning_rate": 4.9162598686019655e-06,
1249
+ "loss": 0.7541,
1250
+ "step": 176
1251
+ },
1252
+ {
1253
+ "epoch": 0.21128021486123547,
1254
+ "grad_norm": 1.472385187997062,
1255
+ "learning_rate": 4.915021781604476e-06,
1256
+ "loss": 0.7827,
1257
+ "step": 177
1258
+ },
1259
+ {
1260
+ "epoch": 0.21247388839152492,
1261
+ "grad_norm": 1.5990993905513917,
1262
+ "learning_rate": 4.913774767380372e-06,
1263
+ "loss": 0.7331,
1264
+ "step": 178
1265
+ },
1266
+ {
1267
+ "epoch": 0.21366756192181438,
1268
+ "grad_norm": 1.3084227582090084,
1269
+ "learning_rate": 4.912518830539292e-06,
1270
+ "loss": 0.7344,
1271
+ "step": 179
1272
+ },
1273
+ {
1274
+ "epoch": 0.21486123545210384,
1275
+ "grad_norm": 1.2612182619687637,
1276
+ "learning_rate": 4.9112539757238594e-06,
1277
+ "loss": 0.7576,
1278
+ "step": 180
1279
+ },
1280
+ {
1281
+ "epoch": 0.21605490898239332,
1282
+ "grad_norm": 1.4927518252334036,
1283
+ "learning_rate": 4.909980207609661e-06,
1284
+ "loss": 0.7997,
1285
+ "step": 181
1286
+ },
1287
+ {
1288
+ "epoch": 0.21724858251268278,
1289
+ "grad_norm": 1.37544016331359,
1290
+ "learning_rate": 4.908697530905231e-06,
1291
+ "loss": 0.7331,
1292
+ "step": 182
1293
+ },
1294
+ {
1295
+ "epoch": 0.21844225604297224,
1296
+ "grad_norm": 1.2623947407294713,
1297
+ "learning_rate": 4.907405950352039e-06,
1298
+ "loss": 0.7672,
1299
+ "step": 183
1300
+ },
1301
+ {
1302
+ "epoch": 0.21963592957326172,
1303
+ "grad_norm": 1.3338183562733208,
1304
+ "learning_rate": 4.906105470724464e-06,
1305
+ "loss": 0.7652,
1306
+ "step": 184
1307
+ },
1308
+ {
1309
+ "epoch": 0.22082960310355118,
1310
+ "grad_norm": 1.3526700045070938,
1311
+ "learning_rate": 4.904796096829781e-06,
1312
+ "loss": 0.7627,
1313
+ "step": 185
1314
+ },
1315
+ {
1316
+ "epoch": 0.22202327663384064,
1317
+ "grad_norm": 1.296782122552344,
1318
+ "learning_rate": 4.903477833508145e-06,
1319
+ "loss": 0.7076,
1320
+ "step": 186
1321
+ },
1322
+ {
1323
+ "epoch": 0.22321695016413012,
1324
+ "grad_norm": 1.174967837710992,
1325
+ "learning_rate": 4.902150685632571e-06,
1326
+ "loss": 0.7471,
1327
+ "step": 187
1328
+ },
1329
+ {
1330
+ "epoch": 0.22441062369441958,
1331
+ "grad_norm": 1.2483337231732115,
1332
+ "learning_rate": 4.900814658108914e-06,
1333
+ "loss": 0.7849,
1334
+ "step": 188
1335
+ },
1336
+ {
1337
+ "epoch": 0.22560429722470904,
1338
+ "grad_norm": 1.2446901896593106,
1339
+ "learning_rate": 4.899469755875855e-06,
1340
+ "loss": 0.6872,
1341
+ "step": 189
1342
+ },
1343
+ {
1344
+ "epoch": 0.2267979707549985,
1345
+ "grad_norm": 1.4671891738307608,
1346
+ "learning_rate": 4.89811598390488e-06,
1347
+ "loss": 0.7305,
1348
+ "step": 190
1349
+ },
1350
+ {
1351
+ "epoch": 0.22799164428528798,
1352
+ "grad_norm": 1.2943348672718462,
1353
+ "learning_rate": 4.896753347200261e-06,
1354
+ "loss": 0.7107,
1355
+ "step": 191
1356
+ },
1357
+ {
1358
+ "epoch": 0.22918531781557744,
1359
+ "grad_norm": 1.5157144950189583,
1360
+ "learning_rate": 4.895381850799042e-06,
1361
+ "loss": 0.7293,
1362
+ "step": 192
1363
+ },
1364
+ {
1365
+ "epoch": 0.2303789913458669,
1366
+ "grad_norm": 1.115807759982719,
1367
+ "learning_rate": 4.894001499771015e-06,
1368
+ "loss": 0.7373,
1369
+ "step": 193
1370
+ },
1371
+ {
1372
+ "epoch": 0.23157266487615638,
1373
+ "grad_norm": 1.3481941616422346,
1374
+ "learning_rate": 4.892612299218704e-06,
1375
+ "loss": 0.7352,
1376
+ "step": 194
1377
+ },
1378
+ {
1379
+ "epoch": 0.23276633840644584,
1380
+ "grad_norm": 1.519744205896213,
1381
+ "learning_rate": 4.891214254277345e-06,
1382
+ "loss": 0.7576,
1383
+ "step": 195
1384
+ },
1385
+ {
1386
+ "epoch": 0.2339600119367353,
1387
+ "grad_norm": 1.553584724264315,
1388
+ "learning_rate": 4.889807370114868e-06,
1389
+ "loss": 0.743,
1390
+ "step": 196
1391
+ },
1392
+ {
1393
+ "epoch": 0.23515368546702478,
1394
+ "grad_norm": 1.2874162250928223,
1395
+ "learning_rate": 4.888391651931879e-06,
1396
+ "loss": 0.7409,
1397
+ "step": 197
1398
+ },
1399
+ {
1400
+ "epoch": 0.23634735899731424,
1401
+ "grad_norm": 1.3626573772815251,
1402
+ "learning_rate": 4.886967104961637e-06,
1403
+ "loss": 0.7002,
1404
+ "step": 198
1405
+ },
1406
+ {
1407
+ "epoch": 0.2375410325276037,
1408
+ "grad_norm": 1.621088987920121,
1409
+ "learning_rate": 4.885533734470039e-06,
1410
+ "loss": 0.772,
1411
+ "step": 199
1412
+ },
1413
+ {
1414
+ "epoch": 0.23873470605789315,
1415
+ "grad_norm": 1.5804682649909156,
1416
+ "learning_rate": 4.884091545755596e-06,
1417
+ "loss": 0.7044,
1418
+ "step": 200
1419
+ },
1420
+ {
1421
+ "epoch": 0.23992837958818264,
1422
+ "grad_norm": 1.4195593038907255,
1423
+ "learning_rate": 4.8826405441494185e-06,
1424
+ "loss": 0.7534,
1425
+ "step": 201
1426
+ },
1427
+ {
1428
+ "epoch": 0.2411220531184721,
1429
+ "grad_norm": 1.9356808705926651,
1430
+ "learning_rate": 4.881180735015193e-06,
1431
+ "loss": 0.7244,
1432
+ "step": 202
1433
+ },
1434
+ {
1435
+ "epoch": 0.24231572664876155,
1436
+ "grad_norm": 1.5708687361924116,
1437
+ "learning_rate": 4.879712123749164e-06,
1438
+ "loss": 0.7388,
1439
+ "step": 203
1440
+ },
1441
+ {
1442
+ "epoch": 0.24350940017905104,
1443
+ "grad_norm": 1.3661682626467346,
1444
+ "learning_rate": 4.878234715780112e-06,
1445
+ "loss": 0.7067,
1446
+ "step": 204
1447
+ },
1448
+ {
1449
+ "epoch": 0.2447030737093405,
1450
+ "grad_norm": 1.251758147953428,
1451
+ "learning_rate": 4.876748516569337e-06,
1452
+ "loss": 0.7255,
1453
+ "step": 205
1454
+ },
1455
+ {
1456
+ "epoch": 0.24589674723962995,
1457
+ "grad_norm": 1.3703942882089086,
1458
+ "learning_rate": 4.875253531610634e-06,
1459
+ "loss": 0.7314,
1460
+ "step": 206
1461
+ },
1462
+ {
1463
+ "epoch": 0.24709042076991944,
1464
+ "grad_norm": 1.461368128735752,
1465
+ "learning_rate": 4.873749766430277e-06,
1466
+ "loss": 0.7777,
1467
+ "step": 207
1468
+ },
1469
+ {
1470
+ "epoch": 0.2482840943002089,
1471
+ "grad_norm": 1.315919212217038,
1472
+ "learning_rate": 4.872237226586995e-06,
1473
+ "loss": 0.7831,
1474
+ "step": 208
1475
+ },
1476
+ {
1477
+ "epoch": 0.24947776783049835,
1478
+ "grad_norm": 1.3208386704868256,
1479
+ "learning_rate": 4.870715917671953e-06,
1480
+ "loss": 0.8244,
1481
+ "step": 209
1482
+ },
1483
+ {
1484
+ "epoch": 0.25067144136078784,
1485
+ "grad_norm": 1.2373714760363816,
1486
+ "learning_rate": 4.869185845308732e-06,
1487
+ "loss": 0.7324,
1488
+ "step": 210
1489
+ },
1490
+ {
1491
+ "epoch": 0.25186511489107727,
1492
+ "grad_norm": 1.4088409747127422,
1493
+ "learning_rate": 4.867647015153306e-06,
1494
+ "loss": 0.7611,
1495
+ "step": 211
1496
+ },
1497
+ {
1498
+ "epoch": 0.25305878842136675,
1499
+ "grad_norm": 1.4077268297947585,
1500
+ "learning_rate": 4.866099432894023e-06,
1501
+ "loss": 0.747,
1502
+ "step": 212
1503
+ },
1504
+ {
1505
+ "epoch": 0.25425246195165624,
1506
+ "grad_norm": 1.4827933791399774,
1507
+ "learning_rate": 4.864543104251587e-06,
1508
+ "loss": 0.7137,
1509
+ "step": 213
1510
+ },
1511
+ {
1512
+ "epoch": 0.25544613548194567,
1513
+ "grad_norm": 1.3508633525171672,
1514
+ "learning_rate": 4.862978034979028e-06,
1515
+ "loss": 0.724,
1516
+ "step": 214
1517
+ },
1518
+ {
1519
+ "epoch": 0.25663980901223515,
1520
+ "grad_norm": 1.465268489212778,
1521
+ "learning_rate": 4.861404230861688e-06,
1522
+ "loss": 0.6241,
1523
+ "step": 215
1524
+ },
1525
+ {
1526
+ "epoch": 0.25783348254252464,
1527
+ "grad_norm": 1.3300886293569927,
1528
+ "learning_rate": 4.8598216977172005e-06,
1529
+ "loss": 0.7014,
1530
+ "step": 216
1531
+ },
1532
+ {
1533
+ "epoch": 0.25902715607281407,
1534
+ "grad_norm": 1.41602797636404,
1535
+ "learning_rate": 4.858230441395462e-06,
1536
+ "loss": 0.7039,
1537
+ "step": 217
1538
+ },
1539
+ {
1540
+ "epoch": 0.26022082960310355,
1541
+ "grad_norm": 1.3664225014511933,
1542
+ "learning_rate": 4.856630467778617e-06,
1543
+ "loss": 0.7305,
1544
+ "step": 218
1545
+ },
1546
+ {
1547
+ "epoch": 0.26141450313339304,
1548
+ "grad_norm": 1.1175176998330205,
1549
+ "learning_rate": 4.855021782781033e-06,
1550
+ "loss": 0.717,
1551
+ "step": 219
1552
+ },
1553
+ {
1554
+ "epoch": 0.26260817666368247,
1555
+ "grad_norm": 1.2713889824942233,
1556
+ "learning_rate": 4.85340439234928e-06,
1557
+ "loss": 0.7671,
1558
+ "step": 220
1559
+ },
1560
+ {
1561
+ "epoch": 0.26380185019397195,
1562
+ "grad_norm": 1.1393102182324073,
1563
+ "learning_rate": 4.851778302462108e-06,
1564
+ "loss": 0.7044,
1565
+ "step": 221
1566
+ },
1567
+ {
1568
+ "epoch": 0.26499552372426144,
1569
+ "grad_norm": 1.3923915333803638,
1570
+ "learning_rate": 4.850143519130424e-06,
1571
+ "loss": 0.6752,
1572
+ "step": 222
1573
+ },
1574
+ {
1575
+ "epoch": 0.26618919725455087,
1576
+ "grad_norm": 1.5055776063455715,
1577
+ "learning_rate": 4.8485000483972724e-06,
1578
+ "loss": 0.7206,
1579
+ "step": 223
1580
+ },
1581
+ {
1582
+ "epoch": 0.26738287078484035,
1583
+ "grad_norm": 1.2346499117786998,
1584
+ "learning_rate": 4.846847896337809e-06,
1585
+ "loss": 0.7367,
1586
+ "step": 224
1587
+ },
1588
+ {
1589
+ "epoch": 0.26857654431512984,
1590
+ "grad_norm": 1.1697769400742972,
1591
+ "learning_rate": 4.8451870690592815e-06,
1592
+ "loss": 0.6837,
1593
+ "step": 225
1594
+ },
1595
+ {
1596
+ "epoch": 0.26977021784541927,
1597
+ "grad_norm": 1.4627787971102764,
1598
+ "learning_rate": 4.843517572701005e-06,
1599
+ "loss": 0.7714,
1600
+ "step": 226
1601
+ },
1602
+ {
1603
+ "epoch": 0.27096389137570875,
1604
+ "grad_norm": 1.461677358159491,
1605
+ "learning_rate": 4.841839413434343e-06,
1606
+ "loss": 0.7164,
1607
+ "step": 227
1608
+ },
1609
+ {
1610
+ "epoch": 0.2721575649059982,
1611
+ "grad_norm": 1.247477301704973,
1612
+ "learning_rate": 4.840152597462679e-06,
1613
+ "loss": 0.7369,
1614
+ "step": 228
1615
+ },
1616
+ {
1617
+ "epoch": 0.27335123843628767,
1618
+ "grad_norm": 1.5335526823557455,
1619
+ "learning_rate": 4.838457131021394e-06,
1620
+ "loss": 0.7414,
1621
+ "step": 229
1622
+ },
1623
+ {
1624
+ "epoch": 0.27454491196657715,
1625
+ "grad_norm": 1.416196356493793,
1626
+ "learning_rate": 4.836753020377854e-06,
1627
+ "loss": 0.7233,
1628
+ "step": 230
1629
+ },
1630
+ {
1631
+ "epoch": 0.2757385854968666,
1632
+ "grad_norm": 1.2402844158110742,
1633
+ "learning_rate": 4.835040271831371e-06,
1634
+ "loss": 0.6921,
1635
+ "step": 231
1636
+ },
1637
+ {
1638
+ "epoch": 0.27693225902715607,
1639
+ "grad_norm": 1.325405626630407,
1640
+ "learning_rate": 4.833318891713189e-06,
1641
+ "loss": 0.7448,
1642
+ "step": 232
1643
+ },
1644
+ {
1645
+ "epoch": 0.27812593255744555,
1646
+ "grad_norm": 1.636164206386521,
1647
+ "learning_rate": 4.8315888863864615e-06,
1648
+ "loss": 0.7257,
1649
+ "step": 233
1650
+ },
1651
+ {
1652
+ "epoch": 0.279319606087735,
1653
+ "grad_norm": 1.294477892152405,
1654
+ "learning_rate": 4.829850262246223e-06,
1655
+ "loss": 0.7275,
1656
+ "step": 234
1657
+ },
1658
+ {
1659
+ "epoch": 0.28051327961802447,
1660
+ "grad_norm": 1.2534851560902933,
1661
+ "learning_rate": 4.828103025719368e-06,
1662
+ "loss": 0.6744,
1663
+ "step": 235
1664
+ },
1665
+ {
1666
+ "epoch": 0.28170695314831395,
1667
+ "grad_norm": 1.3361743741123135,
1668
+ "learning_rate": 4.8263471832646305e-06,
1669
+ "loss": 0.7542,
1670
+ "step": 236
1671
+ },
1672
+ {
1673
+ "epoch": 0.2829006266786034,
1674
+ "grad_norm": 1.7794879323390358,
1675
+ "learning_rate": 4.824582741372551e-06,
1676
+ "loss": 0.6397,
1677
+ "step": 237
1678
+ },
1679
+ {
1680
+ "epoch": 0.28409430020889287,
1681
+ "grad_norm": 1.3658199624392589,
1682
+ "learning_rate": 4.8228097065654615e-06,
1683
+ "loss": 0.7149,
1684
+ "step": 238
1685
+ },
1686
+ {
1687
+ "epoch": 0.28528797373918235,
1688
+ "grad_norm": 1.3072375367316251,
1689
+ "learning_rate": 4.821028085397458e-06,
1690
+ "loss": 0.6894,
1691
+ "step": 239
1692
+ },
1693
+ {
1694
+ "epoch": 0.2864816472694718,
1695
+ "grad_norm": 1.6554740415887155,
1696
+ "learning_rate": 4.819237884454375e-06,
1697
+ "loss": 0.6779,
1698
+ "step": 240
1699
+ },
1700
+ {
1701
+ "epoch": 0.28767532079976127,
1702
+ "grad_norm": 1.3979259089374587,
1703
+ "learning_rate": 4.8174391103537655e-06,
1704
+ "loss": 0.6782,
1705
+ "step": 241
1706
+ },
1707
+ {
1708
+ "epoch": 0.28886899433005075,
1709
+ "grad_norm": 1.2115058986142737,
1710
+ "learning_rate": 4.815631769744869e-06,
1711
+ "loss": 0.7638,
1712
+ "step": 242
1713
+ },
1714
+ {
1715
+ "epoch": 0.2900626678603402,
1716
+ "grad_norm": 1.306426889473089,
1717
+ "learning_rate": 4.8138158693085955e-06,
1718
+ "loss": 0.7819,
1719
+ "step": 243
1720
+ },
1721
+ {
1722
+ "epoch": 0.29125634139062967,
1723
+ "grad_norm": 1.3589954968814129,
1724
+ "learning_rate": 4.8119914157574945e-06,
1725
+ "loss": 0.7585,
1726
+ "step": 244
1727
+ },
1728
+ {
1729
+ "epoch": 0.29245001492091915,
1730
+ "grad_norm": 1.3781497816322819,
1731
+ "learning_rate": 4.810158415835733e-06,
1732
+ "loss": 0.7605,
1733
+ "step": 245
1734
+ },
1735
+ {
1736
+ "epoch": 0.2936436884512086,
1737
+ "grad_norm": 1.2584577307454725,
1738
+ "learning_rate": 4.8083168763190705e-06,
1739
+ "loss": 0.6997,
1740
+ "step": 246
1741
+ },
1742
+ {
1743
+ "epoch": 0.29483736198149807,
1744
+ "grad_norm": 1.6933326451549058,
1745
+ "learning_rate": 4.8064668040148315e-06,
1746
+ "loss": 0.7097,
1747
+ "step": 247
1748
+ },
1749
+ {
1750
+ "epoch": 0.2960310355117875,
1751
+ "grad_norm": 1.6252538060447355,
1752
+ "learning_rate": 4.8046082057618855e-06,
1753
+ "loss": 0.6976,
1754
+ "step": 248
1755
+ },
1756
+ {
1757
+ "epoch": 0.297224709042077,
1758
+ "grad_norm": 1.2648878328803557,
1759
+ "learning_rate": 4.802741088430616e-06,
1760
+ "loss": 0.6786,
1761
+ "step": 249
1762
+ },
1763
+ {
1764
+ "epoch": 0.29841838257236647,
1765
+ "grad_norm": 1.291377081492189,
1766
+ "learning_rate": 4.800865458922899e-06,
1767
+ "loss": 0.6653,
1768
+ "step": 250
1769
+ },
1770
+ {
1771
+ "epoch": 0.2996120561026559,
1772
+ "grad_norm": 1.2451565458636964,
1773
+ "learning_rate": 4.798981324172075e-06,
1774
+ "loss": 0.6818,
1775
+ "step": 251
1776
+ },
1777
+ {
1778
+ "epoch": 0.3008057296329454,
1779
+ "grad_norm": 1.3859233273705183,
1780
+ "learning_rate": 4.797088691142926e-06,
1781
+ "loss": 0.6952,
1782
+ "step": 252
1783
+ },
1784
+ {
1785
+ "epoch": 0.30199940316323487,
1786
+ "grad_norm": 1.1554071712447842,
1787
+ "learning_rate": 4.795187566831645e-06,
1788
+ "loss": 0.6942,
1789
+ "step": 253
1790
+ },
1791
+ {
1792
+ "epoch": 0.3031930766935243,
1793
+ "grad_norm": 1.4487233844413288,
1794
+ "learning_rate": 4.793277958265819e-06,
1795
+ "loss": 0.7843,
1796
+ "step": 254
1797
+ },
1798
+ {
1799
+ "epoch": 0.3043867502238138,
1800
+ "grad_norm": 1.2016328771893767,
1801
+ "learning_rate": 4.79135987250439e-06,
1802
+ "loss": 0.6929,
1803
+ "step": 255
1804
+ },
1805
+ {
1806
+ "epoch": 0.30558042375410327,
1807
+ "grad_norm": 1.3029418364965668,
1808
+ "learning_rate": 4.789433316637644e-06,
1809
+ "loss": 0.7128,
1810
+ "step": 256
1811
+ },
1812
+ {
1813
+ "epoch": 0.3067740972843927,
1814
+ "grad_norm": 1.2067002392705943,
1815
+ "learning_rate": 4.787498297787172e-06,
1816
+ "loss": 0.6715,
1817
+ "step": 257
1818
+ },
1819
+ {
1820
+ "epoch": 0.3079677708146822,
1821
+ "grad_norm": 1.2825737988071968,
1822
+ "learning_rate": 4.785554823105849e-06,
1823
+ "loss": 0.759,
1824
+ "step": 258
1825
+ },
1826
+ {
1827
+ "epoch": 0.30916144434497167,
1828
+ "grad_norm": 1.405657134321189,
1829
+ "learning_rate": 4.783602899777811e-06,
1830
+ "loss": 0.7039,
1831
+ "step": 259
1832
+ },
1833
+ {
1834
+ "epoch": 0.3103551178752611,
1835
+ "grad_norm": 1.1939358415349064,
1836
+ "learning_rate": 4.7816425350184195e-06,
1837
+ "loss": 0.7093,
1838
+ "step": 260
1839
+ },
1840
+ {
1841
+ "epoch": 0.3115487914055506,
1842
+ "grad_norm": 1.3894017831081242,
1843
+ "learning_rate": 4.779673736074245e-06,
1844
+ "loss": 0.6904,
1845
+ "step": 261
1846
+ },
1847
+ {
1848
+ "epoch": 0.31274246493584007,
1849
+ "grad_norm": 1.2508482757860593,
1850
+ "learning_rate": 4.7776965102230325e-06,
1851
+ "loss": 0.6636,
1852
+ "step": 262
1853
+ },
1854
+ {
1855
+ "epoch": 0.3139361384661295,
1856
+ "grad_norm": 1.2118929615337841,
1857
+ "learning_rate": 4.775710864773677e-06,
1858
+ "loss": 0.6291,
1859
+ "step": 263
1860
+ },
1861
+ {
1862
+ "epoch": 0.315129811996419,
1863
+ "grad_norm": 1.154157208619186,
1864
+ "learning_rate": 4.7737168070662e-06,
1865
+ "loss": 0.6878,
1866
+ "step": 264
1867
+ },
1868
+ {
1869
+ "epoch": 0.31632348552670847,
1870
+ "grad_norm": 1.4600719790063776,
1871
+ "learning_rate": 4.771714344471716e-06,
1872
+ "loss": 0.7356,
1873
+ "step": 265
1874
+ },
1875
+ {
1876
+ "epoch": 0.3175171590569979,
1877
+ "grad_norm": 1.225295091264663,
1878
+ "learning_rate": 4.769703484392411e-06,
1879
+ "loss": 0.6846,
1880
+ "step": 266
1881
+ },
1882
+ {
1883
+ "epoch": 0.3187108325872874,
1884
+ "grad_norm": 1.1751238538711366,
1885
+ "learning_rate": 4.767684234261509e-06,
1886
+ "loss": 0.6645,
1887
+ "step": 267
1888
+ },
1889
+ {
1890
+ "epoch": 0.31990450611757687,
1891
+ "grad_norm": 1.3442391337993869,
1892
+ "learning_rate": 4.765656601543252e-06,
1893
+ "loss": 0.6808,
1894
+ "step": 268
1895
+ },
1896
+ {
1897
+ "epoch": 0.3210981796478663,
1898
+ "grad_norm": 1.1916211123088165,
1899
+ "learning_rate": 4.763620593732867e-06,
1900
+ "loss": 0.7086,
1901
+ "step": 269
1902
+ },
1903
+ {
1904
+ "epoch": 0.3222918531781558,
1905
+ "grad_norm": 1.3687179869347033,
1906
+ "learning_rate": 4.76157621835654e-06,
1907
+ "loss": 0.69,
1908
+ "step": 270
1909
+ },
1910
+ {
1911
+ "epoch": 0.3234855267084452,
1912
+ "grad_norm": 1.5140697413879123,
1913
+ "learning_rate": 4.759523482971389e-06,
1914
+ "loss": 0.7073,
1915
+ "step": 271
1916
+ },
1917
+ {
1918
+ "epoch": 0.3246792002387347,
1919
+ "grad_norm": 1.135600038359386,
1920
+ "learning_rate": 4.757462395165432e-06,
1921
+ "loss": 0.6983,
1922
+ "step": 272
1923
+ },
1924
+ {
1925
+ "epoch": 0.3258728737690242,
1926
+ "grad_norm": 1.6760735732966718,
1927
+ "learning_rate": 4.755392962557565e-06,
1928
+ "loss": 0.6473,
1929
+ "step": 273
1930
+ },
1931
+ {
1932
+ "epoch": 0.3270665472993136,
1933
+ "grad_norm": 1.7254698749814177,
1934
+ "learning_rate": 4.753315192797531e-06,
1935
+ "loss": 0.6899,
1936
+ "step": 274
1937
+ },
1938
+ {
1939
+ "epoch": 0.3282602208296031,
1940
+ "grad_norm": 1.3969063976705576,
1941
+ "learning_rate": 4.751229093565891e-06,
1942
+ "loss": 0.7048,
1943
+ "step": 275
1944
+ },
1945
+ {
1946
+ "epoch": 0.3294538943598926,
1947
+ "grad_norm": 1.2932215683409531,
1948
+ "learning_rate": 4.749134672573995e-06,
1949
+ "loss": 0.6992,
1950
+ "step": 276
1951
+ },
1952
+ {
1953
+ "epoch": 0.330647567890182,
1954
+ "grad_norm": 1.4225599138183258,
1955
+ "learning_rate": 4.747031937563956e-06,
1956
+ "loss": 0.6946,
1957
+ "step": 277
1958
+ },
1959
+ {
1960
+ "epoch": 0.3318412414204715,
1961
+ "grad_norm": 1.4712564671318273,
1962
+ "learning_rate": 4.74492089630862e-06,
1963
+ "loss": 0.7052,
1964
+ "step": 278
1965
+ },
1966
+ {
1967
+ "epoch": 0.333034914950761,
1968
+ "grad_norm": 1.3823801943977407,
1969
+ "learning_rate": 4.7428015566115365e-06,
1970
+ "loss": 0.6771,
1971
+ "step": 279
1972
+ },
1973
+ {
1974
+ "epoch": 0.333034914950761,
1975
+ "eval_loss": 0.6846477389335632,
1976
+ "eval_runtime": 412.9026,
1977
+ "eval_samples_per_second": 26.854,
1978
+ "eval_steps_per_second": 13.427,
1979
+ "step": 279
1980
+ },
1981
+ {
1982
+ "epoch": 0.3342285884810504,
1983
+ "grad_norm": 1.3371211095928401,
1984
+ "learning_rate": 4.7406739263069316e-06,
1985
+ "loss": 0.6376,
1986
+ "step": 280
1987
+ },
1988
+ {
1989
+ "epoch": 0.3354222620113399,
1990
+ "grad_norm": 1.5260384792192485,
1991
+ "learning_rate": 4.7385380132596785e-06,
1992
+ "loss": 0.6634,
1993
+ "step": 281
1994
+ },
1995
+ {
1996
+ "epoch": 0.3366159355416294,
1997
+ "grad_norm": 1.3406401765758174,
1998
+ "learning_rate": 4.736393825365265e-06,
1999
+ "loss": 0.6478,
2000
+ "step": 282
2001
+ },
2002
+ {
2003
+ "epoch": 0.3378096090719188,
2004
+ "grad_norm": 1.4024574369692429,
2005
+ "learning_rate": 4.734241370549771e-06,
2006
+ "loss": 0.6762,
2007
+ "step": 283
2008
+ },
2009
+ {
2010
+ "epoch": 0.3390032826022083,
2011
+ "grad_norm": 1.3508634062720946,
2012
+ "learning_rate": 4.732080656769833e-06,
2013
+ "loss": 0.691,
2014
+ "step": 284
2015
+ },
2016
+ {
2017
+ "epoch": 0.3401969561324978,
2018
+ "grad_norm": 1.3448634784208517,
2019
+ "learning_rate": 4.729911692012617e-06,
2020
+ "loss": 0.6807,
2021
+ "step": 285
2022
+ },
2023
+ {
2024
+ "epoch": 0.3413906296627872,
2025
+ "grad_norm": 1.2847227723152743,
2026
+ "learning_rate": 4.727734484295791e-06,
2027
+ "loss": 0.6949,
2028
+ "step": 286
2029
+ },
2030
+ {
2031
+ "epoch": 0.3425843031930767,
2032
+ "grad_norm": 1.488731080042999,
2033
+ "learning_rate": 4.725549041667492e-06,
2034
+ "loss": 0.7249,
2035
+ "step": 287
2036
+ },
2037
+ {
2038
+ "epoch": 0.3437779767233662,
2039
+ "grad_norm": 1.2793855202844717,
2040
+ "learning_rate": 4.723355372206297e-06,
2041
+ "loss": 0.6776,
2042
+ "step": 288
2043
+ },
2044
+ {
2045
+ "epoch": 0.3449716502536556,
2046
+ "grad_norm": 1.362290881047155,
2047
+ "learning_rate": 4.721153484021196e-06,
2048
+ "loss": 0.6896,
2049
+ "step": 289
2050
+ },
2051
+ {
2052
+ "epoch": 0.3461653237839451,
2053
+ "grad_norm": 1.1578966118704863,
2054
+ "learning_rate": 4.718943385251558e-06,
2055
+ "loss": 0.6374,
2056
+ "step": 290
2057
+ },
2058
+ {
2059
+ "epoch": 0.34735899731423453,
2060
+ "grad_norm": 1.3438024523340593,
2061
+ "learning_rate": 4.716725084067102e-06,
2062
+ "loss": 0.655,
2063
+ "step": 291
2064
+ },
2065
+ {
2066
+ "epoch": 0.348552670844524,
2067
+ "grad_norm": 1.3312081355869356,
2068
+ "learning_rate": 4.714498588667871e-06,
2069
+ "loss": 0.6728,
2070
+ "step": 292
2071
+ },
2072
+ {
2073
+ "epoch": 0.3497463443748135,
2074
+ "grad_norm": 1.211234849537357,
2075
+ "learning_rate": 4.712263907284195e-06,
2076
+ "loss": 0.6946,
2077
+ "step": 293
2078
+ },
2079
+ {
2080
+ "epoch": 0.35094001790510293,
2081
+ "grad_norm": 1.285835930408837,
2082
+ "learning_rate": 4.710021048176665e-06,
2083
+ "loss": 0.6584,
2084
+ "step": 294
2085
+ },
2086
+ {
2087
+ "epoch": 0.3521336914353924,
2088
+ "grad_norm": 1.1822973184872547,
2089
+ "learning_rate": 4.707770019636101e-06,
2090
+ "loss": 0.6994,
2091
+ "step": 295
2092
+ },
2093
+ {
2094
+ "epoch": 0.3533273649656819,
2095
+ "grad_norm": 1.312513533249853,
2096
+ "learning_rate": 4.7055108299835224e-06,
2097
+ "loss": 0.6707,
2098
+ "step": 296
2099
+ },
2100
+ {
2101
+ "epoch": 0.35452103849597133,
2102
+ "grad_norm": 1.3800556921412532,
2103
+ "learning_rate": 4.7032434875701176e-06,
2104
+ "loss": 0.7198,
2105
+ "step": 297
2106
+ },
2107
+ {
2108
+ "epoch": 0.3557147120262608,
2109
+ "grad_norm": 1.3436446527064017,
2110
+ "learning_rate": 4.700968000777207e-06,
2111
+ "loss": 0.6852,
2112
+ "step": 298
2113
+ },
2114
+ {
2115
+ "epoch": 0.3569083855565503,
2116
+ "grad_norm": 1.3083999180241308,
2117
+ "learning_rate": 4.698684378016223e-06,
2118
+ "loss": 0.7055,
2119
+ "step": 299
2120
+ },
2121
+ {
2122
+ "epoch": 0.35810205908683973,
2123
+ "grad_norm": 1.4093191802031717,
2124
+ "learning_rate": 4.6963926277286695e-06,
2125
+ "loss": 0.6408,
2126
+ "step": 300
2127
+ },
2128
+ {
2129
+ "epoch": 0.3592957326171292,
2130
+ "grad_norm": 1.3201210764453963,
2131
+ "learning_rate": 4.694092758386095e-06,
2132
+ "loss": 0.6683,
2133
+ "step": 301
2134
+ },
2135
+ {
2136
+ "epoch": 0.3604894061474187,
2137
+ "grad_norm": 1.4917658289317903,
2138
+ "learning_rate": 4.69178477849006e-06,
2139
+ "loss": 0.6616,
2140
+ "step": 302
2141
+ },
2142
+ {
2143
+ "epoch": 0.36168307967770813,
2144
+ "grad_norm": 1.2202456890838416,
2145
+ "learning_rate": 4.689468696572108e-06,
2146
+ "loss": 0.6135,
2147
+ "step": 303
2148
+ },
2149
+ {
2150
+ "epoch": 0.3628767532079976,
2151
+ "grad_norm": 1.8840891333384444,
2152
+ "learning_rate": 4.687144521193729e-06,
2153
+ "loss": 0.6383,
2154
+ "step": 304
2155
+ },
2156
+ {
2157
+ "epoch": 0.3640704267382871,
2158
+ "grad_norm": 1.5404380338601549,
2159
+ "learning_rate": 4.684812260946331e-06,
2160
+ "loss": 0.6271,
2161
+ "step": 305
2162
+ },
2163
+ {
2164
+ "epoch": 0.36526410026857653,
2165
+ "grad_norm": 1.5375462640413233,
2166
+ "learning_rate": 4.682471924451212e-06,
2167
+ "loss": 0.7098,
2168
+ "step": 306
2169
+ },
2170
+ {
2171
+ "epoch": 0.366457773798866,
2172
+ "grad_norm": 1.4972752667736051,
2173
+ "learning_rate": 4.68012352035952e-06,
2174
+ "loss": 0.6788,
2175
+ "step": 307
2176
+ },
2177
+ {
2178
+ "epoch": 0.3676514473291555,
2179
+ "grad_norm": 1.3986877871483208,
2180
+ "learning_rate": 4.677767057352226e-06,
2181
+ "loss": 0.7058,
2182
+ "step": 308
2183
+ },
2184
+ {
2185
+ "epoch": 0.36884512085944493,
2186
+ "grad_norm": 1.5735298046244075,
2187
+ "learning_rate": 4.675402544140093e-06,
2188
+ "loss": 0.6266,
2189
+ "step": 309
2190
+ },
2191
+ {
2192
+ "epoch": 0.3700387943897344,
2193
+ "grad_norm": 1.424858174397913,
2194
+ "learning_rate": 4.673029989463639e-06,
2195
+ "loss": 0.689,
2196
+ "step": 310
2197
+ },
2198
+ {
2199
+ "epoch": 0.3712324679200239,
2200
+ "grad_norm": 1.422563152472999,
2201
+ "learning_rate": 4.670649402093112e-06,
2202
+ "loss": 0.687,
2203
+ "step": 311
2204
+ },
2205
+ {
2206
+ "epoch": 0.37242614145031333,
2207
+ "grad_norm": 1.2227545404530318,
2208
+ "learning_rate": 4.6682607908284475e-06,
2209
+ "loss": 0.6504,
2210
+ "step": 312
2211
+ },
2212
+ {
2213
+ "epoch": 0.3736198149806028,
2214
+ "grad_norm": 1.2601523472303733,
2215
+ "learning_rate": 4.665864164499245e-06,
2216
+ "loss": 0.6418,
2217
+ "step": 313
2218
+ },
2219
+ {
2220
+ "epoch": 0.37481348851089225,
2221
+ "grad_norm": 1.2234768466153,
2222
+ "learning_rate": 4.6634595319647334e-06,
2223
+ "loss": 0.6118,
2224
+ "step": 314
2225
+ },
2226
+ {
2227
+ "epoch": 0.37600716204118173,
2228
+ "grad_norm": 1.4660753549186738,
2229
+ "learning_rate": 4.661046902113734e-06,
2230
+ "loss": 0.6375,
2231
+ "step": 315
2232
+ },
2233
+ {
2234
+ "epoch": 0.3772008355714712,
2235
+ "grad_norm": 1.2990252600909762,
2236
+ "learning_rate": 4.658626283864631e-06,
2237
+ "loss": 0.6934,
2238
+ "step": 316
2239
+ },
2240
+ {
2241
+ "epoch": 0.37839450910176065,
2242
+ "grad_norm": 1.214170689120582,
2243
+ "learning_rate": 4.656197686165339e-06,
2244
+ "loss": 0.6842,
2245
+ "step": 317
2246
+ },
2247
+ {
2248
+ "epoch": 0.37958818263205013,
2249
+ "grad_norm": 1.1648083720499496,
2250
+ "learning_rate": 4.653761117993269e-06,
2251
+ "loss": 0.6221,
2252
+ "step": 318
2253
+ },
2254
+ {
2255
+ "epoch": 0.3807818561623396,
2256
+ "grad_norm": 2.0374447610747493,
2257
+ "learning_rate": 4.651316588355294e-06,
2258
+ "loss": 0.765,
2259
+ "step": 319
2260
+ },
2261
+ {
2262
+ "epoch": 0.38197552969262905,
2263
+ "grad_norm": 1.2913848875836433,
2264
+ "learning_rate": 4.648864106287718e-06,
2265
+ "loss": 0.6742,
2266
+ "step": 320
2267
+ },
2268
+ {
2269
+ "epoch": 0.38316920322291853,
2270
+ "grad_norm": 1.3826403559076854,
2271
+ "learning_rate": 4.646403680856241e-06,
2272
+ "loss": 0.6509,
2273
+ "step": 321
2274
+ },
2275
+ {
2276
+ "epoch": 0.384362876753208,
2277
+ "grad_norm": 1.391962878825795,
2278
+ "learning_rate": 4.6439353211559255e-06,
2279
+ "loss": 0.626,
2280
+ "step": 322
2281
+ },
2282
+ {
2283
+ "epoch": 0.38555655028349745,
2284
+ "grad_norm": 1.2366810288776844,
2285
+ "learning_rate": 4.641459036311166e-06,
2286
+ "loss": 0.6482,
2287
+ "step": 323
2288
+ },
2289
+ {
2290
+ "epoch": 0.38675022381378693,
2291
+ "grad_norm": 1.1608380993062588,
2292
+ "learning_rate": 4.638974835475647e-06,
2293
+ "loss": 0.7045,
2294
+ "step": 324
2295
+ },
2296
+ {
2297
+ "epoch": 0.3879438973440764,
2298
+ "grad_norm": 1.681395154022434,
2299
+ "learning_rate": 4.636482727832322e-06,
2300
+ "loss": 0.6485,
2301
+ "step": 325
2302
+ },
2303
+ {
2304
+ "epoch": 0.38913757087436585,
2305
+ "grad_norm": 1.5499853764668938,
2306
+ "learning_rate": 4.633982722593367e-06,
2307
+ "loss": 0.6341,
2308
+ "step": 326
2309
+ },
2310
+ {
2311
+ "epoch": 0.39033124440465533,
2312
+ "grad_norm": 1.3506158071666676,
2313
+ "learning_rate": 4.631474829000152e-06,
2314
+ "loss": 0.6152,
2315
+ "step": 327
2316
+ },
2317
+ {
2318
+ "epoch": 0.3915249179349448,
2319
+ "grad_norm": 1.32895937053141,
2320
+ "learning_rate": 4.628959056323211e-06,
2321
+ "loss": 0.7004,
2322
+ "step": 328
2323
+ },
2324
+ {
2325
+ "epoch": 0.39271859146523425,
2326
+ "grad_norm": 1.241985846489561,
2327
+ "learning_rate": 4.626435413862198e-06,
2328
+ "loss": 0.6713,
2329
+ "step": 329
2330
+ },
2331
+ {
2332
+ "epoch": 0.39391226499552373,
2333
+ "grad_norm": 1.3605066292508516,
2334
+ "learning_rate": 4.623903910945861e-06,
2335
+ "loss": 0.6243,
2336
+ "step": 330
2337
+ },
2338
+ {
2339
+ "epoch": 0.3951059385258132,
2340
+ "grad_norm": 1.5681694169794416,
2341
+ "learning_rate": 4.621364556932005e-06,
2342
+ "loss": 0.6273,
2343
+ "step": 331
2344
+ },
2345
+ {
2346
+ "epoch": 0.39629961205610265,
2347
+ "grad_norm": 1.4092893288151016,
2348
+ "learning_rate": 4.618817361207455e-06,
2349
+ "loss": 0.6649,
2350
+ "step": 332
2351
+ },
2352
+ {
2353
+ "epoch": 0.39749328558639213,
2354
+ "grad_norm": 1.223446383808155,
2355
+ "learning_rate": 4.616262333188023e-06,
2356
+ "loss": 0.6036,
2357
+ "step": 333
2358
+ },
2359
+ {
2360
+ "epoch": 0.39868695911668156,
2361
+ "grad_norm": 1.2916912487028882,
2362
+ "learning_rate": 4.613699482318476e-06,
2363
+ "loss": 0.5678,
2364
+ "step": 334
2365
+ },
2366
+ {
2367
+ "epoch": 0.39988063264697105,
2368
+ "grad_norm": 1.2168147001895975,
2369
+ "learning_rate": 4.611128818072496e-06,
2370
+ "loss": 0.6649,
2371
+ "step": 335
2372
+ },
2373
+ {
2374
+ "epoch": 0.40107430617726053,
2375
+ "grad_norm": 1.3679248232676404,
2376
+ "learning_rate": 4.608550349952648e-06,
2377
+ "loss": 0.6122,
2378
+ "step": 336
2379
+ },
2380
+ {
2381
+ "epoch": 0.40226797970754996,
2382
+ "grad_norm": 1.5932039919961867,
2383
+ "learning_rate": 4.605964087490346e-06,
2384
+ "loss": 0.6927,
2385
+ "step": 337
2386
+ },
2387
+ {
2388
+ "epoch": 0.40346165323783945,
2389
+ "grad_norm": 1.303172463186514,
2390
+ "learning_rate": 4.603370040245814e-06,
2391
+ "loss": 0.6052,
2392
+ "step": 338
2393
+ },
2394
+ {
2395
+ "epoch": 0.40465532676812893,
2396
+ "grad_norm": 1.284260746698017,
2397
+ "learning_rate": 4.600768217808053e-06,
2398
+ "loss": 0.616,
2399
+ "step": 339
2400
+ },
2401
+ {
2402
+ "epoch": 0.40584900029841836,
2403
+ "grad_norm": 1.2715127048886254,
2404
+ "learning_rate": 4.598158629794807e-06,
2405
+ "loss": 0.641,
2406
+ "step": 340
2407
+ },
2408
+ {
2409
+ "epoch": 0.40704267382870785,
2410
+ "grad_norm": 1.3727093879029966,
2411
+ "learning_rate": 4.5955412858525234e-06,
2412
+ "loss": 0.6575,
2413
+ "step": 341
2414
+ },
2415
+ {
2416
+ "epoch": 0.40823634735899733,
2417
+ "grad_norm": 1.3972056862082822,
2418
+ "learning_rate": 4.592916195656322e-06,
2419
+ "loss": 0.6202,
2420
+ "step": 342
2421
+ },
2422
+ {
2423
+ "epoch": 0.40943002088928676,
2424
+ "grad_norm": 1.226422767344469,
2425
+ "learning_rate": 4.590283368909955e-06,
2426
+ "loss": 0.6373,
2427
+ "step": 343
2428
+ },
2429
+ {
2430
+ "epoch": 0.41062369441957625,
2431
+ "grad_norm": 1.2214362910423493,
2432
+ "learning_rate": 4.587642815345775e-06,
2433
+ "loss": 0.6513,
2434
+ "step": 344
2435
+ },
2436
+ {
2437
+ "epoch": 0.41181736794986573,
2438
+ "grad_norm": 1.2724022723275898,
2439
+ "learning_rate": 4.584994544724695e-06,
2440
+ "loss": 0.6435,
2441
+ "step": 345
2442
+ },
2443
+ {
2444
+ "epoch": 0.41301104148015516,
2445
+ "grad_norm": 1.90952619576874,
2446
+ "learning_rate": 4.582338566836157e-06,
2447
+ "loss": 0.6323,
2448
+ "step": 346
2449
+ },
2450
+ {
2451
+ "epoch": 0.41420471501044465,
2452
+ "grad_norm": 1.2579926244712305,
2453
+ "learning_rate": 4.579674891498089e-06,
2454
+ "loss": 0.6446,
2455
+ "step": 347
2456
+ },
2457
+ {
2458
+ "epoch": 0.41539838854073413,
2459
+ "grad_norm": 1.382956229673369,
2460
+ "learning_rate": 4.577003528556878e-06,
2461
+ "loss": 0.6749,
2462
+ "step": 348
2463
+ },
2464
+ {
2465
+ "epoch": 0.41659206207102356,
2466
+ "grad_norm": 1.383601549667179,
2467
+ "learning_rate": 4.574324487887326e-06,
2468
+ "loss": 0.6641,
2469
+ "step": 349
2470
+ },
2471
+ {
2472
+ "epoch": 0.41778573560131305,
2473
+ "grad_norm": 1.1622294774191468,
2474
+ "learning_rate": 4.571637779392615e-06,
2475
+ "loss": 0.636,
2476
+ "step": 350
2477
+ },
2478
+ {
2479
+ "epoch": 0.41897940913160253,
2480
+ "grad_norm": 1.428456878926952,
2481
+ "learning_rate": 4.568943413004274e-06,
2482
+ "loss": 0.6163,
2483
+ "step": 351
2484
+ },
2485
+ {
2486
+ "epoch": 0.42017308266189196,
2487
+ "grad_norm": 1.4910910058961493,
2488
+ "learning_rate": 4.566241398682138e-06,
2489
+ "loss": 0.6447,
2490
+ "step": 352
2491
+ },
2492
+ {
2493
+ "epoch": 0.42136675619218145,
2494
+ "grad_norm": 1.3541150547126044,
2495
+ "learning_rate": 4.563531746414311e-06,
2496
+ "loss": 0.6351,
2497
+ "step": 353
2498
+ },
2499
+ {
2500
+ "epoch": 0.42256042972247093,
2501
+ "grad_norm": 1.4205816255695827,
2502
+ "learning_rate": 4.560814466217137e-06,
2503
+ "loss": 0.7153,
2504
+ "step": 354
2505
+ },
2506
+ {
2507
+ "epoch": 0.42375410325276036,
2508
+ "grad_norm": 1.4948619172954853,
2509
+ "learning_rate": 4.558089568135151e-06,
2510
+ "loss": 0.6028,
2511
+ "step": 355
2512
+ },
2513
+ {
2514
+ "epoch": 0.42494777678304985,
2515
+ "grad_norm": 1.3766011505260616,
2516
+ "learning_rate": 4.55535706224105e-06,
2517
+ "loss": 0.5708,
2518
+ "step": 356
2519
+ },
2520
+ {
2521
+ "epoch": 0.4261414503133393,
2522
+ "grad_norm": 1.371263391588093,
2523
+ "learning_rate": 4.5526169586356535e-06,
2524
+ "loss": 0.626,
2525
+ "step": 357
2526
+ },
2527
+ {
2528
+ "epoch": 0.42733512384362876,
2529
+ "grad_norm": 1.472168514490173,
2530
+ "learning_rate": 4.5498692674478685e-06,
2531
+ "loss": 0.6118,
2532
+ "step": 358
2533
+ },
2534
+ {
2535
+ "epoch": 0.42852879737391825,
2536
+ "grad_norm": 1.3555505111118311,
2537
+ "learning_rate": 4.5471139988346445e-06,
2538
+ "loss": 0.6824,
2539
+ "step": 359
2540
+ },
2541
+ {
2542
+ "epoch": 0.4297224709042077,
2543
+ "grad_norm": 1.1158326109881502,
2544
+ "learning_rate": 4.544351162980947e-06,
2545
+ "loss": 0.6629,
2546
+ "step": 360
2547
+ },
2548
+ {
2549
+ "epoch": 0.43091614443449716,
2550
+ "grad_norm": 1.4225920267037269,
2551
+ "learning_rate": 4.541580770099709e-06,
2552
+ "loss": 0.7106,
2553
+ "step": 361
2554
+ },
2555
+ {
2556
+ "epoch": 0.43210981796478665,
2557
+ "grad_norm": 1.519185463886708,
2558
+ "learning_rate": 4.538802830431803e-06,
2559
+ "loss": 0.6279,
2560
+ "step": 362
2561
+ },
2562
+ {
2563
+ "epoch": 0.4333034914950761,
2564
+ "grad_norm": 1.2133200333323961,
2565
+ "learning_rate": 4.5360173542459965e-06,
2566
+ "loss": 0.692,
2567
+ "step": 363
2568
+ },
2569
+ {
2570
+ "epoch": 0.43449716502536556,
2571
+ "grad_norm": 1.3310636716566095,
2572
+ "learning_rate": 4.533224351838914e-06,
2573
+ "loss": 0.6554,
2574
+ "step": 364
2575
+ },
2576
+ {
2577
+ "epoch": 0.43569083855565505,
2578
+ "grad_norm": 1.7294024871950497,
2579
+ "learning_rate": 4.530423833535004e-06,
2580
+ "loss": 0.5876,
2581
+ "step": 365
2582
+ },
2583
+ {
2584
+ "epoch": 0.4368845120859445,
2585
+ "grad_norm": 2.0358887652438677,
2586
+ "learning_rate": 4.527615809686498e-06,
2587
+ "loss": 0.6288,
2588
+ "step": 366
2589
+ },
2590
+ {
2591
+ "epoch": 0.43807818561623396,
2592
+ "grad_norm": 1.213647251606033,
2593
+ "learning_rate": 4.524800290673369e-06,
2594
+ "loss": 0.6305,
2595
+ "step": 367
2596
+ },
2597
+ {
2598
+ "epoch": 0.43927185914652345,
2599
+ "grad_norm": 1.501478488863323,
2600
+ "learning_rate": 4.521977286903299e-06,
2601
+ "loss": 0.6929,
2602
+ "step": 368
2603
+ },
2604
+ {
2605
+ "epoch": 0.4404655326768129,
2606
+ "grad_norm": 1.463837293971756,
2607
+ "learning_rate": 4.5191468088116355e-06,
2608
+ "loss": 0.6421,
2609
+ "step": 369
2610
+ },
2611
+ {
2612
+ "epoch": 0.44165920620710236,
2613
+ "grad_norm": 1.7942748893980314,
2614
+ "learning_rate": 4.516308866861357e-06,
2615
+ "loss": 0.6246,
2616
+ "step": 370
2617
+ },
2618
+ {
2619
+ "epoch": 0.44285287973739185,
2620
+ "grad_norm": 1.2126836888579313,
2621
+ "learning_rate": 4.513463471543032e-06,
2622
+ "loss": 0.6348,
2623
+ "step": 371
2624
+ },
2625
+ {
2626
+ "epoch": 0.4440465532676813,
2627
+ "grad_norm": 1.5786268577595093,
2628
+ "learning_rate": 4.510610633374781e-06,
2629
+ "loss": 0.6345,
2630
+ "step": 372
2631
+ },
2632
+ {
2633
+ "epoch": 0.44524022679797076,
2634
+ "grad_norm": 1.8316828103496652,
2635
+ "learning_rate": 4.507750362902236e-06,
2636
+ "loss": 0.6511,
2637
+ "step": 373
2638
+ },
2639
+ {
2640
+ "epoch": 0.44643390032826025,
2641
+ "grad_norm": 1.2827659220880676,
2642
+ "learning_rate": 4.504882670698504e-06,
2643
+ "loss": 0.6105,
2644
+ "step": 374
2645
+ },
2646
+ {
2647
+ "epoch": 0.4476275738585497,
2648
+ "grad_norm": 1.251328046029592,
2649
+ "learning_rate": 4.502007567364126e-06,
2650
+ "loss": 0.6489,
2651
+ "step": 375
2652
+ },
2653
+ {
2654
+ "epoch": 0.44882124738883916,
2655
+ "grad_norm": 1.466361287788854,
2656
+ "learning_rate": 4.499125063527038e-06,
2657
+ "loss": 0.6257,
2658
+ "step": 376
2659
+ },
2660
+ {
2661
+ "epoch": 0.4500149209191286,
2662
+ "grad_norm": 1.6779457947298428,
2663
+ "learning_rate": 4.496235169842535e-06,
2664
+ "loss": 0.5505,
2665
+ "step": 377
2666
+ },
2667
+ {
2668
+ "epoch": 0.4512085944494181,
2669
+ "grad_norm": 1.2259448186587079,
2670
+ "learning_rate": 4.493337896993226e-06,
2671
+ "loss": 0.6456,
2672
+ "step": 378
2673
+ },
2674
+ {
2675
+ "epoch": 0.45240226797970756,
2676
+ "grad_norm": 1.2873284134809548,
2677
+ "learning_rate": 4.490433255688998e-06,
2678
+ "loss": 0.675,
2679
+ "step": 379
2680
+ },
2681
+ {
2682
+ "epoch": 0.453595941509997,
2683
+ "grad_norm": 1.5992223985195466,
2684
+ "learning_rate": 4.4875212566669764e-06,
2685
+ "loss": 0.6342,
2686
+ "step": 380
2687
+ },
2688
+ {
2689
+ "epoch": 0.4547896150402865,
2690
+ "grad_norm": 1.3955795063874046,
2691
+ "learning_rate": 4.484601910691484e-06,
2692
+ "loss": 0.5658,
2693
+ "step": 381
2694
+ },
2695
+ {
2696
+ "epoch": 0.45598328857057596,
2697
+ "grad_norm": 1.3171512803658922,
2698
+ "learning_rate": 4.481675228554005e-06,
2699
+ "loss": 0.618,
2700
+ "step": 382
2701
+ },
2702
+ {
2703
+ "epoch": 0.4571769621008654,
2704
+ "grad_norm": 1.368596334205501,
2705
+ "learning_rate": 4.478741221073136e-06,
2706
+ "loss": 0.7001,
2707
+ "step": 383
2708
+ },
2709
+ {
2710
+ "epoch": 0.4583706356311549,
2711
+ "grad_norm": 1.496955355802238,
2712
+ "learning_rate": 4.475799899094557e-06,
2713
+ "loss": 0.6279,
2714
+ "step": 384
2715
+ },
2716
+ {
2717
+ "epoch": 0.45956430916144436,
2718
+ "grad_norm": 1.3311940792099912,
2719
+ "learning_rate": 4.472851273490985e-06,
2720
+ "loss": 0.6454,
2721
+ "step": 385
2722
+ },
2723
+ {
2724
+ "epoch": 0.4607579826917338,
2725
+ "grad_norm": 1.4781859135515831,
2726
+ "learning_rate": 4.4698953551621335e-06,
2727
+ "loss": 0.6582,
2728
+ "step": 386
2729
+ },
2730
+ {
2731
+ "epoch": 0.4619516562220233,
2732
+ "grad_norm": 1.2467840318252372,
2733
+ "learning_rate": 4.466932155034677e-06,
2734
+ "loss": 0.6245,
2735
+ "step": 387
2736
+ },
2737
+ {
2738
+ "epoch": 0.46314532975231276,
2739
+ "grad_norm": 1.3165106445001906,
2740
+ "learning_rate": 4.4639616840622055e-06,
2741
+ "loss": 0.6133,
2742
+ "step": 388
2743
+ },
2744
+ {
2745
+ "epoch": 0.4643390032826022,
2746
+ "grad_norm": 1.3734383781343862,
2747
+ "learning_rate": 4.460983953225185e-06,
2748
+ "loss": 0.6335,
2749
+ "step": 389
2750
+ },
2751
+ {
2752
+ "epoch": 0.4655326768128917,
2753
+ "grad_norm": 1.2352789136351765,
2754
+ "learning_rate": 4.457998973530921e-06,
2755
+ "loss": 0.6234,
2756
+ "step": 390
2757
+ },
2758
+ {
2759
+ "epoch": 0.46672635034318116,
2760
+ "grad_norm": 1.3013245788706025,
2761
+ "learning_rate": 4.455006756013511e-06,
2762
+ "loss": 0.655,
2763
+ "step": 391
2764
+ },
2765
+ {
2766
+ "epoch": 0.4679200238734706,
2767
+ "grad_norm": 1.306859336801617,
2768
+ "learning_rate": 4.45200731173381e-06,
2769
+ "loss": 0.6748,
2770
+ "step": 392
2771
+ },
2772
+ {
2773
+ "epoch": 0.4691136974037601,
2774
+ "grad_norm": 1.3547776286359348,
2775
+ "learning_rate": 4.449000651779386e-06,
2776
+ "loss": 0.6288,
2777
+ "step": 393
2778
+ },
2779
+ {
2780
+ "epoch": 0.47030737093404956,
2781
+ "grad_norm": 1.2770604039839548,
2782
+ "learning_rate": 4.445986787264482e-06,
2783
+ "loss": 0.599,
2784
+ "step": 394
2785
+ },
2786
+ {
2787
+ "epoch": 0.471501044464339,
2788
+ "grad_norm": 1.29086918908413,
2789
+ "learning_rate": 4.442965729329968e-06,
2790
+ "loss": 0.6539,
2791
+ "step": 395
2792
+ },
2793
+ {
2794
+ "epoch": 0.4726947179946285,
2795
+ "grad_norm": 1.1098582590328354,
2796
+ "learning_rate": 4.43993748914331e-06,
2797
+ "loss": 0.6321,
2798
+ "step": 396
2799
+ },
2800
+ {
2801
+ "epoch": 0.47388839152491796,
2802
+ "grad_norm": 1.3633067255021907,
2803
+ "learning_rate": 4.436902077898522e-06,
2804
+ "loss": 0.604,
2805
+ "step": 397
2806
+ },
2807
+ {
2808
+ "epoch": 0.4750820650552074,
2809
+ "grad_norm": 1.36600583395753,
2810
+ "learning_rate": 4.433859506816124e-06,
2811
+ "loss": 0.7084,
2812
+ "step": 398
2813
+ },
2814
+ {
2815
+ "epoch": 0.4762757385854969,
2816
+ "grad_norm": 1.293392283768407,
2817
+ "learning_rate": 4.430809787143105e-06,
2818
+ "loss": 0.593,
2819
+ "step": 399
2820
+ },
2821
+ {
2822
+ "epoch": 0.4774694121157863,
2823
+ "grad_norm": 1.5157608273336003,
2824
+ "learning_rate": 4.427752930152879e-06,
2825
+ "loss": 0.6764,
2826
+ "step": 400
2827
+ },
2828
+ {
2829
+ "epoch": 0.4786630856460758,
2830
+ "grad_norm": 1.488324378469982,
2831
+ "learning_rate": 4.424688947145241e-06,
2832
+ "loss": 0.5455,
2833
+ "step": 401
2834
+ },
2835
+ {
2836
+ "epoch": 0.4798567591763653,
2837
+ "grad_norm": 1.302352660679449,
2838
+ "learning_rate": 4.4216178494463305e-06,
2839
+ "loss": 0.6464,
2840
+ "step": 402
2841
+ },
2842
+ {
2843
+ "epoch": 0.4810504327066547,
2844
+ "grad_norm": 1.2124487454708892,
2845
+ "learning_rate": 4.418539648408585e-06,
2846
+ "loss": 0.6263,
2847
+ "step": 403
2848
+ },
2849
+ {
2850
+ "epoch": 0.4822441062369442,
2851
+ "grad_norm": 1.7100013098870857,
2852
+ "learning_rate": 4.415454355410701e-06,
2853
+ "loss": 0.6308,
2854
+ "step": 404
2855
+ },
2856
+ {
2857
+ "epoch": 0.4834377797672337,
2858
+ "grad_norm": 1.429362592378676,
2859
+ "learning_rate": 4.41236198185759e-06,
2860
+ "loss": 0.6272,
2861
+ "step": 405
2862
+ },
2863
+ {
2864
+ "epoch": 0.4846314532975231,
2865
+ "grad_norm": 1.468813200306582,
2866
+ "learning_rate": 4.409262539180337e-06,
2867
+ "loss": 0.6665,
2868
+ "step": 406
2869
+ },
2870
+ {
2871
+ "epoch": 0.4858251268278126,
2872
+ "grad_norm": 2.0737362408199487,
2873
+ "learning_rate": 4.4061560388361564e-06,
2874
+ "loss": 0.615,
2875
+ "step": 407
2876
+ },
2877
+ {
2878
+ "epoch": 0.4870188003581021,
2879
+ "grad_norm": 1.367681046177691,
2880
+ "learning_rate": 4.403042492308357e-06,
2881
+ "loss": 0.5975,
2882
+ "step": 408
2883
+ },
2884
+ {
2885
+ "epoch": 0.4882124738883915,
2886
+ "grad_norm": 1.3930985977006256,
2887
+ "learning_rate": 4.399921911106288e-06,
2888
+ "loss": 0.6478,
2889
+ "step": 409
2890
+ },
2891
+ {
2892
+ "epoch": 0.489406147418681,
2893
+ "grad_norm": 1.1931289592139445,
2894
+ "learning_rate": 4.396794306765306e-06,
2895
+ "loss": 0.6683,
2896
+ "step": 410
2897
+ },
2898
+ {
2899
+ "epoch": 0.4905998209489705,
2900
+ "grad_norm": 1.4270063255266063,
2901
+ "learning_rate": 4.393659690846729e-06,
2902
+ "loss": 0.5593,
2903
+ "step": 411
2904
+ },
2905
+ {
2906
+ "epoch": 0.4917934944792599,
2907
+ "grad_norm": 1.1992396152146196,
2908
+ "learning_rate": 4.390518074937791e-06,
2909
+ "loss": 0.6197,
2910
+ "step": 412
2911
+ },
2912
+ {
2913
+ "epoch": 0.4929871680095494,
2914
+ "grad_norm": 1.2931882830447148,
2915
+ "learning_rate": 4.387369470651605e-06,
2916
+ "loss": 0.5987,
2917
+ "step": 413
2918
+ },
2919
+ {
2920
+ "epoch": 0.4941808415398389,
2921
+ "grad_norm": 1.3870381593601393,
2922
+ "learning_rate": 4.384213889627115e-06,
2923
+ "loss": 0.566,
2924
+ "step": 414
2925
+ },
2926
+ {
2927
+ "epoch": 0.4953745150701283,
2928
+ "grad_norm": 1.450139028407346,
2929
+ "learning_rate": 4.381051343529054e-06,
2930
+ "loss": 0.6401,
2931
+ "step": 415
2932
+ },
2933
+ {
2934
+ "epoch": 0.4965681886004178,
2935
+ "grad_norm": 1.511602442791746,
2936
+ "learning_rate": 4.377881844047905e-06,
2937
+ "loss": 0.5967,
2938
+ "step": 416
2939
+ },
2940
+ {
2941
+ "epoch": 0.4977618621307073,
2942
+ "grad_norm": 1.2080612008668248,
2943
+ "learning_rate": 4.374705402899849e-06,
2944
+ "loss": 0.5858,
2945
+ "step": 417
2946
+ },
2947
+ {
2948
+ "epoch": 0.4989555356609967,
2949
+ "grad_norm": 1.2307479615208436,
2950
+ "learning_rate": 4.371522031826733e-06,
2951
+ "loss": 0.6072,
2952
+ "step": 418
2953
+ },
2954
+ {
2955
+ "epoch": 0.5001492091912861,
2956
+ "grad_norm": 1.250346505274662,
2957
+ "learning_rate": 4.368331742596018e-06,
2958
+ "loss": 0.619,
2959
+ "step": 419
2960
+ }
2961
+ ],
2962
+ "logging_steps": 1,
2963
+ "max_steps": 1674,
2964
+ "num_input_tokens_seen": 0,
2965
+ "num_train_epochs": 2,
2966
+ "save_steps": 419,
2967
+ "stateful_callbacks": {
2968
+ "TrainerControl": {
2969
+ "args": {
2970
+ "should_epoch_stop": false,
2971
+ "should_evaluate": false,
2972
+ "should_log": false,
2973
+ "should_save": true,
2974
+ "should_training_stop": false
2975
+ },
2976
+ "attributes": {}
2977
+ }
2978
+ },
2979
+ "total_flos": 171296686080000.0,
2980
+ "train_batch_size": 1,
2981
+ "trial_name": null,
2982
+ "trial_params": null
2983
+ }
checkpoint-419/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de16ea2bd057d62e3a1660882a22cff76073b1ca1a9e6a5b2b563a24cf6ab122
3
+ size 9016
checkpoint-419/zero_to_fp32.py ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import json
25
+ from tqdm import tqdm
26
+ from collections import OrderedDict
27
+ from dataclasses import dataclass
28
+
29
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
30
+ # DeepSpeed data structures it has to be available in the current python environment.
31
+ from deepspeed.utils import logger
32
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
33
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
34
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
35
+
36
+
37
+ @dataclass
38
+ class zero_model_state:
39
+ buffers: dict()
40
+ param_shapes: dict()
41
+ shared_params: list
42
+ ds_version: int
43
+ frozen_param_shapes: dict()
44
+ frozen_param_fragments: dict()
45
+
46
+
47
+ debug = 0
48
+
49
+ # load to cpu
50
+ device = torch.device('cpu')
51
+
52
+
53
+ def atoi(text):
54
+ return int(text) if text.isdigit() else text
55
+
56
+
57
+ def natural_keys(text):
58
+ '''
59
+ alist.sort(key=natural_keys) sorts in human order
60
+ http://nedbatchelder.com/blog/200712/human_sorting.html
61
+ (See Toothy's implementation in the comments)
62
+ '''
63
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
64
+
65
+
66
+ def get_model_state_file(checkpoint_dir, zero_stage):
67
+ if not os.path.isdir(checkpoint_dir):
68
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
69
+
70
+ # there should be only one file
71
+ if zero_stage <= 2:
72
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
73
+ elif zero_stage == 3:
74
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
75
+
76
+ if not os.path.exists(file):
77
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
78
+
79
+ return file
80
+
81
+
82
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
83
+ # XXX: need to test that this simple glob rule works for multi-node setup too
84
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
85
+
86
+ if len(ckpt_files) == 0:
87
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
88
+
89
+ return ckpt_files
90
+
91
+
92
+ def get_optim_files(checkpoint_dir):
93
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
94
+
95
+
96
+ def get_model_state_files(checkpoint_dir):
97
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
98
+
99
+
100
+ def parse_model_states(files):
101
+ zero_model_states = []
102
+ for file in files:
103
+ state_dict = torch.load(file, map_location=device)
104
+
105
+ if BUFFER_NAMES not in state_dict:
106
+ raise ValueError(f"{file} is not a model state checkpoint")
107
+ buffer_names = state_dict[BUFFER_NAMES]
108
+ if debug:
109
+ print("Found buffers:", buffer_names)
110
+
111
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
112
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
113
+ param_shapes = state_dict[PARAM_SHAPES]
114
+
115
+ # collect parameters that are included in param_shapes
116
+ param_names = []
117
+ for s in param_shapes:
118
+ for name in s.keys():
119
+ param_names.append(name)
120
+
121
+ # update with frozen parameters
122
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
123
+ if frozen_param_shapes is not None:
124
+ if debug:
125
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
126
+ param_names += list(frozen_param_shapes.keys())
127
+
128
+ # handle shared params
129
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
130
+
131
+ ds_version = state_dict.get(DS_VERSION, None)
132
+
133
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
134
+
135
+ z_model_state = zero_model_state(buffers=buffers,
136
+ param_shapes=param_shapes,
137
+ shared_params=shared_params,
138
+ ds_version=ds_version,
139
+ frozen_param_shapes=frozen_param_shapes,
140
+ frozen_param_fragments=frozen_param_fragments)
141
+ zero_model_states.append(z_model_state)
142
+
143
+ return zero_model_states
144
+
145
+
146
+ def parse_optim_states(files, ds_checkpoint_dir):
147
+ total_files = len(files)
148
+ state_dicts = []
149
+ for f in files:
150
+ state_dict = torch.load(f, map_location=device)
151
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
152
+ # and also handle the case where it was already removed by another helper script
153
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
154
+ state_dicts.append(state_dict)
155
+
156
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
157
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
158
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
159
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
160
+
161
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
162
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
163
+ # use the max of the partition_count to get the dp world_size.
164
+
165
+ if type(world_size) is list:
166
+ world_size = max(world_size)
167
+
168
+ if world_size != total_files:
169
+ raise ValueError(
170
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
171
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
172
+ )
173
+
174
+ # the groups are named differently in each stage
175
+ if zero_stage <= 2:
176
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
177
+ elif zero_stage == 3:
178
+ fp32_groups_key = FP32_FLAT_GROUPS
179
+ else:
180
+ raise ValueError(f"unknown zero stage {zero_stage}")
181
+
182
+ if zero_stage <= 2:
183
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
184
+ elif zero_stage == 3:
185
+ # if there is more than one param group, there will be multiple flattened tensors - one
186
+ # flattened tensor per group - for simplicity merge them into a single tensor
187
+ #
188
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
189
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
190
+
191
+ fp32_flat_groups = [
192
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
193
+ ]
194
+
195
+ return zero_stage, world_size, fp32_flat_groups
196
+
197
+
198
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
199
+ """
200
+ Returns fp32 state_dict reconstructed from ds checkpoint
201
+
202
+ Args:
203
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
204
+
205
+ """
206
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
207
+
208
+ optim_files = get_optim_files(ds_checkpoint_dir)
209
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
210
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
211
+
212
+ model_files = get_model_state_files(ds_checkpoint_dir)
213
+
214
+ zero_model_states = parse_model_states(model_files)
215
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
216
+
217
+ if zero_stage <= 2:
218
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
219
+ exclude_frozen_parameters)
220
+ elif zero_stage == 3:
221
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
222
+ exclude_frozen_parameters)
223
+
224
+
225
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
226
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
227
+ return
228
+
229
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
230
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
231
+
232
+ if debug:
233
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
234
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
235
+
236
+ wanted_params = len(frozen_param_shapes)
237
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
238
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
239
+ print(f'Frozen params: Have {avail_numel} numels to process.')
240
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
241
+
242
+ total_params = 0
243
+ total_numel = 0
244
+ for name, shape in frozen_param_shapes.items():
245
+ total_params += 1
246
+ unpartitioned_numel = shape.numel()
247
+ total_numel += unpartitioned_numel
248
+
249
+ state_dict[name] = frozen_param_fragments[name]
250
+
251
+ if debug:
252
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
253
+
254
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
255
+
256
+
257
+ def _has_callable(obj, fn):
258
+ attr = getattr(obj, fn, None)
259
+ return callable(attr)
260
+
261
+
262
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
263
+ param_shapes = zero_model_states[0].param_shapes
264
+
265
+ # Reconstruction protocol:
266
+ #
267
+ # XXX: document this
268
+
269
+ if debug:
270
+ for i in range(world_size):
271
+ for j in range(len(fp32_flat_groups[0])):
272
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
273
+
274
+ # XXX: memory usage doubles here (zero2)
275
+ num_param_groups = len(fp32_flat_groups[0])
276
+ merged_single_partition_of_fp32_groups = []
277
+ for i in range(num_param_groups):
278
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
279
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
280
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
281
+ avail_numel = sum(
282
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
283
+
284
+ if debug:
285
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
286
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
287
+ # not asserting if there is a mismatch due to possible padding
288
+ print(f"Have {avail_numel} numels to process.")
289
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
290
+
291
+ # params
292
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
293
+ # out-of-core computing solution
294
+ total_numel = 0
295
+ total_params = 0
296
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
297
+ offset = 0
298
+ avail_numel = full_single_fp32_vector.numel()
299
+ for name, shape in shapes.items():
300
+
301
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
302
+ total_numel += unpartitioned_numel
303
+ total_params += 1
304
+
305
+ if debug:
306
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
307
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
308
+ offset += unpartitioned_numel
309
+
310
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
311
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
312
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
313
+ # live optimizer object, so we are checking that the numbers are within the right range
314
+ align_to = 2 * world_size
315
+
316
+ def zero2_align(x):
317
+ return align_to * math.ceil(x / align_to)
318
+
319
+ if debug:
320
+ print(f"original offset={offset}, avail_numel={avail_numel}")
321
+
322
+ offset = zero2_align(offset)
323
+ avail_numel = zero2_align(avail_numel)
324
+
325
+ if debug:
326
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
327
+
328
+ # Sanity check
329
+ if offset != avail_numel:
330
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
331
+
332
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
333
+
334
+
335
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
336
+ exclude_frozen_parameters):
337
+ state_dict = OrderedDict()
338
+
339
+ # buffers
340
+ buffers = zero_model_states[0].buffers
341
+ state_dict.update(buffers)
342
+ if debug:
343
+ print(f"added {len(buffers)} buffers")
344
+
345
+ if not exclude_frozen_parameters:
346
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
347
+
348
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
349
+
350
+ # recover shared parameters
351
+ for pair in zero_model_states[0].shared_params:
352
+ if pair[1] in state_dict:
353
+ state_dict[pair[0]] = state_dict[pair[1]]
354
+
355
+ return state_dict
356
+
357
+
358
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
359
+ remainder = unpartitioned_numel % world_size
360
+ padding_numel = (world_size - remainder) if remainder else 0
361
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
362
+ return partitioned_numel, padding_numel
363
+
364
+
365
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
366
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
367
+ return
368
+
369
+ if debug:
370
+ for i in range(world_size):
371
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
372
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
373
+
374
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
375
+ wanted_params = len(frozen_param_shapes)
376
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
377
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
378
+ print(f'Frozen params: Have {avail_numel} numels to process.')
379
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
380
+
381
+ total_params = 0
382
+ total_numel = 0
383
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
384
+ total_params += 1
385
+ unpartitioned_numel = shape.numel()
386
+ total_numel += unpartitioned_numel
387
+
388
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
389
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
390
+
391
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
392
+
393
+ if debug:
394
+ print(
395
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
396
+ )
397
+
398
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
399
+
400
+
401
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
402
+ param_shapes = zero_model_states[0].param_shapes
403
+ avail_numel = fp32_flat_groups[0].numel() * world_size
404
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
405
+ # param, re-consolidating each param, while dealing with padding if any
406
+
407
+ # merge list of dicts, preserving order
408
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
409
+
410
+ if debug:
411
+ for i in range(world_size):
412
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
413
+
414
+ wanted_params = len(param_shapes)
415
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
416
+ # not asserting if there is a mismatch due to possible padding
417
+ avail_numel = fp32_flat_groups[0].numel() * world_size
418
+ print(f"Trainable params: Have {avail_numel} numels to process.")
419
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
420
+
421
+ # params
422
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
423
+ # out-of-core computing solution
424
+ offset = 0
425
+ total_numel = 0
426
+ total_params = 0
427
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
428
+ unpartitioned_numel = shape.numel()
429
+ total_numel += unpartitioned_numel
430
+ total_params += 1
431
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
432
+
433
+ if debug:
434
+ print(
435
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
436
+ )
437
+
438
+ # XXX: memory usage doubles here
439
+ state_dict[name] = torch.cat(
440
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
441
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
442
+ offset += partitioned_numel
443
+
444
+ offset *= world_size
445
+
446
+ # Sanity check
447
+ if offset != avail_numel:
448
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
449
+
450
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
451
+
452
+
453
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
454
+ exclude_frozen_parameters):
455
+ state_dict = OrderedDict()
456
+
457
+ # buffers
458
+ buffers = zero_model_states[0].buffers
459
+ state_dict.update(buffers)
460
+ if debug:
461
+ print(f"added {len(buffers)} buffers")
462
+
463
+ if not exclude_frozen_parameters:
464
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
465
+
466
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
467
+
468
+ # recover shared parameters
469
+ for pair in zero_model_states[0].shared_params:
470
+ if pair[1] in state_dict:
471
+ state_dict[pair[0]] = state_dict[pair[1]]
472
+
473
+ return state_dict
474
+
475
+
476
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
477
+ """
478
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
479
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
480
+ via a model hub.
481
+
482
+ Args:
483
+ - ``checkpoint_dir``: path to the desired checkpoint folder
484
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
485
+ - ``exclude_frozen_parameters``: exclude frozen parameters
486
+
487
+ Returns:
488
+ - pytorch ``state_dict``
489
+
490
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
491
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
492
+ the checkpoint.
493
+
494
+ A typical usage might be ::
495
+
496
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
497
+ # do the training and checkpoint saving
498
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
499
+ model = model.cpu() # move to cpu
500
+ model.load_state_dict(state_dict)
501
+ # submit to model hub or save the model to share with others
502
+
503
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
504
+ application. i.e. you will need to re-initialize the deepspeed engine, since
505
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
506
+
507
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
508
+
509
+ """
510
+ if tag is None:
511
+ latest_path = os.path.join(checkpoint_dir, 'latest')
512
+ if os.path.isfile(latest_path):
513
+ with open(latest_path, 'r') as fd:
514
+ tag = fd.read().strip()
515
+ else:
516
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
517
+
518
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
519
+
520
+ if not os.path.isdir(ds_checkpoint_dir):
521
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
522
+
523
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
524
+
525
+
526
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
527
+ output_dir,
528
+ max_shard_size="5GB",
529
+ safe_serialization=False,
530
+ tag=None,
531
+ exclude_frozen_parameters=False):
532
+ """
533
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
534
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
535
+
536
+ Args:
537
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
538
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
539
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
540
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
541
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
542
+ - ``exclude_frozen_parameters``: exclude frozen parameters
543
+ """
544
+ # Dependency pre-check
545
+ if safe_serialization:
546
+ try:
547
+ from safetensors.torch import save_file
548
+ except ImportError:
549
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
550
+ raise
551
+ if max_shard_size is not None:
552
+ try:
553
+ from huggingface_hub import split_torch_state_dict_into_shards
554
+ except ImportError:
555
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
556
+ raise
557
+
558
+ # Convert zero checkpoint to state_dict
559
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
560
+
561
+ # Shard the model if it is too big.
562
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
563
+ if max_shard_size is not None:
564
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
565
+ state_dict_split = split_torch_state_dict_into_shards(state_dict,
566
+ filename_pattern=filename_pattern,
567
+ max_shard_size=max_shard_size)
568
+ else:
569
+ from collections import namedtuple
570
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
571
+ state_dict_split = StateDictSplit(is_sharded=False,
572
+ filename_to_tensors={weights_name: list(state_dict.keys())})
573
+
574
+ # Save the model
575
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
576
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
577
+ shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
578
+ output_path = os.path.join(output_dir, shard_file)
579
+ if safe_serialization:
580
+ save_file(shard, output_path, metadata={"format": "pt"})
581
+ else:
582
+ torch.save(shard, output_path)
583
+
584
+ # Save index if sharded
585
+ if state_dict_split.is_sharded:
586
+ index = {
587
+ "metadata": state_dict_split.metadata,
588
+ "weight_map": state_dict_split.tensor_to_filename,
589
+ }
590
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
591
+ save_index_file = os.path.join(output_dir, save_index_file)
592
+ with open(save_index_file, "w", encoding="utf-8") as f:
593
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
594
+ f.write(content)
595
+
596
+
597
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
598
+ """
599
+ 1. Put the provided model to cpu
600
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
601
+ 3. Load it into the provided model
602
+
603
+ Args:
604
+ - ``model``: the model object to update
605
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
606
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
607
+
608
+ Returns:
609
+ - ``model`: modified model
610
+
611
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
612
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
613
+ conveniently placed for you in the checkpoint folder.
614
+
615
+ A typical usage might be ::
616
+
617
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
618
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
619
+ # submit to model hub or save the model to share with others
620
+
621
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
622
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
623
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
624
+
625
+ """
626
+ logger.info(f"Extracting fp32 weights")
627
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
628
+
629
+ logger.info(f"Overwriting model with fp32 weights")
630
+ model = model.cpu()
631
+ model.load_state_dict(state_dict, strict=False)
632
+
633
+ return model
634
+
635
+
636
+ if __name__ == "__main__":
637
+ parser = argparse.ArgumentParser()
638
+ parser.add_argument("checkpoint_dir",
639
+ type=str,
640
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
641
+ parser.add_argument("output_dir",
642
+ type=str,
643
+ help="directory to the pytorch fp32 state_dict output files"
644
+ "(e.g. path/checkpoint-12-output/)")
645
+ parser.add_argument(
646
+ "--max_shard_size",
647
+ type=str,
648
+ default="5GB",
649
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
650
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
651
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
652
+ "without CPU OOM issues.")
653
+ parser.add_argument(
654
+ "--safe_serialization",
655
+ default=False,
656
+ action='store_true',
657
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
658
+ parser.add_argument("-t",
659
+ "--tag",
660
+ type=str,
661
+ default=None,
662
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
663
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
664
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
665
+ args = parser.parse_args()
666
+
667
+ debug = args.debug
668
+
669
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
670
+ args.output_dir,
671
+ max_shard_size=args.max_shard_size,
672
+ safe_serialization=args.safe_serialization,
673
+ tag=args.tag,
674
+ exclude_frozen_parameters=args.exclude_frozen_parameters)