---
library_name: peft
tags:
- axolotl
- generated_from_trainer
base_model: jhflow/mistral7b-lora-multi-turn-v2
model-index:
- name: 61e56400-6b71-4560-9310-ebae94713f72
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: jhflow/mistral7b-lora-multi-turn-v2
bf16: auto
dataset_prepared_path: last_run_prepared
datasets:
- data_files:
  - 86db9326ad63cb9d_train_data.json
  ds_type: json
  format: custom
  path: 86db9326ad63cb9d_train_data.json
  type:
    field: null
    field_input: null
    field_instruction: title
    field_output: content
    field_system: null
    format: null
    no_input_format: null
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 2
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: taopanda/61e56400-6b71-4560-9310-ebae94713f72
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
loss_watchdog_patience: 3
loss_watchdog_threshold: 5.0
lr_scheduler: cosine
micro_batch_size: 2
model_type: MistralForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: ./outputs/lora-out/taopanda-4_d971ef8e-ddfc-4982-8273-bc0a7fdf9c0b
pad_to_sequence_len: true
resume_from_checkpoint: null
sample_packing: true
saves_per_epoch: 1
seed: 89403
sequence_len: 8192
special_tokens: null
strict: false
tf32: false
tokenizer_type: LlamaTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.1
wandb_entity: fatcat87-taopanda
wandb_log_model: null
wandb_mode: online
wandb_name: taopanda-4_d971ef8e-ddfc-4982-8273-bc0a7fdf9c0b
wandb_project: subnet56
wandb_runid: taopanda-4_d971ef8e-ddfc-4982-8273-bc0a7fdf9c0b
wandb_watch: null
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

```

</details><br>

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/fatcat87-taopanda/subnet56/runs/4wehya55)
# 61e56400-6b71-4560-9310-ebae94713f72

This model is a fine-tuned version of [jhflow/mistral7b-lora-multi-turn-v2](https://huggingface.co/jhflow/mistral7b-lora-multi-turn-v2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9842

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 89403
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 2

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.2763        | 0.0100 | 1    | 2.2024          |
| 2.0098        | 0.4975 | 50   | 2.0315          |
| 2.0265        | 0.9950 | 100  | 2.0004          |
| 1.9396        | 1.4677 | 150  | 1.9877          |
| 1.9331        | 1.9652 | 200  | 1.9842          |


### Framework versions

- PEFT 0.11.1
- Transformers 4.42.3
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1