FatCat87 commited on
Commit
12dad41
·
verified ·
1 Parent(s): 02a59c4

Upload folder using huggingface_hub

Browse files
Files changed (47) hide show
  1. checkpoint-490/README.md +202 -0
  2. checkpoint-490/adapter_config.json +34 -0
  3. checkpoint-490/adapter_model.safetensors +3 -0
  4. checkpoint-490/added_tokens.json +25 -0
  5. checkpoint-490/merges.txt +0 -0
  6. checkpoint-490/optimizer.pt +3 -0
  7. checkpoint-490/rng_state_0.pth +3 -0
  8. checkpoint-490/rng_state_1.pth +3 -0
  9. checkpoint-490/rng_state_2.pth +3 -0
  10. checkpoint-490/rng_state_3.pth +3 -0
  11. checkpoint-490/scheduler.pt +3 -0
  12. checkpoint-490/special_tokens_map.json +31 -0
  13. checkpoint-490/tokenizer.json +0 -0
  14. checkpoint-490/tokenizer_config.json +216 -0
  15. checkpoint-490/trainer_state.json +3487 -0
  16. checkpoint-490/training_args.bin +3 -0
  17. checkpoint-490/vocab.json +0 -0
  18. checkpoint-980/README.md +202 -0
  19. checkpoint-980/adapter_config.json +34 -0
  20. checkpoint-980/adapter_model.safetensors +3 -0
  21. checkpoint-980/added_tokens.json +25 -0
  22. checkpoint-980/merges.txt +0 -0
  23. checkpoint-980/optimizer.pt +3 -0
  24. checkpoint-980/rng_state_0.pth +3 -0
  25. checkpoint-980/rng_state_1.pth +3 -0
  26. checkpoint-980/rng_state_2.pth +3 -0
  27. checkpoint-980/rng_state_3.pth +3 -0
  28. checkpoint-980/scheduler.pt +3 -0
  29. checkpoint-980/special_tokens_map.json +31 -0
  30. checkpoint-980/tokenizer.json +0 -0
  31. checkpoint-980/tokenizer_config.json +216 -0
  32. checkpoint-980/trainer_state.json +0 -0
  33. checkpoint-980/training_args.bin +3 -0
  34. checkpoint-980/vocab.json +0 -0
  35. merged/added_tokens.json +25 -0
  36. merged/config.json +29 -0
  37. merged/generation_config.json +11 -0
  38. merged/merges.txt +0 -0
  39. merged/pytorch_model-00001-of-00004.bin +3 -0
  40. merged/pytorch_model-00002-of-00004.bin +3 -0
  41. merged/pytorch_model-00003-of-00004.bin +3 -0
  42. merged/pytorch_model-00004-of-00004.bin +3 -0
  43. merged/pytorch_model.bin.index.json +346 -0
  44. merged/special_tokens_map.json +31 -0
  45. merged/tokenizer.json +0 -0
  46. merged/tokenizer_config.json +216 -0
  47. merged/vocab.json +0 -0
checkpoint-490/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: unsloth/Qwen2.5-Math-7B-Instruct
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
checkpoint-490/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "unsloth/Qwen2.5-Math-7B-Instruct",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 32,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "gate_proj",
24
+ "v_proj",
25
+ "o_proj",
26
+ "k_proj",
27
+ "up_proj",
28
+ "down_proj",
29
+ "q_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
checkpoint-490/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6677d26c2d20b730a166642c149d5662400618d2675a8527c6dc01a4553755f3
3
+ size 323014168
checkpoint-490/added_tokens.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|PAD_TOKEN|>": 151665,
5
+ "<|box_end|>": 151649,
6
+ "<|box_start|>": 151648,
7
+ "<|endoftext|>": 151643,
8
+ "<|file_sep|>": 151664,
9
+ "<|fim_middle|>": 151660,
10
+ "<|fim_pad|>": 151662,
11
+ "<|fim_prefix|>": 151659,
12
+ "<|fim_suffix|>": 151661,
13
+ "<|im_end|>": 151645,
14
+ "<|im_start|>": 151644,
15
+ "<|image_pad|>": 151655,
16
+ "<|object_ref_end|>": 151647,
17
+ "<|object_ref_start|>": 151646,
18
+ "<|quad_end|>": 151651,
19
+ "<|quad_start|>": 151650,
20
+ "<|repo_name|>": 151663,
21
+ "<|video_pad|>": 151656,
22
+ "<|vision_end|>": 151653,
23
+ "<|vision_pad|>": 151654,
24
+ "<|vision_start|>": 151652
25
+ }
checkpoint-490/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-490/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:53c78b5ada8ff37aa30b771c3b8501e12f700e56480e31b97c437adfd4183aa7
3
+ size 162231028
checkpoint-490/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5f6ae4213043965e71fd346c87a42ac011bb8933e0a8d4b751e69e05989f02c0
3
+ size 14960
checkpoint-490/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:73d49dd7ab96b981ab7b8cd418990f9fd393eccc306c0d80469330ed4fae0255
3
+ size 14960
checkpoint-490/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:96be712774ef26cba6aedd43fb96088571e6c70d5b09bc34161dbb9c0eb14607
3
+ size 14960
checkpoint-490/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b2735853bb5aabe937b892088b8a0e18cc309a1c6ea97cd9fe24d215628ab782
3
+ size 14960
checkpoint-490/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:54b09e6e913be00570a3d98a93378e2cc44ad984f02b0247d3108dcff649dbcd
3
+ size 1064
checkpoint-490/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|PAD_TOKEN|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
checkpoint-490/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-490/tokenizer_config.json ADDED
@@ -0,0 +1,216 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ },
181
+ "151665": {
182
+ "content": "<|PAD_TOKEN|>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": true
188
+ }
189
+ },
190
+ "additional_special_tokens": [
191
+ "<|im_start|>",
192
+ "<|im_end|>",
193
+ "<|object_ref_start|>",
194
+ "<|object_ref_end|>",
195
+ "<|box_start|>",
196
+ "<|box_end|>",
197
+ "<|quad_start|>",
198
+ "<|quad_end|>",
199
+ "<|vision_start|>",
200
+ "<|vision_end|>",
201
+ "<|vision_pad|>",
202
+ "<|image_pad|>",
203
+ "<|video_pad|>"
204
+ ],
205
+ "bos_token": null,
206
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'Please reason step by step, and put your final answer within \\\\boxed{}.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nPlease reason step by step, and put your final answer within \\\\boxed{}.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
207
+ "clean_up_tokenization_spaces": false,
208
+ "eos_token": "<|im_end|>",
209
+ "errors": "replace",
210
+ "model_max_length": 131072,
211
+ "pad_token": "<|PAD_TOKEN|>",
212
+ "padding_side": "left",
213
+ "split_special_tokens": false,
214
+ "tokenizer_class": "Qwen2Tokenizer",
215
+ "unk_token": null
216
+ }
checkpoint-490/trainer_state.json ADDED
@@ -0,0 +1,3487 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9994900560938297,
5
+ "eval_steps": 245,
6
+ "global_step": 490,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.002039775624681285,
13
+ "grad_norm": 0.08994754403829575,
14
+ "learning_rate": 2e-05,
15
+ "loss": 2.6733,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.002039775624681285,
20
+ "eval_loss": 2.6805498600006104,
21
+ "eval_runtime": 48.2372,
22
+ "eval_samples_per_second": 17.124,
23
+ "eval_steps_per_second": 2.156,
24
+ "step": 1
25
+ },
26
+ {
27
+ "epoch": 0.00407955124936257,
28
+ "grad_norm": 0.09641231596469879,
29
+ "learning_rate": 4e-05,
30
+ "loss": 2.7875,
31
+ "step": 2
32
+ },
33
+ {
34
+ "epoch": 0.006119326874043855,
35
+ "grad_norm": 0.10044872015714645,
36
+ "learning_rate": 6e-05,
37
+ "loss": 2.6516,
38
+ "step": 3
39
+ },
40
+ {
41
+ "epoch": 0.00815910249872514,
42
+ "grad_norm": 0.08677750825881958,
43
+ "learning_rate": 8e-05,
44
+ "loss": 2.4109,
45
+ "step": 4
46
+ },
47
+ {
48
+ "epoch": 0.010198878123406425,
49
+ "grad_norm": 0.10869669914245605,
50
+ "learning_rate": 0.0001,
51
+ "loss": 2.6336,
52
+ "step": 5
53
+ },
54
+ {
55
+ "epoch": 0.01223865374808771,
56
+ "grad_norm": 0.1180991679430008,
57
+ "learning_rate": 0.00012,
58
+ "loss": 2.6001,
59
+ "step": 6
60
+ },
61
+ {
62
+ "epoch": 0.014278429372768995,
63
+ "grad_norm": 0.1641693264245987,
64
+ "learning_rate": 0.00014,
65
+ "loss": 2.9137,
66
+ "step": 7
67
+ },
68
+ {
69
+ "epoch": 0.01631820499745028,
70
+ "grad_norm": 0.17794281244277954,
71
+ "learning_rate": 0.00016,
72
+ "loss": 2.835,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.018357980622131564,
77
+ "grad_norm": 0.16260501742362976,
78
+ "learning_rate": 0.00018,
79
+ "loss": 2.6015,
80
+ "step": 9
81
+ },
82
+ {
83
+ "epoch": 0.02039775624681285,
84
+ "grad_norm": 0.13795699179172516,
85
+ "learning_rate": 0.0002,
86
+ "loss": 2.2552,
87
+ "step": 10
88
+ },
89
+ {
90
+ "epoch": 0.022437531871494134,
91
+ "grad_norm": 0.15532873570919037,
92
+ "learning_rate": 0.00019999947552365961,
93
+ "loss": 2.4393,
94
+ "step": 11
95
+ },
96
+ {
97
+ "epoch": 0.02447730749617542,
98
+ "grad_norm": 0.159002423286438,
99
+ "learning_rate": 0.00019999790210013988,
100
+ "loss": 2.7684,
101
+ "step": 12
102
+ },
103
+ {
104
+ "epoch": 0.026517083120856707,
105
+ "grad_norm": 0.17115084826946259,
106
+ "learning_rate": 0.0001999952797459453,
107
+ "loss": 2.2409,
108
+ "step": 13
109
+ },
110
+ {
111
+ "epoch": 0.02855685874553799,
112
+ "grad_norm": 0.26108402013778687,
113
+ "learning_rate": 0.0001999916084885832,
114
+ "loss": 2.6388,
115
+ "step": 14
116
+ },
117
+ {
118
+ "epoch": 0.030596634370219276,
119
+ "grad_norm": 0.29758986830711365,
120
+ "learning_rate": 0.00019998688836656323,
121
+ "loss": 2.4358,
122
+ "step": 15
123
+ },
124
+ {
125
+ "epoch": 0.03263640999490056,
126
+ "grad_norm": 0.2338196337223053,
127
+ "learning_rate": 0.0001999811194293973,
128
+ "loss": 2.3898,
129
+ "step": 16
130
+ },
131
+ {
132
+ "epoch": 0.03467618561958185,
133
+ "grad_norm": 0.2143183797597885,
134
+ "learning_rate": 0.00019997430173759875,
135
+ "loss": 2.6874,
136
+ "step": 17
137
+ },
138
+ {
139
+ "epoch": 0.03671596124426313,
140
+ "grad_norm": 0.19598309695720673,
141
+ "learning_rate": 0.00019996643536268204,
142
+ "loss": 2.409,
143
+ "step": 18
144
+ },
145
+ {
146
+ "epoch": 0.038755736868944415,
147
+ "grad_norm": 0.16046980023384094,
148
+ "learning_rate": 0.00019995752038716168,
149
+ "loss": 2.2378,
150
+ "step": 19
151
+ },
152
+ {
153
+ "epoch": 0.0407955124936257,
154
+ "grad_norm": 0.15274696052074432,
155
+ "learning_rate": 0.00019994755690455152,
156
+ "loss": 2.3413,
157
+ "step": 20
158
+ },
159
+ {
160
+ "epoch": 0.04283528811830699,
161
+ "grad_norm": 0.24761317670345306,
162
+ "learning_rate": 0.0001999365450193638,
163
+ "loss": 2.3382,
164
+ "step": 21
165
+ },
166
+ {
167
+ "epoch": 0.04487506374298827,
168
+ "grad_norm": 0.2602517604827881,
169
+ "learning_rate": 0.00019992448484710797,
170
+ "loss": 2.3355,
171
+ "step": 22
172
+ },
173
+ {
174
+ "epoch": 0.046914839367669554,
175
+ "grad_norm": 0.25506100058555603,
176
+ "learning_rate": 0.00019991137651428957,
177
+ "loss": 2.4828,
178
+ "step": 23
179
+ },
180
+ {
181
+ "epoch": 0.04895461499235084,
182
+ "grad_norm": 0.19493895769119263,
183
+ "learning_rate": 0.0001998972201584088,
184
+ "loss": 2.3154,
185
+ "step": 24
186
+ },
187
+ {
188
+ "epoch": 0.05099439061703213,
189
+ "grad_norm": 0.16005843877792358,
190
+ "learning_rate": 0.0001998820159279591,
191
+ "loss": 2.1472,
192
+ "step": 25
193
+ },
194
+ {
195
+ "epoch": 0.053034166241713414,
196
+ "grad_norm": 0.17840257287025452,
197
+ "learning_rate": 0.00019986576398242566,
198
+ "loss": 2.1624,
199
+ "step": 26
200
+ },
201
+ {
202
+ "epoch": 0.05507394186639469,
203
+ "grad_norm": 0.15280942618846893,
204
+ "learning_rate": 0.0001998484644922837,
205
+ "loss": 2.0526,
206
+ "step": 27
207
+ },
208
+ {
209
+ "epoch": 0.05711371749107598,
210
+ "grad_norm": 0.16933050751686096,
211
+ "learning_rate": 0.00019983011763899673,
212
+ "loss": 2.2176,
213
+ "step": 28
214
+ },
215
+ {
216
+ "epoch": 0.059153493115757266,
217
+ "grad_norm": 0.21265609562397003,
218
+ "learning_rate": 0.0001998107236150145,
219
+ "loss": 2.2559,
220
+ "step": 29
221
+ },
222
+ {
223
+ "epoch": 0.06119326874043855,
224
+ "grad_norm": 0.19340573251247406,
225
+ "learning_rate": 0.00019979028262377118,
226
+ "loss": 2.3202,
227
+ "step": 30
228
+ },
229
+ {
230
+ "epoch": 0.06323304436511984,
231
+ "grad_norm": 0.16693681478500366,
232
+ "learning_rate": 0.0001997687948796831,
233
+ "loss": 2.0623,
234
+ "step": 31
235
+ },
236
+ {
237
+ "epoch": 0.06527281998980113,
238
+ "grad_norm": 0.18830184638500214,
239
+ "learning_rate": 0.00019974626060814647,
240
+ "loss": 2.1929,
241
+ "step": 32
242
+ },
243
+ {
244
+ "epoch": 0.06731259561448241,
245
+ "grad_norm": 0.16206099092960358,
246
+ "learning_rate": 0.0001997226800455352,
247
+ "loss": 2.3048,
248
+ "step": 33
249
+ },
250
+ {
251
+ "epoch": 0.0693523712391637,
252
+ "grad_norm": 0.21650008857250214,
253
+ "learning_rate": 0.00019969805343919821,
254
+ "loss": 2.2928,
255
+ "step": 34
256
+ },
257
+ {
258
+ "epoch": 0.07139214686384497,
259
+ "grad_norm": 0.19560708105564117,
260
+ "learning_rate": 0.00019967238104745696,
261
+ "loss": 2.4389,
262
+ "step": 35
263
+ },
264
+ {
265
+ "epoch": 0.07343192248852626,
266
+ "grad_norm": 0.17428375780582428,
267
+ "learning_rate": 0.00019964566313960264,
268
+ "loss": 2.1017,
269
+ "step": 36
270
+ },
271
+ {
272
+ "epoch": 0.07547169811320754,
273
+ "grad_norm": 0.14846819639205933,
274
+ "learning_rate": 0.00019961789999589356,
275
+ "loss": 2.0431,
276
+ "step": 37
277
+ },
278
+ {
279
+ "epoch": 0.07751147373788883,
280
+ "grad_norm": 0.14796215295791626,
281
+ "learning_rate": 0.00019958909190755187,
282
+ "loss": 2.0363,
283
+ "step": 38
284
+ },
285
+ {
286
+ "epoch": 0.07955124936257012,
287
+ "grad_norm": 0.17396488785743713,
288
+ "learning_rate": 0.0001995592391767608,
289
+ "loss": 2.0835,
290
+ "step": 39
291
+ },
292
+ {
293
+ "epoch": 0.0815910249872514,
294
+ "grad_norm": 0.1914213001728058,
295
+ "learning_rate": 0.0001995283421166614,
296
+ "loss": 2.0242,
297
+ "step": 40
298
+ },
299
+ {
300
+ "epoch": 0.08363080061193269,
301
+ "grad_norm": 0.16040053963661194,
302
+ "learning_rate": 0.00019949640105134918,
303
+ "loss": 2.2171,
304
+ "step": 41
305
+ },
306
+ {
307
+ "epoch": 0.08567057623661398,
308
+ "grad_norm": 0.16291815042495728,
309
+ "learning_rate": 0.00019946341631587087,
310
+ "loss": 2.2144,
311
+ "step": 42
312
+ },
313
+ {
314
+ "epoch": 0.08771035186129526,
315
+ "grad_norm": 0.16890890896320343,
316
+ "learning_rate": 0.00019942938825622065,
317
+ "loss": 2.0775,
318
+ "step": 43
319
+ },
320
+ {
321
+ "epoch": 0.08975012748597654,
322
+ "grad_norm": 0.18898645043373108,
323
+ "learning_rate": 0.0001993943172293368,
324
+ "loss": 2.262,
325
+ "step": 44
326
+ },
327
+ {
328
+ "epoch": 0.09178990311065782,
329
+ "grad_norm": 0.19105440378189087,
330
+ "learning_rate": 0.00019935820360309777,
331
+ "loss": 2.0232,
332
+ "step": 45
333
+ },
334
+ {
335
+ "epoch": 0.09382967873533911,
336
+ "grad_norm": 0.17944768071174622,
337
+ "learning_rate": 0.00019932104775631846,
338
+ "loss": 2.2564,
339
+ "step": 46
340
+ },
341
+ {
342
+ "epoch": 0.0958694543600204,
343
+ "grad_norm": 0.1691497266292572,
344
+ "learning_rate": 0.0001992828500787461,
345
+ "loss": 2.0249,
346
+ "step": 47
347
+ },
348
+ {
349
+ "epoch": 0.09790922998470168,
350
+ "grad_norm": 0.18704521656036377,
351
+ "learning_rate": 0.00019924361097105623,
352
+ "loss": 2.2058,
353
+ "step": 48
354
+ },
355
+ {
356
+ "epoch": 0.09994900560938297,
357
+ "grad_norm": 0.24133948981761932,
358
+ "learning_rate": 0.00019920333084484857,
359
+ "loss": 2.2835,
360
+ "step": 49
361
+ },
362
+ {
363
+ "epoch": 0.10198878123406425,
364
+ "grad_norm": 0.210649773478508,
365
+ "learning_rate": 0.00019916201012264254,
366
+ "loss": 2.1052,
367
+ "step": 50
368
+ },
369
+ {
370
+ "epoch": 0.10402855685874554,
371
+ "grad_norm": 0.19624340534210205,
372
+ "learning_rate": 0.00019911964923787295,
373
+ "loss": 2.2474,
374
+ "step": 51
375
+ },
376
+ {
377
+ "epoch": 0.10606833248342683,
378
+ "grad_norm": 0.2529032230377197,
379
+ "learning_rate": 0.0001990762486348855,
380
+ "loss": 1.9782,
381
+ "step": 52
382
+ },
383
+ {
384
+ "epoch": 0.10810810810810811,
385
+ "grad_norm": 0.2078029066324234,
386
+ "learning_rate": 0.00019903180876893194,
387
+ "loss": 2.3627,
388
+ "step": 53
389
+ },
390
+ {
391
+ "epoch": 0.11014788373278939,
392
+ "grad_norm": 0.23153568804264069,
393
+ "learning_rate": 0.00019898633010616542,
394
+ "loss": 1.9749,
395
+ "step": 54
396
+ },
397
+ {
398
+ "epoch": 0.11218765935747067,
399
+ "grad_norm": 0.20798815786838531,
400
+ "learning_rate": 0.00019893981312363562,
401
+ "loss": 2.111,
402
+ "step": 55
403
+ },
404
+ {
405
+ "epoch": 0.11422743498215196,
406
+ "grad_norm": 0.20742167532444,
407
+ "learning_rate": 0.00019889225830928365,
408
+ "loss": 2.113,
409
+ "step": 56
410
+ },
411
+ {
412
+ "epoch": 0.11626721060683325,
413
+ "grad_norm": 0.21235893666744232,
414
+ "learning_rate": 0.00019884366616193706,
415
+ "loss": 2.0307,
416
+ "step": 57
417
+ },
418
+ {
419
+ "epoch": 0.11830698623151453,
420
+ "grad_norm": 0.19754983484745026,
421
+ "learning_rate": 0.0001987940371913044,
422
+ "loss": 1.9883,
423
+ "step": 58
424
+ },
425
+ {
426
+ "epoch": 0.12034676185619582,
427
+ "grad_norm": 0.20224173367023468,
428
+ "learning_rate": 0.0001987433719179702,
429
+ "loss": 2.0299,
430
+ "step": 59
431
+ },
432
+ {
433
+ "epoch": 0.1223865374808771,
434
+ "grad_norm": 0.20431111752986908,
435
+ "learning_rate": 0.00019869167087338907,
436
+ "loss": 2.0,
437
+ "step": 60
438
+ },
439
+ {
440
+ "epoch": 0.12442631310555839,
441
+ "grad_norm": 0.21355204284191132,
442
+ "learning_rate": 0.00019863893459988062,
443
+ "loss": 1.9365,
444
+ "step": 61
445
+ },
446
+ {
447
+ "epoch": 0.12646608873023968,
448
+ "grad_norm": 0.2394651174545288,
449
+ "learning_rate": 0.00019858516365062334,
450
+ "loss": 1.9264,
451
+ "step": 62
452
+ },
453
+ {
454
+ "epoch": 0.12850586435492095,
455
+ "grad_norm": 0.20690159499645233,
456
+ "learning_rate": 0.00019853035858964906,
457
+ "loss": 1.9777,
458
+ "step": 63
459
+ },
460
+ {
461
+ "epoch": 0.13054563997960225,
462
+ "grad_norm": 0.21029432117938995,
463
+ "learning_rate": 0.00019847451999183694,
464
+ "loss": 2.2063,
465
+ "step": 64
466
+ },
467
+ {
468
+ "epoch": 0.13258541560428352,
469
+ "grad_norm": 0.2483580857515335,
470
+ "learning_rate": 0.00019841764844290744,
471
+ "loss": 1.9817,
472
+ "step": 65
473
+ },
474
+ {
475
+ "epoch": 0.13462519122896482,
476
+ "grad_norm": 0.2200578898191452,
477
+ "learning_rate": 0.0001983597445394162,
478
+ "loss": 1.8286,
479
+ "step": 66
480
+ },
481
+ {
482
+ "epoch": 0.1366649668536461,
483
+ "grad_norm": 0.23194506764411926,
484
+ "learning_rate": 0.00019830080888874778,
485
+ "loss": 1.8918,
486
+ "step": 67
487
+ },
488
+ {
489
+ "epoch": 0.1387047424783274,
490
+ "grad_norm": 0.2092316597700119,
491
+ "learning_rate": 0.00019824084210910925,
492
+ "loss": 2.0326,
493
+ "step": 68
494
+ },
495
+ {
496
+ "epoch": 0.14074451810300867,
497
+ "grad_norm": 0.226849764585495,
498
+ "learning_rate": 0.00019817984482952376,
499
+ "loss": 2.1387,
500
+ "step": 69
501
+ },
502
+ {
503
+ "epoch": 0.14278429372768994,
504
+ "grad_norm": 0.25519493222236633,
505
+ "learning_rate": 0.0001981178176898239,
506
+ "loss": 1.9261,
507
+ "step": 70
508
+ },
509
+ {
510
+ "epoch": 0.14482406935237124,
511
+ "grad_norm": 0.2155541330575943,
512
+ "learning_rate": 0.00019805476134064507,
513
+ "loss": 2.2176,
514
+ "step": 71
515
+ },
516
+ {
517
+ "epoch": 0.14686384497705252,
518
+ "grad_norm": 0.23612210154533386,
519
+ "learning_rate": 0.00019799067644341844,
520
+ "loss": 2.1125,
521
+ "step": 72
522
+ },
523
+ {
524
+ "epoch": 0.14890362060173382,
525
+ "grad_norm": 0.2563931941986084,
526
+ "learning_rate": 0.00019792556367036432,
527
+ "loss": 1.9459,
528
+ "step": 73
529
+ },
530
+ {
531
+ "epoch": 0.1509433962264151,
532
+ "grad_norm": 0.34834709763526917,
533
+ "learning_rate": 0.0001978594237044849,
534
+ "loss": 2.091,
535
+ "step": 74
536
+ },
537
+ {
538
+ "epoch": 0.1529831718510964,
539
+ "grad_norm": 0.221855029463768,
540
+ "learning_rate": 0.00019779225723955707,
541
+ "loss": 1.8867,
542
+ "step": 75
543
+ },
544
+ {
545
+ "epoch": 0.15502294747577766,
546
+ "grad_norm": 0.2613975405693054,
547
+ "learning_rate": 0.0001977240649801253,
548
+ "loss": 1.9889,
549
+ "step": 76
550
+ },
551
+ {
552
+ "epoch": 0.15706272310045896,
553
+ "grad_norm": 0.3117937743663788,
554
+ "learning_rate": 0.00019765484764149415,
555
+ "loss": 2.0743,
556
+ "step": 77
557
+ },
558
+ {
559
+ "epoch": 0.15910249872514023,
560
+ "grad_norm": 0.23428964614868164,
561
+ "learning_rate": 0.00019758460594972068,
562
+ "loss": 2.1752,
563
+ "step": 78
564
+ },
565
+ {
566
+ "epoch": 0.1611422743498215,
567
+ "grad_norm": 0.23182815313339233,
568
+ "learning_rate": 0.00019751334064160706,
569
+ "loss": 1.9315,
570
+ "step": 79
571
+ },
572
+ {
573
+ "epoch": 0.1631820499745028,
574
+ "grad_norm": 0.3055015206336975,
575
+ "learning_rate": 0.00019744105246469263,
576
+ "loss": 2.0348,
577
+ "step": 80
578
+ },
579
+ {
580
+ "epoch": 0.16522182559918408,
581
+ "grad_norm": 0.22985045611858368,
582
+ "learning_rate": 0.00019736774217724614,
583
+ "loss": 1.792,
584
+ "step": 81
585
+ },
586
+ {
587
+ "epoch": 0.16726160122386538,
588
+ "grad_norm": 0.2585189938545227,
589
+ "learning_rate": 0.00019729341054825782,
590
+ "loss": 2.0945,
591
+ "step": 82
592
+ },
593
+ {
594
+ "epoch": 0.16930137684854665,
595
+ "grad_norm": 0.2798707187175751,
596
+ "learning_rate": 0.00019721805835743134,
597
+ "loss": 2.0114,
598
+ "step": 83
599
+ },
600
+ {
601
+ "epoch": 0.17134115247322795,
602
+ "grad_norm": 0.2886582016944885,
603
+ "learning_rate": 0.00019714168639517544,
604
+ "loss": 2.0575,
605
+ "step": 84
606
+ },
607
+ {
608
+ "epoch": 0.17338092809790923,
609
+ "grad_norm": 0.2944013178348541,
610
+ "learning_rate": 0.00019706429546259593,
611
+ "loss": 2.1074,
612
+ "step": 85
613
+ },
614
+ {
615
+ "epoch": 0.17542070372259053,
616
+ "grad_norm": 0.318002313375473,
617
+ "learning_rate": 0.00019698588637148703,
618
+ "loss": 1.9883,
619
+ "step": 86
620
+ },
621
+ {
622
+ "epoch": 0.1774604793472718,
623
+ "grad_norm": 0.256496787071228,
624
+ "learning_rate": 0.00019690645994432305,
625
+ "loss": 1.8408,
626
+ "step": 87
627
+ },
628
+ {
629
+ "epoch": 0.17950025497195307,
630
+ "grad_norm": 0.3593447208404541,
631
+ "learning_rate": 0.0001968260170142496,
632
+ "loss": 1.9313,
633
+ "step": 88
634
+ },
635
+ {
636
+ "epoch": 0.18154003059663437,
637
+ "grad_norm": 0.4645783305168152,
638
+ "learning_rate": 0.00019674455842507492,
639
+ "loss": 1.9448,
640
+ "step": 89
641
+ },
642
+ {
643
+ "epoch": 0.18357980622131564,
644
+ "grad_norm": 0.2802218198776245,
645
+ "learning_rate": 0.00019666208503126112,
646
+ "loss": 1.9091,
647
+ "step": 90
648
+ },
649
+ {
650
+ "epoch": 0.18561958184599694,
651
+ "grad_norm": 0.39699026942253113,
652
+ "learning_rate": 0.00019657859769791505,
653
+ "loss": 1.9936,
654
+ "step": 91
655
+ },
656
+ {
657
+ "epoch": 0.18765935747067822,
658
+ "grad_norm": 0.4515025317668915,
659
+ "learning_rate": 0.00019649409730077935,
660
+ "loss": 2.2269,
661
+ "step": 92
662
+ },
663
+ {
664
+ "epoch": 0.18969913309535952,
665
+ "grad_norm": 0.24775496125221252,
666
+ "learning_rate": 0.00019640858472622316,
667
+ "loss": 1.8843,
668
+ "step": 93
669
+ },
670
+ {
671
+ "epoch": 0.1917389087200408,
672
+ "grad_norm": 0.35014575719833374,
673
+ "learning_rate": 0.00019632206087123296,
674
+ "loss": 2.0159,
675
+ "step": 94
676
+ },
677
+ {
678
+ "epoch": 0.1937786843447221,
679
+ "grad_norm": 0.4293341040611267,
680
+ "learning_rate": 0.00019623452664340306,
681
+ "loss": 2.1129,
682
+ "step": 95
683
+ },
684
+ {
685
+ "epoch": 0.19581845996940336,
686
+ "grad_norm": 0.249364972114563,
687
+ "learning_rate": 0.000196145982960926,
688
+ "loss": 2.1385,
689
+ "step": 96
690
+ },
691
+ {
692
+ "epoch": 0.19785823559408466,
693
+ "grad_norm": 0.3796793222427368,
694
+ "learning_rate": 0.00019605643075258321,
695
+ "loss": 1.9737,
696
+ "step": 97
697
+ },
698
+ {
699
+ "epoch": 0.19989801121876594,
700
+ "grad_norm": 0.41410332918167114,
701
+ "learning_rate": 0.00019596587095773495,
702
+ "loss": 1.895,
703
+ "step": 98
704
+ },
705
+ {
706
+ "epoch": 0.2019377868434472,
707
+ "grad_norm": 0.2810049057006836,
708
+ "learning_rate": 0.0001958743045263106,
709
+ "loss": 1.9859,
710
+ "step": 99
711
+ },
712
+ {
713
+ "epoch": 0.2039775624681285,
714
+ "grad_norm": 0.37417009472846985,
715
+ "learning_rate": 0.00019578173241879872,
716
+ "loss": 1.9447,
717
+ "step": 100
718
+ },
719
+ {
720
+ "epoch": 0.20601733809280978,
721
+ "grad_norm": 0.33988890051841736,
722
+ "learning_rate": 0.0001956881556062369,
723
+ "loss": 1.8362,
724
+ "step": 101
725
+ },
726
+ {
727
+ "epoch": 0.20805711371749108,
728
+ "grad_norm": 0.27952101826667786,
729
+ "learning_rate": 0.00019559357507020162,
730
+ "loss": 1.9745,
731
+ "step": 102
732
+ },
733
+ {
734
+ "epoch": 0.21009688934217235,
735
+ "grad_norm": 0.24870562553405762,
736
+ "learning_rate": 0.00019549799180279792,
737
+ "loss": 1.8926,
738
+ "step": 103
739
+ },
740
+ {
741
+ "epoch": 0.21213666496685366,
742
+ "grad_norm": 0.33430561423301697,
743
+ "learning_rate": 0.00019540140680664913,
744
+ "loss": 2.0914,
745
+ "step": 104
746
+ },
747
+ {
748
+ "epoch": 0.21417644059153493,
749
+ "grad_norm": 0.3203825056552887,
750
+ "learning_rate": 0.0001953038210948861,
751
+ "loss": 2.0238,
752
+ "step": 105
753
+ },
754
+ {
755
+ "epoch": 0.21621621621621623,
756
+ "grad_norm": 0.2822887897491455,
757
+ "learning_rate": 0.00019520523569113677,
758
+ "loss": 2.053,
759
+ "step": 106
760
+ },
761
+ {
762
+ "epoch": 0.2182559918408975,
763
+ "grad_norm": 0.31055620312690735,
764
+ "learning_rate": 0.00019510565162951537,
765
+ "loss": 1.8936,
766
+ "step": 107
767
+ },
768
+ {
769
+ "epoch": 0.22029576746557877,
770
+ "grad_norm": 0.3920172452926636,
771
+ "learning_rate": 0.0001950050699546116,
772
+ "loss": 2.1061,
773
+ "step": 108
774
+ },
775
+ {
776
+ "epoch": 0.22233554309026007,
777
+ "grad_norm": 0.2737603187561035,
778
+ "learning_rate": 0.00019490349172147963,
779
+ "loss": 2.0772,
780
+ "step": 109
781
+ },
782
+ {
783
+ "epoch": 0.22437531871494135,
784
+ "grad_norm": 0.27526190876960754,
785
+ "learning_rate": 0.00019480091799562704,
786
+ "loss": 1.9078,
787
+ "step": 110
788
+ },
789
+ {
790
+ "epoch": 0.22641509433962265,
791
+ "grad_norm": 0.3213340938091278,
792
+ "learning_rate": 0.00019469734985300371,
793
+ "loss": 1.8632,
794
+ "step": 111
795
+ },
796
+ {
797
+ "epoch": 0.22845486996430392,
798
+ "grad_norm": 0.3409796953201294,
799
+ "learning_rate": 0.00019459278837999046,
800
+ "loss": 1.8264,
801
+ "step": 112
802
+ },
803
+ {
804
+ "epoch": 0.23049464558898522,
805
+ "grad_norm": 0.2637316882610321,
806
+ "learning_rate": 0.00019448723467338763,
807
+ "loss": 1.9274,
808
+ "step": 113
809
+ },
810
+ {
811
+ "epoch": 0.2325344212136665,
812
+ "grad_norm": 0.2738693952560425,
813
+ "learning_rate": 0.00019438068984040365,
814
+ "loss": 2.0925,
815
+ "step": 114
816
+ },
817
+ {
818
+ "epoch": 0.2345741968383478,
819
+ "grad_norm": 0.43626368045806885,
820
+ "learning_rate": 0.00019427315499864344,
821
+ "loss": 1.9424,
822
+ "step": 115
823
+ },
824
+ {
825
+ "epoch": 0.23661397246302907,
826
+ "grad_norm": 0.3207686245441437,
827
+ "learning_rate": 0.00019416463127609656,
828
+ "loss": 1.8188,
829
+ "step": 116
830
+ },
831
+ {
832
+ "epoch": 0.23865374808771037,
833
+ "grad_norm": 0.28913381695747375,
834
+ "learning_rate": 0.0001940551198111255,
835
+ "loss": 1.9561,
836
+ "step": 117
837
+ },
838
+ {
839
+ "epoch": 0.24069352371239164,
840
+ "grad_norm": 0.3558366894721985,
841
+ "learning_rate": 0.00019394462175245381,
842
+ "loss": 1.8839,
843
+ "step": 118
844
+ },
845
+ {
846
+ "epoch": 0.2427332993370729,
847
+ "grad_norm": 0.3230222463607788,
848
+ "learning_rate": 0.0001938331382591537,
849
+ "loss": 1.8197,
850
+ "step": 119
851
+ },
852
+ {
853
+ "epoch": 0.2447730749617542,
854
+ "grad_norm": 0.31508007645606995,
855
+ "learning_rate": 0.00019372067050063438,
856
+ "loss": 2.0963,
857
+ "step": 120
858
+ },
859
+ {
860
+ "epoch": 0.24681285058643548,
861
+ "grad_norm": 0.28743404150009155,
862
+ "learning_rate": 0.00019360721965662933,
863
+ "loss": 1.8382,
864
+ "step": 121
865
+ },
866
+ {
867
+ "epoch": 0.24885262621111678,
868
+ "grad_norm": 0.32556018233299255,
869
+ "learning_rate": 0.00019349278691718427,
870
+ "loss": 1.8255,
871
+ "step": 122
872
+ },
873
+ {
874
+ "epoch": 0.2508924018357981,
875
+ "grad_norm": 0.3947349488735199,
876
+ "learning_rate": 0.00019337737348264447,
877
+ "loss": 2.1048,
878
+ "step": 123
879
+ },
880
+ {
881
+ "epoch": 0.25293217746047936,
882
+ "grad_norm": 0.280627965927124,
883
+ "learning_rate": 0.00019326098056364222,
884
+ "loss": 1.7557,
885
+ "step": 124
886
+ },
887
+ {
888
+ "epoch": 0.25497195308516063,
889
+ "grad_norm": 0.34356269240379333,
890
+ "learning_rate": 0.00019314360938108425,
891
+ "loss": 1.9692,
892
+ "step": 125
893
+ },
894
+ {
895
+ "epoch": 0.2570117287098419,
896
+ "grad_norm": 0.30822035670280457,
897
+ "learning_rate": 0.00019302526116613864,
898
+ "loss": 1.9135,
899
+ "step": 126
900
+ },
901
+ {
902
+ "epoch": 0.2590515043345232,
903
+ "grad_norm": 0.28359460830688477,
904
+ "learning_rate": 0.00019290593716022217,
905
+ "loss": 2.0667,
906
+ "step": 127
907
+ },
908
+ {
909
+ "epoch": 0.2610912799592045,
910
+ "grad_norm": 0.2782716751098633,
911
+ "learning_rate": 0.00019278563861498723,
912
+ "loss": 1.7958,
913
+ "step": 128
914
+ },
915
+ {
916
+ "epoch": 0.2631310555838858,
917
+ "grad_norm": 0.2571290135383606,
918
+ "learning_rate": 0.00019266436679230865,
919
+ "loss": 2.1198,
920
+ "step": 129
921
+ },
922
+ {
923
+ "epoch": 0.26517083120856705,
924
+ "grad_norm": 0.3336668908596039,
925
+ "learning_rate": 0.00019254212296427044,
926
+ "loss": 1.8137,
927
+ "step": 130
928
+ },
929
+ {
930
+ "epoch": 0.2672106068332483,
931
+ "grad_norm": 0.23998981714248657,
932
+ "learning_rate": 0.00019241890841315248,
933
+ "loss": 2.0071,
934
+ "step": 131
935
+ },
936
+ {
937
+ "epoch": 0.26925038245792965,
938
+ "grad_norm": 0.3191507160663605,
939
+ "learning_rate": 0.0001922947244314172,
940
+ "loss": 2.0239,
941
+ "step": 132
942
+ },
943
+ {
944
+ "epoch": 0.2712901580826109,
945
+ "grad_norm": 0.30696266889572144,
946
+ "learning_rate": 0.0001921695723216957,
947
+ "loss": 2.2377,
948
+ "step": 133
949
+ },
950
+ {
951
+ "epoch": 0.2733299337072922,
952
+ "grad_norm": 0.2688175439834595,
953
+ "learning_rate": 0.00019204345339677442,
954
+ "loss": 1.8686,
955
+ "step": 134
956
+ },
957
+ {
958
+ "epoch": 0.27536970933197347,
959
+ "grad_norm": 0.27408865094184875,
960
+ "learning_rate": 0.00019191636897958122,
961
+ "loss": 2.0253,
962
+ "step": 135
963
+ },
964
+ {
965
+ "epoch": 0.2774094849566548,
966
+ "grad_norm": 0.2917419672012329,
967
+ "learning_rate": 0.00019178832040317155,
968
+ "loss": 1.905,
969
+ "step": 136
970
+ },
971
+ {
972
+ "epoch": 0.27944926058133607,
973
+ "grad_norm": 0.27972346544265747,
974
+ "learning_rate": 0.0001916593090107143,
975
+ "loss": 1.8001,
976
+ "step": 137
977
+ },
978
+ {
979
+ "epoch": 0.28148903620601734,
980
+ "grad_norm": 0.2744503915309906,
981
+ "learning_rate": 0.00019152933615547798,
982
+ "loss": 1.9057,
983
+ "step": 138
984
+ },
985
+ {
986
+ "epoch": 0.2835288118306986,
987
+ "grad_norm": 0.27640461921691895,
988
+ "learning_rate": 0.0001913984032008163,
989
+ "loss": 2.0683,
990
+ "step": 139
991
+ },
992
+ {
993
+ "epoch": 0.2855685874553799,
994
+ "grad_norm": 0.28741398453712463,
995
+ "learning_rate": 0.00019126651152015403,
996
+ "loss": 1.9567,
997
+ "step": 140
998
+ },
999
+ {
1000
+ "epoch": 0.2876083630800612,
1001
+ "grad_norm": 0.31334587931632996,
1002
+ "learning_rate": 0.0001911336624969725,
1003
+ "loss": 1.8974,
1004
+ "step": 141
1005
+ },
1006
+ {
1007
+ "epoch": 0.2896481387047425,
1008
+ "grad_norm": 0.2697933614253998,
1009
+ "learning_rate": 0.00019099985752479506,
1010
+ "loss": 1.8786,
1011
+ "step": 142
1012
+ },
1013
+ {
1014
+ "epoch": 0.29168791432942376,
1015
+ "grad_norm": 0.2917918562889099,
1016
+ "learning_rate": 0.00019086509800717258,
1017
+ "loss": 2.0443,
1018
+ "step": 143
1019
+ },
1020
+ {
1021
+ "epoch": 0.29372768995410503,
1022
+ "grad_norm": 0.2908966541290283,
1023
+ "learning_rate": 0.00019072938535766865,
1024
+ "loss": 1.9817,
1025
+ "step": 144
1026
+ },
1027
+ {
1028
+ "epoch": 0.29576746557878636,
1029
+ "grad_norm": 0.2819146513938904,
1030
+ "learning_rate": 0.0001905927209998447,
1031
+ "loss": 2.0689,
1032
+ "step": 145
1033
+ },
1034
+ {
1035
+ "epoch": 0.29780724120346763,
1036
+ "grad_norm": 0.3112149238586426,
1037
+ "learning_rate": 0.0001904551063672452,
1038
+ "loss": 1.9045,
1039
+ "step": 146
1040
+ },
1041
+ {
1042
+ "epoch": 0.2998470168281489,
1043
+ "grad_norm": 0.2511192560195923,
1044
+ "learning_rate": 0.00019031654290338254,
1045
+ "loss": 2.007,
1046
+ "step": 147
1047
+ },
1048
+ {
1049
+ "epoch": 0.3018867924528302,
1050
+ "grad_norm": 0.2944158911705017,
1051
+ "learning_rate": 0.00019017703206172185,
1052
+ "loss": 1.9059,
1053
+ "step": 148
1054
+ },
1055
+ {
1056
+ "epoch": 0.30392656807751145,
1057
+ "grad_norm": 0.2799970209598541,
1058
+ "learning_rate": 0.0001900365753056659,
1059
+ "loss": 1.8268,
1060
+ "step": 149
1061
+ },
1062
+ {
1063
+ "epoch": 0.3059663437021928,
1064
+ "grad_norm": 0.3119431436061859,
1065
+ "learning_rate": 0.00018989517410853955,
1066
+ "loss": 1.7999,
1067
+ "step": 150
1068
+ },
1069
+ {
1070
+ "epoch": 0.30800611932687405,
1071
+ "grad_norm": 0.27174267172813416,
1072
+ "learning_rate": 0.00018975282995357446,
1073
+ "loss": 1.8971,
1074
+ "step": 151
1075
+ },
1076
+ {
1077
+ "epoch": 0.3100458949515553,
1078
+ "grad_norm": 0.3147140443325043,
1079
+ "learning_rate": 0.00018960954433389345,
1080
+ "loss": 1.9755,
1081
+ "step": 152
1082
+ },
1083
+ {
1084
+ "epoch": 0.3120856705762366,
1085
+ "grad_norm": 0.27466344833374023,
1086
+ "learning_rate": 0.00018946531875249493,
1087
+ "loss": 1.9819,
1088
+ "step": 153
1089
+ },
1090
+ {
1091
+ "epoch": 0.3141254462009179,
1092
+ "grad_norm": 0.2912920117378235,
1093
+ "learning_rate": 0.00018932015472223693,
1094
+ "loss": 2.1079,
1095
+ "step": 154
1096
+ },
1097
+ {
1098
+ "epoch": 0.3161652218255992,
1099
+ "grad_norm": 0.3123255968093872,
1100
+ "learning_rate": 0.00018917405376582145,
1101
+ "loss": 1.93,
1102
+ "step": 155
1103
+ },
1104
+ {
1105
+ "epoch": 0.31820499745028047,
1106
+ "grad_norm": 0.3270852565765381,
1107
+ "learning_rate": 0.0001890270174157784,
1108
+ "loss": 1.8386,
1109
+ "step": 156
1110
+ },
1111
+ {
1112
+ "epoch": 0.32024477307496174,
1113
+ "grad_norm": 0.30445969104766846,
1114
+ "learning_rate": 0.00018887904721444953,
1115
+ "loss": 2.1993,
1116
+ "step": 157
1117
+ },
1118
+ {
1119
+ "epoch": 0.322284548699643,
1120
+ "grad_norm": 0.2974015474319458,
1121
+ "learning_rate": 0.00018873014471397224,
1122
+ "loss": 1.8965,
1123
+ "step": 158
1124
+ },
1125
+ {
1126
+ "epoch": 0.32432432432432434,
1127
+ "grad_norm": 0.3236542046070099,
1128
+ "learning_rate": 0.00018858031147626325,
1129
+ "loss": 2.041,
1130
+ "step": 159
1131
+ },
1132
+ {
1133
+ "epoch": 0.3263640999490056,
1134
+ "grad_norm": 0.2958833575248718,
1135
+ "learning_rate": 0.00018842954907300236,
1136
+ "loss": 1.8681,
1137
+ "step": 160
1138
+ },
1139
+ {
1140
+ "epoch": 0.3284038755736869,
1141
+ "grad_norm": 0.27163368463516235,
1142
+ "learning_rate": 0.00018827785908561584,
1143
+ "loss": 1.9664,
1144
+ "step": 161
1145
+ },
1146
+ {
1147
+ "epoch": 0.33044365119836816,
1148
+ "grad_norm": 0.2662605941295624,
1149
+ "learning_rate": 0.0001881252431052599,
1150
+ "loss": 1.9255,
1151
+ "step": 162
1152
+ },
1153
+ {
1154
+ "epoch": 0.3324834268230495,
1155
+ "grad_norm": 0.2995011508464813,
1156
+ "learning_rate": 0.00018797170273280388,
1157
+ "loss": 2.1172,
1158
+ "step": 163
1159
+ },
1160
+ {
1161
+ "epoch": 0.33452320244773076,
1162
+ "grad_norm": 0.2997836768627167,
1163
+ "learning_rate": 0.00018781723957881372,
1164
+ "loss": 1.9044,
1165
+ "step": 164
1166
+ },
1167
+ {
1168
+ "epoch": 0.33656297807241203,
1169
+ "grad_norm": 0.2867211401462555,
1170
+ "learning_rate": 0.0001876618552635348,
1171
+ "loss": 1.8,
1172
+ "step": 165
1173
+ },
1174
+ {
1175
+ "epoch": 0.3386027536970933,
1176
+ "grad_norm": 0.2972771227359772,
1177
+ "learning_rate": 0.000187505551416875,
1178
+ "loss": 1.7879,
1179
+ "step": 166
1180
+ },
1181
+ {
1182
+ "epoch": 0.3406425293217746,
1183
+ "grad_norm": 0.27393755316734314,
1184
+ "learning_rate": 0.00018734832967838775,
1185
+ "loss": 2.1209,
1186
+ "step": 167
1187
+ },
1188
+ {
1189
+ "epoch": 0.3426823049464559,
1190
+ "grad_norm": 0.31422799825668335,
1191
+ "learning_rate": 0.00018719019169725472,
1192
+ "loss": 1.9435,
1193
+ "step": 168
1194
+ },
1195
+ {
1196
+ "epoch": 0.3447220805711372,
1197
+ "grad_norm": 0.3372005224227905,
1198
+ "learning_rate": 0.00018703113913226847,
1199
+ "loss": 2.0911,
1200
+ "step": 169
1201
+ },
1202
+ {
1203
+ "epoch": 0.34676185619581845,
1204
+ "grad_norm": 0.29995280504226685,
1205
+ "learning_rate": 0.00018687117365181512,
1206
+ "loss": 1.9077,
1207
+ "step": 170
1208
+ },
1209
+ {
1210
+ "epoch": 0.3488016318204997,
1211
+ "grad_norm": 0.2770789861679077,
1212
+ "learning_rate": 0.0001867102969338569,
1213
+ "loss": 1.7649,
1214
+ "step": 171
1215
+ },
1216
+ {
1217
+ "epoch": 0.35084140744518105,
1218
+ "grad_norm": 0.2982628047466278,
1219
+ "learning_rate": 0.00018654851066591448,
1220
+ "loss": 2.0258,
1221
+ "step": 172
1222
+ },
1223
+ {
1224
+ "epoch": 0.3528811830698623,
1225
+ "grad_norm": 0.2924087643623352,
1226
+ "learning_rate": 0.0001863858165450492,
1227
+ "loss": 1.9533,
1228
+ "step": 173
1229
+ },
1230
+ {
1231
+ "epoch": 0.3549209586945436,
1232
+ "grad_norm": 0.29398518800735474,
1233
+ "learning_rate": 0.0001862222162778454,
1234
+ "loss": 1.8298,
1235
+ "step": 174
1236
+ },
1237
+ {
1238
+ "epoch": 0.35696073431922487,
1239
+ "grad_norm": 0.34897300601005554,
1240
+ "learning_rate": 0.00018605771158039253,
1241
+ "loss": 1.7459,
1242
+ "step": 175
1243
+ },
1244
+ {
1245
+ "epoch": 0.35900050994390614,
1246
+ "grad_norm": 0.33509624004364014,
1247
+ "learning_rate": 0.00018589230417826697,
1248
+ "loss": 1.8843,
1249
+ "step": 176
1250
+ },
1251
+ {
1252
+ "epoch": 0.36104028556858747,
1253
+ "grad_norm": 0.30635756254196167,
1254
+ "learning_rate": 0.00018572599580651415,
1255
+ "loss": 2.0315,
1256
+ "step": 177
1257
+ },
1258
+ {
1259
+ "epoch": 0.36308006119326874,
1260
+ "grad_norm": 0.3544027805328369,
1261
+ "learning_rate": 0.00018555878820963013,
1262
+ "loss": 1.9821,
1263
+ "step": 178
1264
+ },
1265
+ {
1266
+ "epoch": 0.36511983681795,
1267
+ "grad_norm": 0.283241331577301,
1268
+ "learning_rate": 0.00018539068314154354,
1269
+ "loss": 1.7482,
1270
+ "step": 179
1271
+ },
1272
+ {
1273
+ "epoch": 0.3671596124426313,
1274
+ "grad_norm": 0.2630005478858948,
1275
+ "learning_rate": 0.00018522168236559695,
1276
+ "loss": 1.887,
1277
+ "step": 180
1278
+ },
1279
+ {
1280
+ "epoch": 0.3691993880673126,
1281
+ "grad_norm": 0.2816585898399353,
1282
+ "learning_rate": 0.00018505178765452853,
1283
+ "loss": 1.8995,
1284
+ "step": 181
1285
+ },
1286
+ {
1287
+ "epoch": 0.3712391636919939,
1288
+ "grad_norm": 0.30843281745910645,
1289
+ "learning_rate": 0.00018488100079045344,
1290
+ "loss": 1.943,
1291
+ "step": 182
1292
+ },
1293
+ {
1294
+ "epoch": 0.37327893931667516,
1295
+ "grad_norm": 0.30149805545806885,
1296
+ "learning_rate": 0.00018470932356484508,
1297
+ "loss": 1.8764,
1298
+ "step": 183
1299
+ },
1300
+ {
1301
+ "epoch": 0.37531871494135643,
1302
+ "grad_norm": 0.27851638197898865,
1303
+ "learning_rate": 0.00018453675777851627,
1304
+ "loss": 1.8901,
1305
+ "step": 184
1306
+ },
1307
+ {
1308
+ "epoch": 0.37735849056603776,
1309
+ "grad_norm": 0.34025222063064575,
1310
+ "learning_rate": 0.00018436330524160047,
1311
+ "loss": 2.167,
1312
+ "step": 185
1313
+ },
1314
+ {
1315
+ "epoch": 0.37939826619071904,
1316
+ "grad_norm": 0.3183801472187042,
1317
+ "learning_rate": 0.0001841889677735327,
1318
+ "loss": 1.9419,
1319
+ "step": 186
1320
+ },
1321
+ {
1322
+ "epoch": 0.3814380418154003,
1323
+ "grad_norm": 0.3072781562805176,
1324
+ "learning_rate": 0.00018401374720303056,
1325
+ "loss": 1.9817,
1326
+ "step": 187
1327
+ },
1328
+ {
1329
+ "epoch": 0.3834778174400816,
1330
+ "grad_norm": 0.2894771993160248,
1331
+ "learning_rate": 0.00018383764536807485,
1332
+ "loss": 2.114,
1333
+ "step": 188
1334
+ },
1335
+ {
1336
+ "epoch": 0.38551759306476285,
1337
+ "grad_norm": 0.3198698163032532,
1338
+ "learning_rate": 0.0001836606641158905,
1339
+ "loss": 1.8609,
1340
+ "step": 189
1341
+ },
1342
+ {
1343
+ "epoch": 0.3875573686894442,
1344
+ "grad_norm": 0.3462139964103699,
1345
+ "learning_rate": 0.00018348280530292713,
1346
+ "loss": 1.7753,
1347
+ "step": 190
1348
+ },
1349
+ {
1350
+ "epoch": 0.38959714431412545,
1351
+ "grad_norm": 0.2793361246585846,
1352
+ "learning_rate": 0.00018330407079483952,
1353
+ "loss": 2.1784,
1354
+ "step": 191
1355
+ },
1356
+ {
1357
+ "epoch": 0.3916369199388067,
1358
+ "grad_norm": 0.29519417881965637,
1359
+ "learning_rate": 0.0001831244624664681,
1360
+ "loss": 1.9627,
1361
+ "step": 192
1362
+ },
1363
+ {
1364
+ "epoch": 0.393676695563488,
1365
+ "grad_norm": 0.3317961096763611,
1366
+ "learning_rate": 0.00018294398220181917,
1367
+ "loss": 1.7643,
1368
+ "step": 193
1369
+ },
1370
+ {
1371
+ "epoch": 0.3957164711881693,
1372
+ "grad_norm": 0.3138796091079712,
1373
+ "learning_rate": 0.0001827626318940454,
1374
+ "loss": 1.792,
1375
+ "step": 194
1376
+ },
1377
+ {
1378
+ "epoch": 0.3977562468128506,
1379
+ "grad_norm": 0.30172964930534363,
1380
+ "learning_rate": 0.00018258041344542566,
1381
+ "loss": 1.8828,
1382
+ "step": 195
1383
+ },
1384
+ {
1385
+ "epoch": 0.3997960224375319,
1386
+ "grad_norm": 0.3473678529262543,
1387
+ "learning_rate": 0.00018239732876734527,
1388
+ "loss": 1.9373,
1389
+ "step": 196
1390
+ },
1391
+ {
1392
+ "epoch": 0.40183579806221315,
1393
+ "grad_norm": 0.3263239562511444,
1394
+ "learning_rate": 0.00018221337978027583,
1395
+ "loss": 1.9933,
1396
+ "step": 197
1397
+ },
1398
+ {
1399
+ "epoch": 0.4038755736868944,
1400
+ "grad_norm": 0.32656848430633545,
1401
+ "learning_rate": 0.00018202856841375518,
1402
+ "loss": 1.8501,
1403
+ "step": 198
1404
+ },
1405
+ {
1406
+ "epoch": 0.40591534931157575,
1407
+ "grad_norm": 0.3206334412097931,
1408
+ "learning_rate": 0.00018184289660636715,
1409
+ "loss": 2.0026,
1410
+ "step": 199
1411
+ },
1412
+ {
1413
+ "epoch": 0.407955124936257,
1414
+ "grad_norm": 0.31711164116859436,
1415
+ "learning_rate": 0.0001816563663057211,
1416
+ "loss": 1.9573,
1417
+ "step": 200
1418
+ },
1419
+ {
1420
+ "epoch": 0.4099949005609383,
1421
+ "grad_norm": 0.2891688048839569,
1422
+ "learning_rate": 0.00018146897946843163,
1423
+ "loss": 1.939,
1424
+ "step": 201
1425
+ },
1426
+ {
1427
+ "epoch": 0.41203467618561956,
1428
+ "grad_norm": 0.3304015100002289,
1429
+ "learning_rate": 0.000181280738060098,
1430
+ "loss": 1.874,
1431
+ "step": 202
1432
+ },
1433
+ {
1434
+ "epoch": 0.4140744518103009,
1435
+ "grad_norm": 0.2902586758136749,
1436
+ "learning_rate": 0.0001810916440552835,
1437
+ "loss": 1.8516,
1438
+ "step": 203
1439
+ },
1440
+ {
1441
+ "epoch": 0.41611422743498216,
1442
+ "grad_norm": 0.3066134452819824,
1443
+ "learning_rate": 0.00018090169943749476,
1444
+ "loss": 1.909,
1445
+ "step": 204
1446
+ },
1447
+ {
1448
+ "epoch": 0.41815400305966344,
1449
+ "grad_norm": 0.2844925820827484,
1450
+ "learning_rate": 0.00018071090619916093,
1451
+ "loss": 1.8373,
1452
+ "step": 205
1453
+ },
1454
+ {
1455
+ "epoch": 0.4201937786843447,
1456
+ "grad_norm": 0.2905077338218689,
1457
+ "learning_rate": 0.00018051926634161282,
1458
+ "loss": 1.8031,
1459
+ "step": 206
1460
+ },
1461
+ {
1462
+ "epoch": 0.422233554309026,
1463
+ "grad_norm": 0.3110411763191223,
1464
+ "learning_rate": 0.00018032678187506187,
1465
+ "loss": 1.9915,
1466
+ "step": 207
1467
+ },
1468
+ {
1469
+ "epoch": 0.4242733299337073,
1470
+ "grad_norm": 0.27634483575820923,
1471
+ "learning_rate": 0.00018013345481857903,
1472
+ "loss": 2.0072,
1473
+ "step": 208
1474
+ },
1475
+ {
1476
+ "epoch": 0.4263131055583886,
1477
+ "grad_norm": 0.29069051146507263,
1478
+ "learning_rate": 0.0001799392872000736,
1479
+ "loss": 2.0632,
1480
+ "step": 209
1481
+ },
1482
+ {
1483
+ "epoch": 0.42835288118306986,
1484
+ "grad_norm": 0.28966760635375977,
1485
+ "learning_rate": 0.00017974428105627208,
1486
+ "loss": 1.8184,
1487
+ "step": 210
1488
+ },
1489
+ {
1490
+ "epoch": 0.43039265680775113,
1491
+ "grad_norm": 0.2768760621547699,
1492
+ "learning_rate": 0.00017954843843269664,
1493
+ "loss": 1.8344,
1494
+ "step": 211
1495
+ },
1496
+ {
1497
+ "epoch": 0.43243243243243246,
1498
+ "grad_norm": 0.30277568101882935,
1499
+ "learning_rate": 0.0001793517613836437,
1500
+ "loss": 1.931,
1501
+ "step": 212
1502
+ },
1503
+ {
1504
+ "epoch": 0.43447220805711373,
1505
+ "grad_norm": 0.30833378434181213,
1506
+ "learning_rate": 0.00017915425197216245,
1507
+ "loss": 1.8319,
1508
+ "step": 213
1509
+ },
1510
+ {
1511
+ "epoch": 0.436511983681795,
1512
+ "grad_norm": 0.2517772316932678,
1513
+ "learning_rate": 0.00017895591227003315,
1514
+ "loss": 2.0335,
1515
+ "step": 214
1516
+ },
1517
+ {
1518
+ "epoch": 0.4385517593064763,
1519
+ "grad_norm": 0.3051300346851349,
1520
+ "learning_rate": 0.00017875674435774547,
1521
+ "loss": 1.8523,
1522
+ "step": 215
1523
+ },
1524
+ {
1525
+ "epoch": 0.44059153493115755,
1526
+ "grad_norm": 0.331875741481781,
1527
+ "learning_rate": 0.00017855675032447648,
1528
+ "loss": 1.902,
1529
+ "step": 216
1530
+ },
1531
+ {
1532
+ "epoch": 0.4426313105558389,
1533
+ "grad_norm": 0.3102109134197235,
1534
+ "learning_rate": 0.00017835593226806903,
1535
+ "loss": 1.9391,
1536
+ "step": 217
1537
+ },
1538
+ {
1539
+ "epoch": 0.44467108618052015,
1540
+ "grad_norm": 0.28581124544143677,
1541
+ "learning_rate": 0.00017815429229500946,
1542
+ "loss": 1.9595,
1543
+ "step": 218
1544
+ },
1545
+ {
1546
+ "epoch": 0.4467108618052014,
1547
+ "grad_norm": 0.2874554693698883,
1548
+ "learning_rate": 0.00017795183252040567,
1549
+ "loss": 1.8683,
1550
+ "step": 219
1551
+ },
1552
+ {
1553
+ "epoch": 0.4487506374298827,
1554
+ "grad_norm": 0.3131530284881592,
1555
+ "learning_rate": 0.00017774855506796496,
1556
+ "loss": 2.003,
1557
+ "step": 220
1558
+ },
1559
+ {
1560
+ "epoch": 0.450790413054564,
1561
+ "grad_norm": 0.3006989359855652,
1562
+ "learning_rate": 0.0001775444620699715,
1563
+ "loss": 1.8058,
1564
+ "step": 221
1565
+ },
1566
+ {
1567
+ "epoch": 0.4528301886792453,
1568
+ "grad_norm": 0.29621464014053345,
1569
+ "learning_rate": 0.0001773395556672644,
1570
+ "loss": 1.9781,
1571
+ "step": 222
1572
+ },
1573
+ {
1574
+ "epoch": 0.45486996430392657,
1575
+ "grad_norm": 0.325095534324646,
1576
+ "learning_rate": 0.00017713383800921478,
1577
+ "loss": 1.8633,
1578
+ "step": 223
1579
+ },
1580
+ {
1581
+ "epoch": 0.45690973992860784,
1582
+ "grad_norm": 0.306911826133728,
1583
+ "learning_rate": 0.00017692731125370354,
1584
+ "loss": 1.9318,
1585
+ "step": 224
1586
+ },
1587
+ {
1588
+ "epoch": 0.4589495155532891,
1589
+ "grad_norm": 0.335014283657074,
1590
+ "learning_rate": 0.00017671997756709863,
1591
+ "loss": 1.7637,
1592
+ "step": 225
1593
+ },
1594
+ {
1595
+ "epoch": 0.46098929117797044,
1596
+ "grad_norm": 0.28670719265937805,
1597
+ "learning_rate": 0.00017651183912423228,
1598
+ "loss": 1.988,
1599
+ "step": 226
1600
+ },
1601
+ {
1602
+ "epoch": 0.4630290668026517,
1603
+ "grad_norm": 0.2969343364238739,
1604
+ "learning_rate": 0.00017630289810837834,
1605
+ "loss": 1.7984,
1606
+ "step": 227
1607
+ },
1608
+ {
1609
+ "epoch": 0.465068842427333,
1610
+ "grad_norm": 0.3015127182006836,
1611
+ "learning_rate": 0.0001760931567112291,
1612
+ "loss": 1.7022,
1613
+ "step": 228
1614
+ },
1615
+ {
1616
+ "epoch": 0.46710861805201426,
1617
+ "grad_norm": 0.32308632135391235,
1618
+ "learning_rate": 0.00017588261713287267,
1619
+ "loss": 1.8067,
1620
+ "step": 229
1621
+ },
1622
+ {
1623
+ "epoch": 0.4691483936766956,
1624
+ "grad_norm": 0.30818650126457214,
1625
+ "learning_rate": 0.00017567128158176953,
1626
+ "loss": 1.7096,
1627
+ "step": 230
1628
+ },
1629
+ {
1630
+ "epoch": 0.47118816930137686,
1631
+ "grad_norm": 0.28488847613334656,
1632
+ "learning_rate": 0.00017545915227472965,
1633
+ "loss": 1.8784,
1634
+ "step": 231
1635
+ },
1636
+ {
1637
+ "epoch": 0.47322794492605813,
1638
+ "grad_norm": 0.3801325857639313,
1639
+ "learning_rate": 0.00017524623143688902,
1640
+ "loss": 1.9555,
1641
+ "step": 232
1642
+ },
1643
+ {
1644
+ "epoch": 0.4752677205507394,
1645
+ "grad_norm": 0.31661075353622437,
1646
+ "learning_rate": 0.00017503252130168657,
1647
+ "loss": 1.8717,
1648
+ "step": 233
1649
+ },
1650
+ {
1651
+ "epoch": 0.47730749617542073,
1652
+ "grad_norm": 0.296003520488739,
1653
+ "learning_rate": 0.00017481802411084042,
1654
+ "loss": 1.7293,
1655
+ "step": 234
1656
+ },
1657
+ {
1658
+ "epoch": 0.479347271800102,
1659
+ "grad_norm": 0.3210139274597168,
1660
+ "learning_rate": 0.0001746027421143246,
1661
+ "loss": 1.9587,
1662
+ "step": 235
1663
+ },
1664
+ {
1665
+ "epoch": 0.4813870474247833,
1666
+ "grad_norm": 0.2968738079071045,
1667
+ "learning_rate": 0.00017438667757034546,
1668
+ "loss": 2.0743,
1669
+ "step": 236
1670
+ },
1671
+ {
1672
+ "epoch": 0.48342682304946455,
1673
+ "grad_norm": 0.3373945355415344,
1674
+ "learning_rate": 0.00017416983274531775,
1675
+ "loss": 1.8239,
1676
+ "step": 237
1677
+ },
1678
+ {
1679
+ "epoch": 0.4854665986741458,
1680
+ "grad_norm": 0.29180705547332764,
1681
+ "learning_rate": 0.0001739522099138411,
1682
+ "loss": 1.9563,
1683
+ "step": 238
1684
+ },
1685
+ {
1686
+ "epoch": 0.48750637429882715,
1687
+ "grad_norm": 0.342316597700119,
1688
+ "learning_rate": 0.00017373381135867604,
1689
+ "loss": 1.9012,
1690
+ "step": 239
1691
+ },
1692
+ {
1693
+ "epoch": 0.4895461499235084,
1694
+ "grad_norm": 0.29859068989753723,
1695
+ "learning_rate": 0.00017351463937072004,
1696
+ "loss": 1.723,
1697
+ "step": 240
1698
+ },
1699
+ {
1700
+ "epoch": 0.4915859255481897,
1701
+ "grad_norm": 0.32331928610801697,
1702
+ "learning_rate": 0.0001732946962489836,
1703
+ "loss": 1.9278,
1704
+ "step": 241
1705
+ },
1706
+ {
1707
+ "epoch": 0.49362570117287097,
1708
+ "grad_norm": 0.3604521155357361,
1709
+ "learning_rate": 0.00017307398430056593,
1710
+ "loss": 1.9691,
1711
+ "step": 242
1712
+ },
1713
+ {
1714
+ "epoch": 0.4956654767975523,
1715
+ "grad_norm": 0.30965346097946167,
1716
+ "learning_rate": 0.000172852505840631,
1717
+ "loss": 1.7225,
1718
+ "step": 243
1719
+ },
1720
+ {
1721
+ "epoch": 0.49770525242223357,
1722
+ "grad_norm": 0.2769593894481659,
1723
+ "learning_rate": 0.00017263026319238301,
1724
+ "loss": 1.7938,
1725
+ "step": 244
1726
+ },
1727
+ {
1728
+ "epoch": 0.49974502804691484,
1729
+ "grad_norm": 0.33169788122177124,
1730
+ "learning_rate": 0.00017240725868704218,
1731
+ "loss": 1.6576,
1732
+ "step": 245
1733
+ },
1734
+ {
1735
+ "epoch": 0.49974502804691484,
1736
+ "eval_loss": 1.874290943145752,
1737
+ "eval_runtime": 49.8203,
1738
+ "eval_samples_per_second": 16.58,
1739
+ "eval_steps_per_second": 2.088,
1740
+ "step": 245
1741
+ },
1742
+ {
1743
+ "epoch": 0.5017848036715962,
1744
+ "grad_norm": 0.3088040053844452,
1745
+ "learning_rate": 0.00017218349466382023,
1746
+ "loss": 1.7977,
1747
+ "step": 246
1748
+ },
1749
+ {
1750
+ "epoch": 0.5038245792962774,
1751
+ "grad_norm": 0.3247360289096832,
1752
+ "learning_rate": 0.0001719589734698959,
1753
+ "loss": 1.9595,
1754
+ "step": 247
1755
+ },
1756
+ {
1757
+ "epoch": 0.5058643549209587,
1758
+ "grad_norm": 0.30020302534103394,
1759
+ "learning_rate": 0.00017173369746039025,
1760
+ "loss": 1.7303,
1761
+ "step": 248
1762
+ },
1763
+ {
1764
+ "epoch": 0.50790413054564,
1765
+ "grad_norm": 0.2880503833293915,
1766
+ "learning_rate": 0.00017150766899834204,
1767
+ "loss": 1.9203,
1768
+ "step": 249
1769
+ },
1770
+ {
1771
+ "epoch": 0.5099439061703213,
1772
+ "grad_norm": 0.2775571048259735,
1773
+ "learning_rate": 0.00017128089045468294,
1774
+ "loss": 1.8347,
1775
+ "step": 250
1776
+ },
1777
+ {
1778
+ "epoch": 0.5119836817950025,
1779
+ "grad_norm": 0.31517794728279114,
1780
+ "learning_rate": 0.00017105336420821247,
1781
+ "loss": 1.9258,
1782
+ "step": 251
1783
+ },
1784
+ {
1785
+ "epoch": 0.5140234574196838,
1786
+ "grad_norm": 0.315845251083374,
1787
+ "learning_rate": 0.0001708250926455733,
1788
+ "loss": 1.6125,
1789
+ "step": 252
1790
+ },
1791
+ {
1792
+ "epoch": 0.5160632330443651,
1793
+ "grad_norm": 0.3020716607570648,
1794
+ "learning_rate": 0.00017059607816122618,
1795
+ "loss": 2.036,
1796
+ "step": 253
1797
+ },
1798
+ {
1799
+ "epoch": 0.5181030086690463,
1800
+ "grad_norm": 0.3116091787815094,
1801
+ "learning_rate": 0.00017036632315742462,
1802
+ "loss": 1.7882,
1803
+ "step": 254
1804
+ },
1805
+ {
1806
+ "epoch": 0.5201427842937277,
1807
+ "grad_norm": 0.2845454216003418,
1808
+ "learning_rate": 0.00017013583004418993,
1809
+ "loss": 1.9165,
1810
+ "step": 255
1811
+ },
1812
+ {
1813
+ "epoch": 0.522182559918409,
1814
+ "grad_norm": 0.3218507468700409,
1815
+ "learning_rate": 0.00016990460123928575,
1816
+ "loss": 1.9143,
1817
+ "step": 256
1818
+ },
1819
+ {
1820
+ "epoch": 0.5242223355430903,
1821
+ "grad_norm": 0.32271113991737366,
1822
+ "learning_rate": 0.00016967263916819287,
1823
+ "loss": 1.7233,
1824
+ "step": 257
1825
+ },
1826
+ {
1827
+ "epoch": 0.5262621111677716,
1828
+ "grad_norm": 0.32956361770629883,
1829
+ "learning_rate": 0.00016943994626408363,
1830
+ "loss": 2.1151,
1831
+ "step": 258
1832
+ },
1833
+ {
1834
+ "epoch": 0.5283018867924528,
1835
+ "grad_norm": 0.309712678194046,
1836
+ "learning_rate": 0.0001692065249677965,
1837
+ "loss": 1.7285,
1838
+ "step": 259
1839
+ },
1840
+ {
1841
+ "epoch": 0.5303416624171341,
1842
+ "grad_norm": 0.3099533021450043,
1843
+ "learning_rate": 0.00016897237772781044,
1844
+ "loss": 1.8461,
1845
+ "step": 260
1846
+ },
1847
+ {
1848
+ "epoch": 0.5323814380418154,
1849
+ "grad_norm": 0.2932775914669037,
1850
+ "learning_rate": 0.00016873750700021915,
1851
+ "loss": 1.869,
1852
+ "step": 261
1853
+ },
1854
+ {
1855
+ "epoch": 0.5344212136664966,
1856
+ "grad_norm": 0.2912542223930359,
1857
+ "learning_rate": 0.00016850191524870546,
1858
+ "loss": 1.7672,
1859
+ "step": 262
1860
+ },
1861
+ {
1862
+ "epoch": 0.536460989291178,
1863
+ "grad_norm": 0.33142998814582825,
1864
+ "learning_rate": 0.00016826560494451537,
1865
+ "loss": 1.8723,
1866
+ "step": 263
1867
+ },
1868
+ {
1869
+ "epoch": 0.5385007649158593,
1870
+ "grad_norm": 0.26213347911834717,
1871
+ "learning_rate": 0.00016802857856643215,
1872
+ "loss": 1.6971,
1873
+ "step": 264
1874
+ },
1875
+ {
1876
+ "epoch": 0.5405405405405406,
1877
+ "grad_norm": 0.2854675352573395,
1878
+ "learning_rate": 0.00016779083860075033,
1879
+ "loss": 1.8517,
1880
+ "step": 265
1881
+ },
1882
+ {
1883
+ "epoch": 0.5425803161652218,
1884
+ "grad_norm": 0.3256230354309082,
1885
+ "learning_rate": 0.00016755238754124965,
1886
+ "loss": 1.9159,
1887
+ "step": 266
1888
+ },
1889
+ {
1890
+ "epoch": 0.5446200917899031,
1891
+ "grad_norm": 0.30096253752708435,
1892
+ "learning_rate": 0.00016731322788916892,
1893
+ "loss": 1.7229,
1894
+ "step": 267
1895
+ },
1896
+ {
1897
+ "epoch": 0.5466598674145844,
1898
+ "grad_norm": 0.2952723801136017,
1899
+ "learning_rate": 0.00016707336215317968,
1900
+ "loss": 1.8191,
1901
+ "step": 268
1902
+ },
1903
+ {
1904
+ "epoch": 0.5486996430392657,
1905
+ "grad_norm": 0.32182615995407104,
1906
+ "learning_rate": 0.00016683279284936004,
1907
+ "loss": 1.9188,
1908
+ "step": 269
1909
+ },
1910
+ {
1911
+ "epoch": 0.5507394186639469,
1912
+ "grad_norm": 0.3065682351589203,
1913
+ "learning_rate": 0.00016659152250116812,
1914
+ "loss": 1.5902,
1915
+ "step": 270
1916
+ },
1917
+ {
1918
+ "epoch": 0.5527791942886282,
1919
+ "grad_norm": 0.27141043543815613,
1920
+ "learning_rate": 0.00016634955363941574,
1921
+ "loss": 1.705,
1922
+ "step": 271
1923
+ },
1924
+ {
1925
+ "epoch": 0.5548189699133096,
1926
+ "grad_norm": 0.3703926205635071,
1927
+ "learning_rate": 0.00016610688880224178,
1928
+ "loss": 1.9515,
1929
+ "step": 272
1930
+ },
1931
+ {
1932
+ "epoch": 0.5568587455379909,
1933
+ "grad_norm": 0.3434322476387024,
1934
+ "learning_rate": 0.0001658635305350855,
1935
+ "loss": 1.6887,
1936
+ "step": 273
1937
+ },
1938
+ {
1939
+ "epoch": 0.5588985211626721,
1940
+ "grad_norm": 0.2847291827201843,
1941
+ "learning_rate": 0.00016561948139065996,
1942
+ "loss": 2.0415,
1943
+ "step": 274
1944
+ },
1945
+ {
1946
+ "epoch": 0.5609382967873534,
1947
+ "grad_norm": 0.27591603994369507,
1948
+ "learning_rate": 0.00016537474392892528,
1949
+ "loss": 1.8893,
1950
+ "step": 275
1951
+ },
1952
+ {
1953
+ "epoch": 0.5629780724120347,
1954
+ "grad_norm": 0.32474270462989807,
1955
+ "learning_rate": 0.00016512932071706152,
1956
+ "loss": 1.8589,
1957
+ "step": 276
1958
+ },
1959
+ {
1960
+ "epoch": 0.565017848036716,
1961
+ "grad_norm": 0.33138149976730347,
1962
+ "learning_rate": 0.0001648832143294422,
1963
+ "loss": 1.7978,
1964
+ "step": 277
1965
+ },
1966
+ {
1967
+ "epoch": 0.5670576236613972,
1968
+ "grad_norm": 0.321053683757782,
1969
+ "learning_rate": 0.0001646364273476067,
1970
+ "loss": 1.911,
1971
+ "step": 278
1972
+ },
1973
+ {
1974
+ "epoch": 0.5690973992860785,
1975
+ "grad_norm": 0.313310444355011,
1976
+ "learning_rate": 0.00016438896236023375,
1977
+ "loss": 1.7816,
1978
+ "step": 279
1979
+ },
1980
+ {
1981
+ "epoch": 0.5711371749107598,
1982
+ "grad_norm": 0.2893736958503723,
1983
+ "learning_rate": 0.000164140821963114,
1984
+ "loss": 1.7197,
1985
+ "step": 280
1986
+ },
1987
+ {
1988
+ "epoch": 0.5731769505354412,
1989
+ "grad_norm": 0.3043624758720398,
1990
+ "learning_rate": 0.00016389200875912278,
1991
+ "loss": 1.7415,
1992
+ "step": 281
1993
+ },
1994
+ {
1995
+ "epoch": 0.5752167261601224,
1996
+ "grad_norm": 0.29861506819725037,
1997
+ "learning_rate": 0.00016364252535819282,
1998
+ "loss": 1.7317,
1999
+ "step": 282
2000
+ },
2001
+ {
2002
+ "epoch": 0.5772565017848037,
2003
+ "grad_norm": 0.3631903827190399,
2004
+ "learning_rate": 0.000163392374377287,
2005
+ "loss": 1.8116,
2006
+ "step": 283
2007
+ },
2008
+ {
2009
+ "epoch": 0.579296277409485,
2010
+ "grad_norm": 0.32387158274650574,
2011
+ "learning_rate": 0.00016314155844037074,
2012
+ "loss": 1.8652,
2013
+ "step": 284
2014
+ },
2015
+ {
2016
+ "epoch": 0.5813360530341662,
2017
+ "grad_norm": 0.3442007899284363,
2018
+ "learning_rate": 0.00016289008017838445,
2019
+ "loss": 2.0466,
2020
+ "step": 285
2021
+ },
2022
+ {
2023
+ "epoch": 0.5833758286588475,
2024
+ "grad_norm": 0.3226166367530823,
2025
+ "learning_rate": 0.0001626379422292162,
2026
+ "loss": 1.8803,
2027
+ "step": 286
2028
+ },
2029
+ {
2030
+ "epoch": 0.5854156042835288,
2031
+ "grad_norm": 0.2765788733959198,
2032
+ "learning_rate": 0.00016238514723767374,
2033
+ "loss": 1.8048,
2034
+ "step": 287
2035
+ },
2036
+ {
2037
+ "epoch": 0.5874553799082101,
2038
+ "grad_norm": 0.26808875799179077,
2039
+ "learning_rate": 0.0001621316978554569,
2040
+ "loss": 1.9358,
2041
+ "step": 288
2042
+ },
2043
+ {
2044
+ "epoch": 0.5894951555328913,
2045
+ "grad_norm": 0.34248560667037964,
2046
+ "learning_rate": 0.00016187759674112973,
2047
+ "loss": 1.7614,
2048
+ "step": 289
2049
+ },
2050
+ {
2051
+ "epoch": 0.5915349311575727,
2052
+ "grad_norm": 0.3485107123851776,
2053
+ "learning_rate": 0.00016162284656009274,
2054
+ "loss": 1.7487,
2055
+ "step": 290
2056
+ },
2057
+ {
2058
+ "epoch": 0.593574706782254,
2059
+ "grad_norm": 0.31153398752212524,
2060
+ "learning_rate": 0.00016136744998455476,
2061
+ "loss": 2.0895,
2062
+ "step": 291
2063
+ },
2064
+ {
2065
+ "epoch": 0.5956144824069353,
2066
+ "grad_norm": 0.3104468584060669,
2067
+ "learning_rate": 0.00016111140969350503,
2068
+ "loss": 1.6566,
2069
+ "step": 292
2070
+ },
2071
+ {
2072
+ "epoch": 0.5976542580316165,
2073
+ "grad_norm": 0.32697245478630066,
2074
+ "learning_rate": 0.00016085472837268502,
2075
+ "loss": 1.7631,
2076
+ "step": 293
2077
+ },
2078
+ {
2079
+ "epoch": 0.5996940336562978,
2080
+ "grad_norm": 0.3330870270729065,
2081
+ "learning_rate": 0.00016059740871456036,
2082
+ "loss": 1.6047,
2083
+ "step": 294
2084
+ },
2085
+ {
2086
+ "epoch": 0.6017338092809791,
2087
+ "grad_norm": 0.3144790828227997,
2088
+ "learning_rate": 0.00016033945341829248,
2089
+ "loss": 1.5975,
2090
+ "step": 295
2091
+ },
2092
+ {
2093
+ "epoch": 0.6037735849056604,
2094
+ "grad_norm": 0.32482099533081055,
2095
+ "learning_rate": 0.00016008086518971037,
2096
+ "loss": 1.9879,
2097
+ "step": 296
2098
+ },
2099
+ {
2100
+ "epoch": 0.6058133605303416,
2101
+ "grad_norm": 0.320336252450943,
2102
+ "learning_rate": 0.0001598216467412822,
2103
+ "loss": 1.9723,
2104
+ "step": 297
2105
+ },
2106
+ {
2107
+ "epoch": 0.6078531361550229,
2108
+ "grad_norm": 0.2934703528881073,
2109
+ "learning_rate": 0.00015956180079208682,
2110
+ "loss": 1.7771,
2111
+ "step": 298
2112
+ },
2113
+ {
2114
+ "epoch": 0.6098929117797043,
2115
+ "grad_norm": 0.3081587851047516,
2116
+ "learning_rate": 0.0001593013300677853,
2117
+ "loss": 1.869,
2118
+ "step": 299
2119
+ },
2120
+ {
2121
+ "epoch": 0.6119326874043856,
2122
+ "grad_norm": 0.30365437269210815,
2123
+ "learning_rate": 0.00015904023730059228,
2124
+ "loss": 1.795,
2125
+ "step": 300
2126
+ },
2127
+ {
2128
+ "epoch": 0.6139724630290668,
2129
+ "grad_norm": 0.3306022882461548,
2130
+ "learning_rate": 0.00015877852522924732,
2131
+ "loss": 1.8786,
2132
+ "step": 301
2133
+ },
2134
+ {
2135
+ "epoch": 0.6160122386537481,
2136
+ "grad_norm": 0.3081189692020416,
2137
+ "learning_rate": 0.00015851619659898623,
2138
+ "loss": 1.8389,
2139
+ "step": 302
2140
+ },
2141
+ {
2142
+ "epoch": 0.6180520142784294,
2143
+ "grad_norm": 0.3126586973667145,
2144
+ "learning_rate": 0.00015825325416151222,
2145
+ "loss": 1.8404,
2146
+ "step": 303
2147
+ },
2148
+ {
2149
+ "epoch": 0.6200917899031106,
2150
+ "grad_norm": 0.2832873463630676,
2151
+ "learning_rate": 0.000157989700674967,
2152
+ "loss": 1.9894,
2153
+ "step": 304
2154
+ },
2155
+ {
2156
+ "epoch": 0.6221315655277919,
2157
+ "grad_norm": 0.3080177903175354,
2158
+ "learning_rate": 0.00015772553890390197,
2159
+ "loss": 1.9813,
2160
+ "step": 305
2161
+ },
2162
+ {
2163
+ "epoch": 0.6241713411524732,
2164
+ "grad_norm": 0.30326464772224426,
2165
+ "learning_rate": 0.00015746077161924905,
2166
+ "loss": 1.7597,
2167
+ "step": 306
2168
+ },
2169
+ {
2170
+ "epoch": 0.6262111167771545,
2171
+ "grad_norm": 0.3071492910385132,
2172
+ "learning_rate": 0.00015719540159829184,
2173
+ "loss": 1.8149,
2174
+ "step": 307
2175
+ },
2176
+ {
2177
+ "epoch": 0.6282508924018358,
2178
+ "grad_norm": 0.3333245515823364,
2179
+ "learning_rate": 0.00015692943162463628,
2180
+ "loss": 1.9806,
2181
+ "step": 308
2182
+ },
2183
+ {
2184
+ "epoch": 0.6302906680265171,
2185
+ "grad_norm": 0.2858702838420868,
2186
+ "learning_rate": 0.0001566628644881815,
2187
+ "loss": 1.7616,
2188
+ "step": 309
2189
+ },
2190
+ {
2191
+ "epoch": 0.6323304436511984,
2192
+ "grad_norm": 0.27514535188674927,
2193
+ "learning_rate": 0.00015639570298509064,
2194
+ "loss": 1.7516,
2195
+ "step": 310
2196
+ },
2197
+ {
2198
+ "epoch": 0.6343702192758797,
2199
+ "grad_norm": 0.29323917627334595,
2200
+ "learning_rate": 0.00015612794991776147,
2201
+ "loss": 1.8444,
2202
+ "step": 311
2203
+ },
2204
+ {
2205
+ "epoch": 0.6364099949005609,
2206
+ "grad_norm": 0.3227652907371521,
2207
+ "learning_rate": 0.00015585960809479696,
2208
+ "loss": 1.8715,
2209
+ "step": 312
2210
+ },
2211
+ {
2212
+ "epoch": 0.6384497705252422,
2213
+ "grad_norm": 0.2898751497268677,
2214
+ "learning_rate": 0.00015559068033097582,
2215
+ "loss": 1.9242,
2216
+ "step": 313
2217
+ },
2218
+ {
2219
+ "epoch": 0.6404895461499235,
2220
+ "grad_norm": 0.2990049421787262,
2221
+ "learning_rate": 0.00015532116944722308,
2222
+ "loss": 1.7412,
2223
+ "step": 314
2224
+ },
2225
+ {
2226
+ "epoch": 0.6425293217746048,
2227
+ "grad_norm": 0.28128162026405334,
2228
+ "learning_rate": 0.00015505107827058036,
2229
+ "loss": 1.7801,
2230
+ "step": 315
2231
+ },
2232
+ {
2233
+ "epoch": 0.644569097399286,
2234
+ "grad_norm": 0.32478880882263184,
2235
+ "learning_rate": 0.0001547804096341763,
2236
+ "loss": 1.681,
2237
+ "step": 316
2238
+ },
2239
+ {
2240
+ "epoch": 0.6466088730239674,
2241
+ "grad_norm": 0.31724509596824646,
2242
+ "learning_rate": 0.00015450916637719684,
2243
+ "loss": 1.9405,
2244
+ "step": 317
2245
+ },
2246
+ {
2247
+ "epoch": 0.6486486486486487,
2248
+ "grad_norm": 0.36439332365989685,
2249
+ "learning_rate": 0.00015423735134485536,
2250
+ "loss": 1.7013,
2251
+ "step": 318
2252
+ },
2253
+ {
2254
+ "epoch": 0.65068842427333,
2255
+ "grad_norm": 0.3085692226886749,
2256
+ "learning_rate": 0.00015396496738836292,
2257
+ "loss": 1.7641,
2258
+ "step": 319
2259
+ },
2260
+ {
2261
+ "epoch": 0.6527281998980112,
2262
+ "grad_norm": 0.2774830758571625,
2263
+ "learning_rate": 0.0001536920173648984,
2264
+ "loss": 1.6727,
2265
+ "step": 320
2266
+ },
2267
+ {
2268
+ "epoch": 0.6547679755226925,
2269
+ "grad_norm": 0.3212391138076782,
2270
+ "learning_rate": 0.0001534185041375783,
2271
+ "loss": 1.7221,
2272
+ "step": 321
2273
+ },
2274
+ {
2275
+ "epoch": 0.6568077511473738,
2276
+ "grad_norm": 0.30237263441085815,
2277
+ "learning_rate": 0.00015314443057542703,
2278
+ "loss": 1.7456,
2279
+ "step": 322
2280
+ },
2281
+ {
2282
+ "epoch": 0.658847526772055,
2283
+ "grad_norm": 0.2800453305244446,
2284
+ "learning_rate": 0.00015286979955334652,
2285
+ "loss": 1.7978,
2286
+ "step": 323
2287
+ },
2288
+ {
2289
+ "epoch": 0.6608873023967363,
2290
+ "grad_norm": 0.28402194380760193,
2291
+ "learning_rate": 0.00015259461395208628,
2292
+ "loss": 1.8785,
2293
+ "step": 324
2294
+ },
2295
+ {
2296
+ "epoch": 0.6629270780214176,
2297
+ "grad_norm": 0.3377262353897095,
2298
+ "learning_rate": 0.000152318876658213,
2299
+ "loss": 1.7113,
2300
+ "step": 325
2301
+ },
2302
+ {
2303
+ "epoch": 0.664966853646099,
2304
+ "grad_norm": 0.376544326543808,
2305
+ "learning_rate": 0.00015204259056408046,
2306
+ "loss": 1.6237,
2307
+ "step": 326
2308
+ },
2309
+ {
2310
+ "epoch": 0.6670066292707802,
2311
+ "grad_norm": 0.3138863742351532,
2312
+ "learning_rate": 0.00015176575856779904,
2313
+ "loss": 1.8357,
2314
+ "step": 327
2315
+ },
2316
+ {
2317
+ "epoch": 0.6690464048954615,
2318
+ "grad_norm": 0.40277865529060364,
2319
+ "learning_rate": 0.00015148838357320537,
2320
+ "loss": 1.9038,
2321
+ "step": 328
2322
+ },
2323
+ {
2324
+ "epoch": 0.6710861805201428,
2325
+ "grad_norm": 0.2998698055744171,
2326
+ "learning_rate": 0.0001512104684898319,
2327
+ "loss": 1.7583,
2328
+ "step": 329
2329
+ },
2330
+ {
2331
+ "epoch": 0.6731259561448241,
2332
+ "grad_norm": 0.33020147681236267,
2333
+ "learning_rate": 0.00015093201623287631,
2334
+ "loss": 1.7446,
2335
+ "step": 330
2336
+ },
2337
+ {
2338
+ "epoch": 0.6751657317695053,
2339
+ "grad_norm": 0.3545725643634796,
2340
+ "learning_rate": 0.00015065302972317108,
2341
+ "loss": 1.8882,
2342
+ "step": 331
2343
+ },
2344
+ {
2345
+ "epoch": 0.6772055073941866,
2346
+ "grad_norm": 0.2989177107810974,
2347
+ "learning_rate": 0.00015037351188715265,
2348
+ "loss": 1.7751,
2349
+ "step": 332
2350
+ },
2351
+ {
2352
+ "epoch": 0.6792452830188679,
2353
+ "grad_norm": 0.3225865662097931,
2354
+ "learning_rate": 0.00015009346565683087,
2355
+ "loss": 1.8539,
2356
+ "step": 333
2357
+ },
2358
+ {
2359
+ "epoch": 0.6812850586435492,
2360
+ "grad_norm": 0.31957486271858215,
2361
+ "learning_rate": 0.00014981289396975817,
2362
+ "loss": 1.6078,
2363
+ "step": 334
2364
+ },
2365
+ {
2366
+ "epoch": 0.6833248342682305,
2367
+ "grad_norm": 0.323512464761734,
2368
+ "learning_rate": 0.00014953179976899878,
2369
+ "loss": 1.9539,
2370
+ "step": 335
2371
+ },
2372
+ {
2373
+ "epoch": 0.6853646098929118,
2374
+ "grad_norm": 0.3451762795448303,
2375
+ "learning_rate": 0.00014925018600309785,
2376
+ "loss": 1.8435,
2377
+ "step": 336
2378
+ },
2379
+ {
2380
+ "epoch": 0.6874043855175931,
2381
+ "grad_norm": 0.3474057614803314,
2382
+ "learning_rate": 0.0001489680556260505,
2383
+ "loss": 1.8385,
2384
+ "step": 337
2385
+ },
2386
+ {
2387
+ "epoch": 0.6894441611422744,
2388
+ "grad_norm": 0.3119589686393738,
2389
+ "learning_rate": 0.00014868541159727096,
2390
+ "loss": 1.7582,
2391
+ "step": 338
2392
+ },
2393
+ {
2394
+ "epoch": 0.6914839367669556,
2395
+ "grad_norm": 0.3289264738559723,
2396
+ "learning_rate": 0.0001484022568815613,
2397
+ "loss": 1.8391,
2398
+ "step": 339
2399
+ },
2400
+ {
2401
+ "epoch": 0.6935237123916369,
2402
+ "grad_norm": 0.32644519209861755,
2403
+ "learning_rate": 0.00014811859444908052,
2404
+ "loss": 1.7676,
2405
+ "step": 340
2406
+ },
2407
+ {
2408
+ "epoch": 0.6955634880163182,
2409
+ "grad_norm": 0.2529926002025604,
2410
+ "learning_rate": 0.00014783442727531328,
2411
+ "loss": 1.6483,
2412
+ "step": 341
2413
+ },
2414
+ {
2415
+ "epoch": 0.6976032636409994,
2416
+ "grad_norm": 0.39409515261650085,
2417
+ "learning_rate": 0.00014754975834103877,
2418
+ "loss": 1.8951,
2419
+ "step": 342
2420
+ },
2421
+ {
2422
+ "epoch": 0.6996430392656807,
2423
+ "grad_norm": 0.312379390001297,
2424
+ "learning_rate": 0.00014726459063229945,
2425
+ "loss": 1.8388,
2426
+ "step": 343
2427
+ },
2428
+ {
2429
+ "epoch": 0.7016828148903621,
2430
+ "grad_norm": 0.3048081696033478,
2431
+ "learning_rate": 0.00014697892714036958,
2432
+ "loss": 1.9482,
2433
+ "step": 344
2434
+ },
2435
+ {
2436
+ "epoch": 0.7037225905150434,
2437
+ "grad_norm": 0.37214845418930054,
2438
+ "learning_rate": 0.00014669277086172406,
2439
+ "loss": 1.8466,
2440
+ "step": 345
2441
+ },
2442
+ {
2443
+ "epoch": 0.7057623661397247,
2444
+ "grad_norm": 0.3273617923259735,
2445
+ "learning_rate": 0.00014640612479800686,
2446
+ "loss": 1.5934,
2447
+ "step": 346
2448
+ },
2449
+ {
2450
+ "epoch": 0.7078021417644059,
2451
+ "grad_norm": 0.3283670246601105,
2452
+ "learning_rate": 0.00014611899195599953,
2453
+ "loss": 1.7837,
2454
+ "step": 347
2455
+ },
2456
+ {
2457
+ "epoch": 0.7098419173890872,
2458
+ "grad_norm": 0.38148233294487,
2459
+ "learning_rate": 0.00014583137534758967,
2460
+ "loss": 1.8952,
2461
+ "step": 348
2462
+ },
2463
+ {
2464
+ "epoch": 0.7118816930137685,
2465
+ "grad_norm": 0.35573315620422363,
2466
+ "learning_rate": 0.0001455432779897395,
2467
+ "loss": 1.6698,
2468
+ "step": 349
2469
+ },
2470
+ {
2471
+ "epoch": 0.7139214686384497,
2472
+ "grad_norm": 0.362224280834198,
2473
+ "learning_rate": 0.00014525470290445392,
2474
+ "loss": 1.7698,
2475
+ "step": 350
2476
+ },
2477
+ {
2478
+ "epoch": 0.715961244263131,
2479
+ "grad_norm": 0.3312818706035614,
2480
+ "learning_rate": 0.00014496565311874902,
2481
+ "loss": 1.7951,
2482
+ "step": 351
2483
+ },
2484
+ {
2485
+ "epoch": 0.7180010198878123,
2486
+ "grad_norm": 0.3737257719039917,
2487
+ "learning_rate": 0.00014467613166462023,
2488
+ "loss": 1.9562,
2489
+ "step": 352
2490
+ },
2491
+ {
2492
+ "epoch": 0.7200407955124937,
2493
+ "grad_norm": 0.37132444977760315,
2494
+ "learning_rate": 0.0001443861415790107,
2495
+ "loss": 1.9022,
2496
+ "step": 353
2497
+ },
2498
+ {
2499
+ "epoch": 0.7220805711371749,
2500
+ "grad_norm": 0.30398017168045044,
2501
+ "learning_rate": 0.00014409568590377918,
2502
+ "loss": 2.0578,
2503
+ "step": 354
2504
+ },
2505
+ {
2506
+ "epoch": 0.7241203467618562,
2507
+ "grad_norm": 0.3135487139225006,
2508
+ "learning_rate": 0.00014380476768566824,
2509
+ "loss": 1.777,
2510
+ "step": 355
2511
+ },
2512
+ {
2513
+ "epoch": 0.7261601223865375,
2514
+ "grad_norm": 0.3089943826198578,
2515
+ "learning_rate": 0.00014351338997627234,
2516
+ "loss": 1.638,
2517
+ "step": 356
2518
+ },
2519
+ {
2520
+ "epoch": 0.7281998980112188,
2521
+ "grad_norm": 0.2791310250759125,
2522
+ "learning_rate": 0.00014322155583200576,
2523
+ "loss": 1.7786,
2524
+ "step": 357
2525
+ },
2526
+ {
2527
+ "epoch": 0.7302396736359,
2528
+ "grad_norm": 0.30986955761909485,
2529
+ "learning_rate": 0.00014292926831407061,
2530
+ "loss": 1.7467,
2531
+ "step": 358
2532
+ },
2533
+ {
2534
+ "epoch": 0.7322794492605813,
2535
+ "grad_norm": 0.29783159494400024,
2536
+ "learning_rate": 0.0001426365304884246,
2537
+ "loss": 1.6486,
2538
+ "step": 359
2539
+ },
2540
+ {
2541
+ "epoch": 0.7343192248852626,
2542
+ "grad_norm": 0.29579076170921326,
2543
+ "learning_rate": 0.00014234334542574906,
2544
+ "loss": 1.665,
2545
+ "step": 360
2546
+ },
2547
+ {
2548
+ "epoch": 0.7363590005099439,
2549
+ "grad_norm": 0.31017670035362244,
2550
+ "learning_rate": 0.00014204971620141647,
2551
+ "loss": 1.7287,
2552
+ "step": 361
2553
+ },
2554
+ {
2555
+ "epoch": 0.7383987761346252,
2556
+ "grad_norm": 0.34222882986068726,
2557
+ "learning_rate": 0.00014175564589545854,
2558
+ "loss": 1.7475,
2559
+ "step": 362
2560
+ },
2561
+ {
2562
+ "epoch": 0.7404385517593065,
2563
+ "grad_norm": 0.2956671714782715,
2564
+ "learning_rate": 0.00014146113759253362,
2565
+ "loss": 1.757,
2566
+ "step": 363
2567
+ },
2568
+ {
2569
+ "epoch": 0.7424783273839878,
2570
+ "grad_norm": 0.35265278816223145,
2571
+ "learning_rate": 0.0001411661943818944,
2572
+ "loss": 1.6731,
2573
+ "step": 364
2574
+ },
2575
+ {
2576
+ "epoch": 0.744518103008669,
2577
+ "grad_norm": 0.3606823682785034,
2578
+ "learning_rate": 0.00014087081935735564,
2579
+ "loss": 1.8684,
2580
+ "step": 365
2581
+ },
2582
+ {
2583
+ "epoch": 0.7465578786333503,
2584
+ "grad_norm": 0.27310827374458313,
2585
+ "learning_rate": 0.00014057501561726157,
2586
+ "loss": 1.7656,
2587
+ "step": 366
2588
+ },
2589
+ {
2590
+ "epoch": 0.7485976542580316,
2591
+ "grad_norm": 0.3064682185649872,
2592
+ "learning_rate": 0.0001402787862644534,
2593
+ "loss": 1.7646,
2594
+ "step": 367
2595
+ },
2596
+ {
2597
+ "epoch": 0.7506374298827129,
2598
+ "grad_norm": 0.40648531913757324,
2599
+ "learning_rate": 0.0001399821344062369,
2600
+ "loss": 1.672,
2601
+ "step": 368
2602
+ },
2603
+ {
2604
+ "epoch": 0.7526772055073941,
2605
+ "grad_norm": 0.28727683424949646,
2606
+ "learning_rate": 0.00013968506315434974,
2607
+ "loss": 1.5766,
2608
+ "step": 369
2609
+ },
2610
+ {
2611
+ "epoch": 0.7547169811320755,
2612
+ "grad_norm": 0.30638012290000916,
2613
+ "learning_rate": 0.00013938757562492873,
2614
+ "loss": 1.6456,
2615
+ "step": 370
2616
+ },
2617
+ {
2618
+ "epoch": 0.7567567567567568,
2619
+ "grad_norm": 0.3163774311542511,
2620
+ "learning_rate": 0.0001390896749384773,
2621
+ "loss": 1.8618,
2622
+ "step": 371
2623
+ },
2624
+ {
2625
+ "epoch": 0.7587965323814381,
2626
+ "grad_norm": 0.36798760294914246,
2627
+ "learning_rate": 0.00013879136421983266,
2628
+ "loss": 2.1013,
2629
+ "step": 372
2630
+ },
2631
+ {
2632
+ "epoch": 0.7608363080061193,
2633
+ "grad_norm": 0.30383849143981934,
2634
+ "learning_rate": 0.00013849264659813312,
2635
+ "loss": 1.7117,
2636
+ "step": 373
2637
+ },
2638
+ {
2639
+ "epoch": 0.7628760836308006,
2640
+ "grad_norm": 0.35814371705055237,
2641
+ "learning_rate": 0.0001381935252067852,
2642
+ "loss": 1.9741,
2643
+ "step": 374
2644
+ },
2645
+ {
2646
+ "epoch": 0.7649158592554819,
2647
+ "grad_norm": 0.29710692167282104,
2648
+ "learning_rate": 0.00013789400318343068,
2649
+ "loss": 1.5538,
2650
+ "step": 375
2651
+ },
2652
+ {
2653
+ "epoch": 0.7669556348801632,
2654
+ "grad_norm": 0.30160966515541077,
2655
+ "learning_rate": 0.0001375940836699139,
2656
+ "loss": 1.7604,
2657
+ "step": 376
2658
+ },
2659
+ {
2660
+ "epoch": 0.7689954105048444,
2661
+ "grad_norm": 0.28164952993392944,
2662
+ "learning_rate": 0.0001372937698122487,
2663
+ "loss": 1.736,
2664
+ "step": 377
2665
+ },
2666
+ {
2667
+ "epoch": 0.7710351861295257,
2668
+ "grad_norm": 0.293729692697525,
2669
+ "learning_rate": 0.0001369930647605852,
2670
+ "loss": 1.9099,
2671
+ "step": 378
2672
+ },
2673
+ {
2674
+ "epoch": 0.7730749617542071,
2675
+ "grad_norm": 0.28284940123558044,
2676
+ "learning_rate": 0.00013669197166917723,
2677
+ "loss": 1.7251,
2678
+ "step": 379
2679
+ },
2680
+ {
2681
+ "epoch": 0.7751147373788884,
2682
+ "grad_norm": 0.26181384921073914,
2683
+ "learning_rate": 0.00013639049369634876,
2684
+ "loss": 1.6381,
2685
+ "step": 380
2686
+ },
2687
+ {
2688
+ "epoch": 0.7771545130035696,
2689
+ "grad_norm": 0.3301055431365967,
2690
+ "learning_rate": 0.00013608863400446113,
2691
+ "loss": 1.998,
2692
+ "step": 381
2693
+ },
2694
+ {
2695
+ "epoch": 0.7791942886282509,
2696
+ "grad_norm": 0.3116731643676758,
2697
+ "learning_rate": 0.00013578639575987958,
2698
+ "loss": 1.8277,
2699
+ "step": 382
2700
+ },
2701
+ {
2702
+ "epoch": 0.7812340642529322,
2703
+ "grad_norm": 0.30362340807914734,
2704
+ "learning_rate": 0.0001354837821329404,
2705
+ "loss": 1.888,
2706
+ "step": 383
2707
+ },
2708
+ {
2709
+ "epoch": 0.7832738398776135,
2710
+ "grad_norm": 0.29050615429878235,
2711
+ "learning_rate": 0.00013518079629791724,
2712
+ "loss": 1.7116,
2713
+ "step": 384
2714
+ },
2715
+ {
2716
+ "epoch": 0.7853136155022947,
2717
+ "grad_norm": 0.29679572582244873,
2718
+ "learning_rate": 0.00013487744143298822,
2719
+ "loss": 1.6066,
2720
+ "step": 385
2721
+ },
2722
+ {
2723
+ "epoch": 0.787353391126976,
2724
+ "grad_norm": 0.3293478488922119,
2725
+ "learning_rate": 0.0001345737207202023,
2726
+ "loss": 1.7222,
2727
+ "step": 386
2728
+ },
2729
+ {
2730
+ "epoch": 0.7893931667516573,
2731
+ "grad_norm": 0.34148016571998596,
2732
+ "learning_rate": 0.000134269637345446,
2733
+ "loss": 1.7243,
2734
+ "step": 387
2735
+ },
2736
+ {
2737
+ "epoch": 0.7914329423763387,
2738
+ "grad_norm": 0.31480157375335693,
2739
+ "learning_rate": 0.00013396519449841005,
2740
+ "loss": 1.8812,
2741
+ "step": 388
2742
+ },
2743
+ {
2744
+ "epoch": 0.7934727180010199,
2745
+ "grad_norm": 0.2998044192790985,
2746
+ "learning_rate": 0.0001336603953725559,
2747
+ "loss": 1.9205,
2748
+ "step": 389
2749
+ },
2750
+ {
2751
+ "epoch": 0.7955124936257012,
2752
+ "grad_norm": 0.33707278966903687,
2753
+ "learning_rate": 0.00013335524316508208,
2754
+ "loss": 1.9246,
2755
+ "step": 390
2756
+ },
2757
+ {
2758
+ "epoch": 0.7975522692503825,
2759
+ "grad_norm": 0.33658990263938904,
2760
+ "learning_rate": 0.00013304974107689087,
2761
+ "loss": 1.849,
2762
+ "step": 391
2763
+ },
2764
+ {
2765
+ "epoch": 0.7995920448750637,
2766
+ "grad_norm": 0.2800214886665344,
2767
+ "learning_rate": 0.00013274389231255466,
2768
+ "loss": 1.7607,
2769
+ "step": 392
2770
+ },
2771
+ {
2772
+ "epoch": 0.801631820499745,
2773
+ "grad_norm": 0.29528602957725525,
2774
+ "learning_rate": 0.00013243770008028224,
2775
+ "loss": 1.6146,
2776
+ "step": 393
2777
+ },
2778
+ {
2779
+ "epoch": 0.8036715961244263,
2780
+ "grad_norm": 0.316123902797699,
2781
+ "learning_rate": 0.00013213116759188523,
2782
+ "loss": 1.7578,
2783
+ "step": 394
2784
+ },
2785
+ {
2786
+ "epoch": 0.8057113717491076,
2787
+ "grad_norm": 0.339609295129776,
2788
+ "learning_rate": 0.0001318242980627444,
2789
+ "loss": 1.6968,
2790
+ "step": 395
2791
+ },
2792
+ {
2793
+ "epoch": 0.8077511473737888,
2794
+ "grad_norm": 0.29195457696914673,
2795
+ "learning_rate": 0.00013151709471177588,
2796
+ "loss": 1.6553,
2797
+ "step": 396
2798
+ },
2799
+ {
2800
+ "epoch": 0.8097909229984702,
2801
+ "grad_norm": 0.3093162477016449,
2802
+ "learning_rate": 0.00013120956076139746,
2803
+ "loss": 1.6833,
2804
+ "step": 397
2805
+ },
2806
+ {
2807
+ "epoch": 0.8118306986231515,
2808
+ "grad_norm": 0.343049019575119,
2809
+ "learning_rate": 0.00013090169943749476,
2810
+ "loss": 1.717,
2811
+ "step": 398
2812
+ },
2813
+ {
2814
+ "epoch": 0.8138704742478328,
2815
+ "grad_norm": 0.30858704447746277,
2816
+ "learning_rate": 0.0001305935139693874,
2817
+ "loss": 1.5495,
2818
+ "step": 399
2819
+ },
2820
+ {
2821
+ "epoch": 0.815910249872514,
2822
+ "grad_norm": 0.28386467695236206,
2823
+ "learning_rate": 0.00013028500758979506,
2824
+ "loss": 1.8721,
2825
+ "step": 400
2826
+ },
2827
+ {
2828
+ "epoch": 0.8179500254971953,
2829
+ "grad_norm": 0.3261226713657379,
2830
+ "learning_rate": 0.00012997618353480377,
2831
+ "loss": 1.7956,
2832
+ "step": 401
2833
+ },
2834
+ {
2835
+ "epoch": 0.8199898011218766,
2836
+ "grad_norm": 0.3289451003074646,
2837
+ "learning_rate": 0.00012966704504383168,
2838
+ "loss": 1.7322,
2839
+ "step": 402
2840
+ },
2841
+ {
2842
+ "epoch": 0.8220295767465579,
2843
+ "grad_norm": 0.3098496198654175,
2844
+ "learning_rate": 0.00012935759535959528,
2845
+ "loss": 1.7224,
2846
+ "step": 403
2847
+ },
2848
+ {
2849
+ "epoch": 0.8240693523712391,
2850
+ "grad_norm": 0.2830435335636139,
2851
+ "learning_rate": 0.00012904783772807533,
2852
+ "loss": 1.7597,
2853
+ "step": 404
2854
+ },
2855
+ {
2856
+ "epoch": 0.8261091279959204,
2857
+ "grad_norm": 0.3040255010128021,
2858
+ "learning_rate": 0.00012873777539848283,
2859
+ "loss": 1.8111,
2860
+ "step": 405
2861
+ },
2862
+ {
2863
+ "epoch": 0.8281489036206018,
2864
+ "grad_norm": 0.30722421407699585,
2865
+ "learning_rate": 0.00012842741162322487,
2866
+ "loss": 1.6308,
2867
+ "step": 406
2868
+ },
2869
+ {
2870
+ "epoch": 0.8301886792452831,
2871
+ "grad_norm": 0.28365135192871094,
2872
+ "learning_rate": 0.00012811674965787056,
2873
+ "loss": 1.932,
2874
+ "step": 407
2875
+ },
2876
+ {
2877
+ "epoch": 0.8322284548699643,
2878
+ "grad_norm": 0.26628825068473816,
2879
+ "learning_rate": 0.00012780579276111702,
2880
+ "loss": 1.5047,
2881
+ "step": 408
2882
+ },
2883
+ {
2884
+ "epoch": 0.8342682304946456,
2885
+ "grad_norm": 0.3449050486087799,
2886
+ "learning_rate": 0.00012749454419475487,
2887
+ "loss": 1.9364,
2888
+ "step": 409
2889
+ },
2890
+ {
2891
+ "epoch": 0.8363080061193269,
2892
+ "grad_norm": 0.2961723208427429,
2893
+ "learning_rate": 0.0001271830072236343,
2894
+ "loss": 1.6638,
2895
+ "step": 410
2896
+ },
2897
+ {
2898
+ "epoch": 0.8383477817440081,
2899
+ "grad_norm": 0.2808418273925781,
2900
+ "learning_rate": 0.00012687118511563075,
2901
+ "loss": 1.6743,
2902
+ "step": 411
2903
+ },
2904
+ {
2905
+ "epoch": 0.8403875573686894,
2906
+ "grad_norm": 0.30065590143203735,
2907
+ "learning_rate": 0.0001265590811416105,
2908
+ "loss": 1.8681,
2909
+ "step": 412
2910
+ },
2911
+ {
2912
+ "epoch": 0.8424273329933707,
2913
+ "grad_norm": 0.311669260263443,
2914
+ "learning_rate": 0.0001262466985753967,
2915
+ "loss": 1.7563,
2916
+ "step": 413
2917
+ },
2918
+ {
2919
+ "epoch": 0.844467108618052,
2920
+ "grad_norm": 0.31335267424583435,
2921
+ "learning_rate": 0.0001259340406937345,
2922
+ "loss": 1.9591,
2923
+ "step": 414
2924
+ },
2925
+ {
2926
+ "epoch": 0.8465068842427333,
2927
+ "grad_norm": 0.306470662355423,
2928
+ "learning_rate": 0.00012562111077625722,
2929
+ "loss": 1.7165,
2930
+ "step": 415
2931
+ },
2932
+ {
2933
+ "epoch": 0.8485466598674146,
2934
+ "grad_norm": 0.278089314699173,
2935
+ "learning_rate": 0.00012530791210545162,
2936
+ "loss": 1.7441,
2937
+ "step": 416
2938
+ },
2939
+ {
2940
+ "epoch": 0.8505864354920959,
2941
+ "grad_norm": 0.28886333107948303,
2942
+ "learning_rate": 0.00012499444796662353,
2943
+ "loss": 1.7301,
2944
+ "step": 417
2945
+ },
2946
+ {
2947
+ "epoch": 0.8526262111167772,
2948
+ "grad_norm": 0.31261351704597473,
2949
+ "learning_rate": 0.0001246807216478634,
2950
+ "loss": 2.062,
2951
+ "step": 418
2952
+ },
2953
+ {
2954
+ "epoch": 0.8546659867414584,
2955
+ "grad_norm": 0.3184990882873535,
2956
+ "learning_rate": 0.00012436673644001197,
2957
+ "loss": 2.0039,
2958
+ "step": 419
2959
+ },
2960
+ {
2961
+ "epoch": 0.8567057623661397,
2962
+ "grad_norm": 0.28797486424446106,
2963
+ "learning_rate": 0.00012405249563662537,
2964
+ "loss": 1.5982,
2965
+ "step": 420
2966
+ },
2967
+ {
2968
+ "epoch": 0.858745537990821,
2969
+ "grad_norm": 0.32951340079307556,
2970
+ "learning_rate": 0.00012373800253394102,
2971
+ "loss": 1.6121,
2972
+ "step": 421
2973
+ },
2974
+ {
2975
+ "epoch": 0.8607853136155023,
2976
+ "grad_norm": 0.28868240118026733,
2977
+ "learning_rate": 0.00012342326043084266,
2978
+ "loss": 1.7456,
2979
+ "step": 422
2980
+ },
2981
+ {
2982
+ "epoch": 0.8628250892401835,
2983
+ "grad_norm": 0.3051716387271881,
2984
+ "learning_rate": 0.00012310827262882615,
2985
+ "loss": 1.7698,
2986
+ "step": 423
2987
+ },
2988
+ {
2989
+ "epoch": 0.8648648648648649,
2990
+ "grad_norm": 0.3326285183429718,
2991
+ "learning_rate": 0.00012279304243196436,
2992
+ "loss": 1.7834,
2993
+ "step": 424
2994
+ },
2995
+ {
2996
+ "epoch": 0.8669046404895462,
2997
+ "grad_norm": 0.3435324430465698,
2998
+ "learning_rate": 0.00012247757314687297,
2999
+ "loss": 1.7208,
3000
+ "step": 425
3001
+ },
3002
+ {
3003
+ "epoch": 0.8689444161142275,
3004
+ "grad_norm": 0.35181501507759094,
3005
+ "learning_rate": 0.00012216186808267546,
3006
+ "loss": 1.7401,
3007
+ "step": 426
3008
+ },
3009
+ {
3010
+ "epoch": 0.8709841917389087,
3011
+ "grad_norm": 0.30371034145355225,
3012
+ "learning_rate": 0.00012184593055096854,
3013
+ "loss": 1.655,
3014
+ "step": 427
3015
+ },
3016
+ {
3017
+ "epoch": 0.87302396736359,
3018
+ "grad_norm": 0.29926905035972595,
3019
+ "learning_rate": 0.0001215297638657875,
3020
+ "loss": 1.686,
3021
+ "step": 428
3022
+ },
3023
+ {
3024
+ "epoch": 0.8750637429882713,
3025
+ "grad_norm": 0.32623806595802307,
3026
+ "learning_rate": 0.0001212133713435712,
3027
+ "loss": 1.6556,
3028
+ "step": 429
3029
+ },
3030
+ {
3031
+ "epoch": 0.8771035186129525,
3032
+ "grad_norm": 0.32232004404067993,
3033
+ "learning_rate": 0.00012089675630312754,
3034
+ "loss": 1.7736,
3035
+ "step": 430
3036
+ },
3037
+ {
3038
+ "epoch": 0.8791432942376338,
3039
+ "grad_norm": 0.3392092287540436,
3040
+ "learning_rate": 0.00012057992206559837,
3041
+ "loss": 1.8754,
3042
+ "step": 431
3043
+ },
3044
+ {
3045
+ "epoch": 0.8811830698623151,
3046
+ "grad_norm": 0.34549203515052795,
3047
+ "learning_rate": 0.00012026287195442503,
3048
+ "loss": 1.7624,
3049
+ "step": 432
3050
+ },
3051
+ {
3052
+ "epoch": 0.8832228454869965,
3053
+ "grad_norm": 0.3612309694290161,
3054
+ "learning_rate": 0.00011994560929531309,
3055
+ "loss": 1.6408,
3056
+ "step": 433
3057
+ },
3058
+ {
3059
+ "epoch": 0.8852626211116777,
3060
+ "grad_norm": 0.30541735887527466,
3061
+ "learning_rate": 0.00011962813741619777,
3062
+ "loss": 1.6785,
3063
+ "step": 434
3064
+ },
3065
+ {
3066
+ "epoch": 0.887302396736359,
3067
+ "grad_norm": 0.2894171476364136,
3068
+ "learning_rate": 0.00011931045964720881,
3069
+ "loss": 1.6609,
3070
+ "step": 435
3071
+ },
3072
+ {
3073
+ "epoch": 0.8893421723610403,
3074
+ "grad_norm": 0.31241005659103394,
3075
+ "learning_rate": 0.0001189925793206357,
3076
+ "loss": 1.7421,
3077
+ "step": 436
3078
+ },
3079
+ {
3080
+ "epoch": 0.8913819479857216,
3081
+ "grad_norm": 0.36774688959121704,
3082
+ "learning_rate": 0.00011867449977089265,
3083
+ "loss": 1.902,
3084
+ "step": 437
3085
+ },
3086
+ {
3087
+ "epoch": 0.8934217236104028,
3088
+ "grad_norm": 0.3658794164657593,
3089
+ "learning_rate": 0.00011835622433448361,
3090
+ "loss": 1.9666,
3091
+ "step": 438
3092
+ },
3093
+ {
3094
+ "epoch": 0.8954614992350841,
3095
+ "grad_norm": 0.33153945207595825,
3096
+ "learning_rate": 0.00011803775634996734,
3097
+ "loss": 1.6772,
3098
+ "step": 439
3099
+ },
3100
+ {
3101
+ "epoch": 0.8975012748597654,
3102
+ "grad_norm": 0.34272125363349915,
3103
+ "learning_rate": 0.0001177190991579223,
3104
+ "loss": 1.7911,
3105
+ "step": 440
3106
+ },
3107
+ {
3108
+ "epoch": 0.8995410504844467,
3109
+ "grad_norm": 0.3852793276309967,
3110
+ "learning_rate": 0.00011740025610091159,
3111
+ "loss": 1.7358,
3112
+ "step": 441
3113
+ },
3114
+ {
3115
+ "epoch": 0.901580826109128,
3116
+ "grad_norm": 0.33693379163742065,
3117
+ "learning_rate": 0.00011708123052344804,
3118
+ "loss": 1.7078,
3119
+ "step": 442
3120
+ },
3121
+ {
3122
+ "epoch": 0.9036206017338093,
3123
+ "grad_norm": 0.35405832529067993,
3124
+ "learning_rate": 0.00011676202577195901,
3125
+ "loss": 1.6454,
3126
+ "step": 443
3127
+ },
3128
+ {
3129
+ "epoch": 0.9056603773584906,
3130
+ "grad_norm": 0.38638654351234436,
3131
+ "learning_rate": 0.0001164426451947513,
3132
+ "loss": 1.7611,
3133
+ "step": 444
3134
+ },
3135
+ {
3136
+ "epoch": 0.9077001529831719,
3137
+ "grad_norm": 0.3415047824382782,
3138
+ "learning_rate": 0.00011612309214197599,
3139
+ "loss": 1.6206,
3140
+ "step": 445
3141
+ },
3142
+ {
3143
+ "epoch": 0.9097399286078531,
3144
+ "grad_norm": 0.3022047281265259,
3145
+ "learning_rate": 0.00011580336996559343,
3146
+ "loss": 1.8017,
3147
+ "step": 446
3148
+ },
3149
+ {
3150
+ "epoch": 0.9117797042325344,
3151
+ "grad_norm": 0.3650202751159668,
3152
+ "learning_rate": 0.00011548348201933798,
3153
+ "loss": 1.6507,
3154
+ "step": 447
3155
+ },
3156
+ {
3157
+ "epoch": 0.9138194798572157,
3158
+ "grad_norm": 0.44297119975090027,
3159
+ "learning_rate": 0.00011516343165868279,
3160
+ "loss": 1.8607,
3161
+ "step": 448
3162
+ },
3163
+ {
3164
+ "epoch": 0.915859255481897,
3165
+ "grad_norm": 0.3508884906768799,
3166
+ "learning_rate": 0.00011484322224080472,
3167
+ "loss": 1.6549,
3168
+ "step": 449
3169
+ },
3170
+ {
3171
+ "epoch": 0.9178990311065782,
3172
+ "grad_norm": 0.31238260865211487,
3173
+ "learning_rate": 0.00011452285712454904,
3174
+ "loss": 1.603,
3175
+ "step": 450
3176
+ },
3177
+ {
3178
+ "epoch": 0.9199388067312596,
3179
+ "grad_norm": 0.36678579449653625,
3180
+ "learning_rate": 0.00011420233967039422,
3181
+ "loss": 1.7984,
3182
+ "step": 451
3183
+ },
3184
+ {
3185
+ "epoch": 0.9219785823559409,
3186
+ "grad_norm": 0.3467310965061188,
3187
+ "learning_rate": 0.00011388167324041669,
3188
+ "loss": 1.7691,
3189
+ "step": 452
3190
+ },
3191
+ {
3192
+ "epoch": 0.9240183579806222,
3193
+ "grad_norm": 0.2987074553966522,
3194
+ "learning_rate": 0.00011356086119825553,
3195
+ "loss": 1.617,
3196
+ "step": 453
3197
+ },
3198
+ {
3199
+ "epoch": 0.9260581336053034,
3200
+ "grad_norm": 0.2808781862258911,
3201
+ "learning_rate": 0.00011323990690907733,
3202
+ "loss": 1.6362,
3203
+ "step": 454
3204
+ },
3205
+ {
3206
+ "epoch": 0.9280979092299847,
3207
+ "grad_norm": 0.356692910194397,
3208
+ "learning_rate": 0.00011291881373954065,
3209
+ "loss": 1.7279,
3210
+ "step": 455
3211
+ },
3212
+ {
3213
+ "epoch": 0.930137684854666,
3214
+ "grad_norm": 0.3478505611419678,
3215
+ "learning_rate": 0.00011259758505776092,
3216
+ "loss": 1.6011,
3217
+ "step": 456
3218
+ },
3219
+ {
3220
+ "epoch": 0.9321774604793472,
3221
+ "grad_norm": 0.3229358196258545,
3222
+ "learning_rate": 0.00011227622423327502,
3223
+ "loss": 1.7874,
3224
+ "step": 457
3225
+ },
3226
+ {
3227
+ "epoch": 0.9342172361040285,
3228
+ "grad_norm": 0.30234581232070923,
3229
+ "learning_rate": 0.0001119547346370059,
3230
+ "loss": 1.6098,
3231
+ "step": 458
3232
+ },
3233
+ {
3234
+ "epoch": 0.9362570117287098,
3235
+ "grad_norm": 0.356154203414917,
3236
+ "learning_rate": 0.00011163311964122734,
3237
+ "loss": 1.8164,
3238
+ "step": 459
3239
+ },
3240
+ {
3241
+ "epoch": 0.9382967873533912,
3242
+ "grad_norm": 0.35306453704833984,
3243
+ "learning_rate": 0.00011131138261952845,
3244
+ "loss": 1.8833,
3245
+ "step": 460
3246
+ },
3247
+ {
3248
+ "epoch": 0.9403365629780724,
3249
+ "grad_norm": 0.29947206377983093,
3250
+ "learning_rate": 0.00011098952694677829,
3251
+ "loss": 1.6675,
3252
+ "step": 461
3253
+ },
3254
+ {
3255
+ "epoch": 0.9423763386027537,
3256
+ "grad_norm": 0.3290257155895233,
3257
+ "learning_rate": 0.00011066755599909064,
3258
+ "loss": 1.7463,
3259
+ "step": 462
3260
+ },
3261
+ {
3262
+ "epoch": 0.944416114227435,
3263
+ "grad_norm": 0.32332712411880493,
3264
+ "learning_rate": 0.00011034547315378838,
3265
+ "loss": 1.5748,
3266
+ "step": 463
3267
+ },
3268
+ {
3269
+ "epoch": 0.9464558898521163,
3270
+ "grad_norm": 0.40129172801971436,
3271
+ "learning_rate": 0.00011002328178936811,
3272
+ "loss": 1.6484,
3273
+ "step": 464
3274
+ },
3275
+ {
3276
+ "epoch": 0.9484956654767975,
3277
+ "grad_norm": 0.34289342164993286,
3278
+ "learning_rate": 0.00010970098528546481,
3279
+ "loss": 1.7533,
3280
+ "step": 465
3281
+ },
3282
+ {
3283
+ "epoch": 0.9505354411014788,
3284
+ "grad_norm": 0.30435630679130554,
3285
+ "learning_rate": 0.00010937858702281631,
3286
+ "loss": 1.8037,
3287
+ "step": 466
3288
+ },
3289
+ {
3290
+ "epoch": 0.9525752167261601,
3291
+ "grad_norm": 0.29155558347702026,
3292
+ "learning_rate": 0.00010905609038322779,
3293
+ "loss": 1.5628,
3294
+ "step": 467
3295
+ },
3296
+ {
3297
+ "epoch": 0.9546149923508415,
3298
+ "grad_norm": 0.31822967529296875,
3299
+ "learning_rate": 0.0001087334987495364,
3300
+ "loss": 1.7222,
3301
+ "step": 468
3302
+ },
3303
+ {
3304
+ "epoch": 0.9566547679755227,
3305
+ "grad_norm": 0.2868748605251312,
3306
+ "learning_rate": 0.00010841081550557578,
3307
+ "loss": 1.86,
3308
+ "step": 469
3309
+ },
3310
+ {
3311
+ "epoch": 0.958694543600204,
3312
+ "grad_norm": 0.3066910207271576,
3313
+ "learning_rate": 0.00010808804403614043,
3314
+ "loss": 1.7278,
3315
+ "step": 470
3316
+ },
3317
+ {
3318
+ "epoch": 0.9607343192248853,
3319
+ "grad_norm": 0.28570494055747986,
3320
+ "learning_rate": 0.00010776518772695034,
3321
+ "loss": 1.7328,
3322
+ "step": 471
3323
+ },
3324
+ {
3325
+ "epoch": 0.9627740948495666,
3326
+ "grad_norm": 0.28472283482551575,
3327
+ "learning_rate": 0.0001074422499646154,
3328
+ "loss": 1.7311,
3329
+ "step": 472
3330
+ },
3331
+ {
3332
+ "epoch": 0.9648138704742478,
3333
+ "grad_norm": 0.30987489223480225,
3334
+ "learning_rate": 0.00010711923413659995,
3335
+ "loss": 1.7628,
3336
+ "step": 473
3337
+ },
3338
+ {
3339
+ "epoch": 0.9668536460989291,
3340
+ "grad_norm": 0.32321545481681824,
3341
+ "learning_rate": 0.00010679614363118717,
3342
+ "loss": 1.8949,
3343
+ "step": 474
3344
+ },
3345
+ {
3346
+ "epoch": 0.9688934217236104,
3347
+ "grad_norm": 0.32413583993911743,
3348
+ "learning_rate": 0.00010647298183744359,
3349
+ "loss": 1.6379,
3350
+ "step": 475
3351
+ },
3352
+ {
3353
+ "epoch": 0.9709331973482916,
3354
+ "grad_norm": 0.3008846044540405,
3355
+ "learning_rate": 0.0001061497521451835,
3356
+ "loss": 1.7546,
3357
+ "step": 476
3358
+ },
3359
+ {
3360
+ "epoch": 0.972972972972973,
3361
+ "grad_norm": 0.3248610198497772,
3362
+ "learning_rate": 0.00010582645794493337,
3363
+ "loss": 1.8915,
3364
+ "step": 477
3365
+ },
3366
+ {
3367
+ "epoch": 0.9750127485976543,
3368
+ "grad_norm": 0.3182532489299774,
3369
+ "learning_rate": 0.00010550310262789649,
3370
+ "loss": 1.8771,
3371
+ "step": 478
3372
+ },
3373
+ {
3374
+ "epoch": 0.9770525242223356,
3375
+ "grad_norm": 0.317730188369751,
3376
+ "learning_rate": 0.00010517968958591705,
3377
+ "loss": 1.7348,
3378
+ "step": 479
3379
+ },
3380
+ {
3381
+ "epoch": 0.9790922998470168,
3382
+ "grad_norm": 0.3585616648197174,
3383
+ "learning_rate": 0.00010485622221144484,
3384
+ "loss": 1.6916,
3385
+ "step": 480
3386
+ },
3387
+ {
3388
+ "epoch": 0.9811320754716981,
3389
+ "grad_norm": 0.2927946150302887,
3390
+ "learning_rate": 0.00010453270389749957,
3391
+ "loss": 1.7284,
3392
+ "step": 481
3393
+ },
3394
+ {
3395
+ "epoch": 0.9831718510963794,
3396
+ "grad_norm": 0.2869007885456085,
3397
+ "learning_rate": 0.00010420913803763521,
3398
+ "loss": 1.7312,
3399
+ "step": 482
3400
+ },
3401
+ {
3402
+ "epoch": 0.9852116267210607,
3403
+ "grad_norm": 0.34274759888648987,
3404
+ "learning_rate": 0.00010388552802590462,
3405
+ "loss": 1.6405,
3406
+ "step": 483
3407
+ },
3408
+ {
3409
+ "epoch": 0.9872514023457419,
3410
+ "grad_norm": 0.3203391134738922,
3411
+ "learning_rate": 0.00010356187725682359,
3412
+ "loss": 1.666,
3413
+ "step": 484
3414
+ },
3415
+ {
3416
+ "epoch": 0.9892911779704232,
3417
+ "grad_norm": 0.3370297849178314,
3418
+ "learning_rate": 0.00010323818912533561,
3419
+ "loss": 1.757,
3420
+ "step": 485
3421
+ },
3422
+ {
3423
+ "epoch": 0.9913309535951046,
3424
+ "grad_norm": 0.3095087707042694,
3425
+ "learning_rate": 0.00010291446702677599,
3426
+ "loss": 1.7015,
3427
+ "step": 486
3428
+ },
3429
+ {
3430
+ "epoch": 0.9933707292197859,
3431
+ "grad_norm": 0.33249640464782715,
3432
+ "learning_rate": 0.00010259071435683636,
3433
+ "loss": 1.9363,
3434
+ "step": 487
3435
+ },
3436
+ {
3437
+ "epoch": 0.9954105048444671,
3438
+ "grad_norm": 0.3441324830055237,
3439
+ "learning_rate": 0.000102266934511529,
3440
+ "loss": 1.5975,
3441
+ "step": 488
3442
+ },
3443
+ {
3444
+ "epoch": 0.9974502804691484,
3445
+ "grad_norm": 0.31439101696014404,
3446
+ "learning_rate": 0.00010194313088715135,
3447
+ "loss": 1.7025,
3448
+ "step": 489
3449
+ },
3450
+ {
3451
+ "epoch": 0.9994900560938297,
3452
+ "grad_norm": 0.34762027859687805,
3453
+ "learning_rate": 0.00010161930688025017,
3454
+ "loss": 1.7399,
3455
+ "step": 490
3456
+ },
3457
+ {
3458
+ "epoch": 0.9994900560938297,
3459
+ "eval_loss": 1.752766489982605,
3460
+ "eval_runtime": 57.5155,
3461
+ "eval_samples_per_second": 14.361,
3462
+ "eval_steps_per_second": 1.808,
3463
+ "step": 490
3464
+ }
3465
+ ],
3466
+ "logging_steps": 1,
3467
+ "max_steps": 980,
3468
+ "num_input_tokens_seen": 0,
3469
+ "num_train_epochs": 2,
3470
+ "save_steps": 490,
3471
+ "stateful_callbacks": {
3472
+ "TrainerControl": {
3473
+ "args": {
3474
+ "should_epoch_stop": false,
3475
+ "should_evaluate": false,
3476
+ "should_log": false,
3477
+ "should_save": true,
3478
+ "should_training_stop": false
3479
+ },
3480
+ "attributes": {}
3481
+ }
3482
+ },
3483
+ "total_flos": 4.735357947750646e+17,
3484
+ "train_batch_size": 2,
3485
+ "trial_name": null,
3486
+ "trial_params": null
3487
+ }
checkpoint-490/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd5118745a3a32cd68003e9390de78b66f6a98a0ddca61e009cc5906838ab426
3
+ size 6136
checkpoint-490/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-980/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: unsloth/Qwen2.5-Math-7B-Instruct
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
checkpoint-980/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "unsloth/Qwen2.5-Math-7B-Instruct",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 32,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "gate_proj",
24
+ "v_proj",
25
+ "o_proj",
26
+ "k_proj",
27
+ "up_proj",
28
+ "down_proj",
29
+ "q_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
checkpoint-980/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ffdc900a3521c14a60196d396fdae335d8649be79ac050437de521b77e6b8a04
3
+ size 323014168
checkpoint-980/added_tokens.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|PAD_TOKEN|>": 151665,
5
+ "<|box_end|>": 151649,
6
+ "<|box_start|>": 151648,
7
+ "<|endoftext|>": 151643,
8
+ "<|file_sep|>": 151664,
9
+ "<|fim_middle|>": 151660,
10
+ "<|fim_pad|>": 151662,
11
+ "<|fim_prefix|>": 151659,
12
+ "<|fim_suffix|>": 151661,
13
+ "<|im_end|>": 151645,
14
+ "<|im_start|>": 151644,
15
+ "<|image_pad|>": 151655,
16
+ "<|object_ref_end|>": 151647,
17
+ "<|object_ref_start|>": 151646,
18
+ "<|quad_end|>": 151651,
19
+ "<|quad_start|>": 151650,
20
+ "<|repo_name|>": 151663,
21
+ "<|video_pad|>": 151656,
22
+ "<|vision_end|>": 151653,
23
+ "<|vision_pad|>": 151654,
24
+ "<|vision_start|>": 151652
25
+ }
checkpoint-980/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-980/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:45d7469284cb12646545bf9b816b48a49b85d677da3d5e9a144adc1e7a822b6b
3
+ size 162231028
checkpoint-980/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:12ee18499e4049d4acb94c8e1aab52280aa657c0445937d3359e79fb3299c678
3
+ size 14960
checkpoint-980/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:968e440bb6e5113db79e5fb9d0734f972965f2c5521c893c3f493df28c45ed50
3
+ size 14960
checkpoint-980/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b2cf15cab9e05c5469c465b55bff4ae04e4303e44c7d4542b2e965d2f12ddf2d
3
+ size 14960
checkpoint-980/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf0aa7d73ccb686c78ef9aeaba6b28ffaa53b1e9598146582726fa3894103e45
3
+ size 14960
checkpoint-980/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b5d476c12da381846e3dd23747ce593bb7d9068ba7200583b801a8ee542adb9c
3
+ size 1064
checkpoint-980/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|PAD_TOKEN|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
checkpoint-980/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-980/tokenizer_config.json ADDED
@@ -0,0 +1,216 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ },
181
+ "151665": {
182
+ "content": "<|PAD_TOKEN|>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": true
188
+ }
189
+ },
190
+ "additional_special_tokens": [
191
+ "<|im_start|>",
192
+ "<|im_end|>",
193
+ "<|object_ref_start|>",
194
+ "<|object_ref_end|>",
195
+ "<|box_start|>",
196
+ "<|box_end|>",
197
+ "<|quad_start|>",
198
+ "<|quad_end|>",
199
+ "<|vision_start|>",
200
+ "<|vision_end|>",
201
+ "<|vision_pad|>",
202
+ "<|image_pad|>",
203
+ "<|video_pad|>"
204
+ ],
205
+ "bos_token": null,
206
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'Please reason step by step, and put your final answer within \\\\boxed{}.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nPlease reason step by step, and put your final answer within \\\\boxed{}.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
207
+ "clean_up_tokenization_spaces": false,
208
+ "eos_token": "<|im_end|>",
209
+ "errors": "replace",
210
+ "model_max_length": 131072,
211
+ "pad_token": "<|PAD_TOKEN|>",
212
+ "padding_side": "left",
213
+ "split_special_tokens": false,
214
+ "tokenizer_class": "Qwen2Tokenizer",
215
+ "unk_token": null
216
+ }
checkpoint-980/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-980/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd5118745a3a32cd68003e9390de78b66f6a98a0ddca61e009cc5906838ab426
3
+ size 6136
checkpoint-980/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
merged/added_tokens.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|PAD_TOKEN|>": 151665,
5
+ "<|box_end|>": 151649,
6
+ "<|box_start|>": 151648,
7
+ "<|endoftext|>": 151643,
8
+ "<|file_sep|>": 151664,
9
+ "<|fim_middle|>": 151660,
10
+ "<|fim_pad|>": 151662,
11
+ "<|fim_prefix|>": 151659,
12
+ "<|fim_suffix|>": 151661,
13
+ "<|im_end|>": 151645,
14
+ "<|im_start|>": 151644,
15
+ "<|image_pad|>": 151655,
16
+ "<|object_ref_end|>": 151647,
17
+ "<|object_ref_start|>": 151646,
18
+ "<|quad_end|>": 151651,
19
+ "<|quad_start|>": 151650,
20
+ "<|repo_name|>": 151663,
21
+ "<|video_pad|>": 151656,
22
+ "<|vision_end|>": 151653,
23
+ "<|vision_pad|>": 151654,
24
+ "<|vision_start|>": 151652
25
+ }
merged/config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "unsloth/Qwen2.5-Math-7B-Instruct",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "eos_token_id": 151645,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 3584,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 18944,
12
+ "max_position_embeddings": 4096,
13
+ "max_window_layers": 28,
14
+ "model_type": "qwen2",
15
+ "num_attention_heads": 28,
16
+ "num_hidden_layers": 28,
17
+ "num_key_value_heads": 4,
18
+ "pad_token_id": 151665,
19
+ "rms_norm_eps": 1e-06,
20
+ "rope_theta": 10000.0,
21
+ "sliding_window": null,
22
+ "tie_word_embeddings": false,
23
+ "torch_dtype": "bfloat16",
24
+ "transformers_version": "4.42.3",
25
+ "unsloth_fixed": true,
26
+ "use_cache": false,
27
+ "use_sliding_window": false,
28
+ "vocab_size": 152064
29
+ }
merged/generation_config.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "max_length": 4096,
9
+ "pad_token_id": 151665,
10
+ "transformers_version": "4.42.3"
11
+ }
merged/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
merged/pytorch_model-00001-of-00004.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:87d8806e341e6236c810be0b83f6948493c1b665960359a7a1a9f66bc7a3be80
3
+ size 4877684182
merged/pytorch_model-00002-of-00004.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2a2d5904ae5af2ffd738325f0811d7fa00d0c14e9ca15a1939751eb1c44a6841
3
+ size 4932778600
merged/pytorch_model-00003-of-00004.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a22c2af3025a7abed7c175b68c9cb9c82a73878a6a48fc38c9467bea9dbf2fc0
3
+ size 4330890394
merged/pytorch_model-00004-of-00004.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c8ca6d42b61f483fc9cbd2d2bc61510c7c124dbab9c06fb9c0050ee86aad4750
3
+ size 1089996165
merged/pytorch_model.bin.index.json ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 15231233024
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "pytorch_model-00004-of-00004.bin",
7
+ "model.embed_tokens.weight": "pytorch_model-00001-of-00004.bin",
8
+ "model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
9
+ "model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
10
+ "model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
11
+ "model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
12
+ "model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
13
+ "model.layers.0.self_attn.k_proj.bias": "pytorch_model-00001-of-00004.bin",
14
+ "model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
15
+ "model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
16
+ "model.layers.0.self_attn.q_proj.bias": "pytorch_model-00001-of-00004.bin",
17
+ "model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
18
+ "model.layers.0.self_attn.v_proj.bias": "pytorch_model-00001-of-00004.bin",
19
+ "model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
20
+ "model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
21
+ "model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
22
+ "model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
23
+ "model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
24
+ "model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
25
+ "model.layers.1.self_attn.k_proj.bias": "pytorch_model-00001-of-00004.bin",
26
+ "model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
27
+ "model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
28
+ "model.layers.1.self_attn.q_proj.bias": "pytorch_model-00001-of-00004.bin",
29
+ "model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
30
+ "model.layers.1.self_attn.v_proj.bias": "pytorch_model-00001-of-00004.bin",
31
+ "model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
32
+ "model.layers.10.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
33
+ "model.layers.10.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
34
+ "model.layers.10.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
35
+ "model.layers.10.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
36
+ "model.layers.10.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
37
+ "model.layers.10.self_attn.k_proj.bias": "pytorch_model-00002-of-00004.bin",
38
+ "model.layers.10.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
39
+ "model.layers.10.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
40
+ "model.layers.10.self_attn.q_proj.bias": "pytorch_model-00002-of-00004.bin",
41
+ "model.layers.10.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
42
+ "model.layers.10.self_attn.v_proj.bias": "pytorch_model-00002-of-00004.bin",
43
+ "model.layers.10.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
44
+ "model.layers.11.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
45
+ "model.layers.11.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
46
+ "model.layers.11.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
47
+ "model.layers.11.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
48
+ "model.layers.11.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
49
+ "model.layers.11.self_attn.k_proj.bias": "pytorch_model-00002-of-00004.bin",
50
+ "model.layers.11.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
51
+ "model.layers.11.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
52
+ "model.layers.11.self_attn.q_proj.bias": "pytorch_model-00002-of-00004.bin",
53
+ "model.layers.11.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
54
+ "model.layers.11.self_attn.v_proj.bias": "pytorch_model-00002-of-00004.bin",
55
+ "model.layers.11.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
56
+ "model.layers.12.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
57
+ "model.layers.12.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
58
+ "model.layers.12.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
59
+ "model.layers.12.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
60
+ "model.layers.12.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
61
+ "model.layers.12.self_attn.k_proj.bias": "pytorch_model-00002-of-00004.bin",
62
+ "model.layers.12.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
63
+ "model.layers.12.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
64
+ "model.layers.12.self_attn.q_proj.bias": "pytorch_model-00002-of-00004.bin",
65
+ "model.layers.12.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
66
+ "model.layers.12.self_attn.v_proj.bias": "pytorch_model-00002-of-00004.bin",
67
+ "model.layers.12.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
68
+ "model.layers.13.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
69
+ "model.layers.13.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
70
+ "model.layers.13.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
71
+ "model.layers.13.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
72
+ "model.layers.13.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
73
+ "model.layers.13.self_attn.k_proj.bias": "pytorch_model-00002-of-00004.bin",
74
+ "model.layers.13.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
75
+ "model.layers.13.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
76
+ "model.layers.13.self_attn.q_proj.bias": "pytorch_model-00002-of-00004.bin",
77
+ "model.layers.13.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
78
+ "model.layers.13.self_attn.v_proj.bias": "pytorch_model-00002-of-00004.bin",
79
+ "model.layers.13.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
80
+ "model.layers.14.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
81
+ "model.layers.14.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
82
+ "model.layers.14.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
83
+ "model.layers.14.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
84
+ "model.layers.14.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
85
+ "model.layers.14.self_attn.k_proj.bias": "pytorch_model-00002-of-00004.bin",
86
+ "model.layers.14.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
87
+ "model.layers.14.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
88
+ "model.layers.14.self_attn.q_proj.bias": "pytorch_model-00002-of-00004.bin",
89
+ "model.layers.14.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
90
+ "model.layers.14.self_attn.v_proj.bias": "pytorch_model-00002-of-00004.bin",
91
+ "model.layers.14.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
92
+ "model.layers.15.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
93
+ "model.layers.15.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
94
+ "model.layers.15.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
95
+ "model.layers.15.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
96
+ "model.layers.15.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
97
+ "model.layers.15.self_attn.k_proj.bias": "pytorch_model-00002-of-00004.bin",
98
+ "model.layers.15.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
99
+ "model.layers.15.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
100
+ "model.layers.15.self_attn.q_proj.bias": "pytorch_model-00002-of-00004.bin",
101
+ "model.layers.15.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
102
+ "model.layers.15.self_attn.v_proj.bias": "pytorch_model-00002-of-00004.bin",
103
+ "model.layers.15.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
104
+ "model.layers.16.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
105
+ "model.layers.16.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
106
+ "model.layers.16.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
107
+ "model.layers.16.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
108
+ "model.layers.16.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
109
+ "model.layers.16.self_attn.k_proj.bias": "pytorch_model-00002-of-00004.bin",
110
+ "model.layers.16.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
111
+ "model.layers.16.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
112
+ "model.layers.16.self_attn.q_proj.bias": "pytorch_model-00002-of-00004.bin",
113
+ "model.layers.16.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
114
+ "model.layers.16.self_attn.v_proj.bias": "pytorch_model-00002-of-00004.bin",
115
+ "model.layers.16.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
116
+ "model.layers.17.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
117
+ "model.layers.17.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
118
+ "model.layers.17.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
119
+ "model.layers.17.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
120
+ "model.layers.17.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
121
+ "model.layers.17.self_attn.k_proj.bias": "pytorch_model-00002-of-00004.bin",
122
+ "model.layers.17.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
123
+ "model.layers.17.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
124
+ "model.layers.17.self_attn.q_proj.bias": "pytorch_model-00002-of-00004.bin",
125
+ "model.layers.17.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
126
+ "model.layers.17.self_attn.v_proj.bias": "pytorch_model-00002-of-00004.bin",
127
+ "model.layers.17.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
128
+ "model.layers.18.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
129
+ "model.layers.18.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
130
+ "model.layers.18.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
131
+ "model.layers.18.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
132
+ "model.layers.18.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
133
+ "model.layers.18.self_attn.k_proj.bias": "pytorch_model-00002-of-00004.bin",
134
+ "model.layers.18.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
135
+ "model.layers.18.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
136
+ "model.layers.18.self_attn.q_proj.bias": "pytorch_model-00002-of-00004.bin",
137
+ "model.layers.18.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
138
+ "model.layers.18.self_attn.v_proj.bias": "pytorch_model-00002-of-00004.bin",
139
+ "model.layers.18.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
140
+ "model.layers.19.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
141
+ "model.layers.19.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
142
+ "model.layers.19.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
143
+ "model.layers.19.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
144
+ "model.layers.19.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
145
+ "model.layers.19.self_attn.k_proj.bias": "pytorch_model-00003-of-00004.bin",
146
+ "model.layers.19.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
147
+ "model.layers.19.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
148
+ "model.layers.19.self_attn.q_proj.bias": "pytorch_model-00003-of-00004.bin",
149
+ "model.layers.19.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
150
+ "model.layers.19.self_attn.v_proj.bias": "pytorch_model-00003-of-00004.bin",
151
+ "model.layers.19.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
152
+ "model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
153
+ "model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
154
+ "model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
155
+ "model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
156
+ "model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
157
+ "model.layers.2.self_attn.k_proj.bias": "pytorch_model-00001-of-00004.bin",
158
+ "model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
159
+ "model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
160
+ "model.layers.2.self_attn.q_proj.bias": "pytorch_model-00001-of-00004.bin",
161
+ "model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
162
+ "model.layers.2.self_attn.v_proj.bias": "pytorch_model-00001-of-00004.bin",
163
+ "model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
164
+ "model.layers.20.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
165
+ "model.layers.20.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
166
+ "model.layers.20.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
167
+ "model.layers.20.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
168
+ "model.layers.20.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
169
+ "model.layers.20.self_attn.k_proj.bias": "pytorch_model-00003-of-00004.bin",
170
+ "model.layers.20.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
171
+ "model.layers.20.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
172
+ "model.layers.20.self_attn.q_proj.bias": "pytorch_model-00003-of-00004.bin",
173
+ "model.layers.20.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
174
+ "model.layers.20.self_attn.v_proj.bias": "pytorch_model-00003-of-00004.bin",
175
+ "model.layers.20.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
176
+ "model.layers.21.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
177
+ "model.layers.21.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
178
+ "model.layers.21.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
179
+ "model.layers.21.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
180
+ "model.layers.21.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
181
+ "model.layers.21.self_attn.k_proj.bias": "pytorch_model-00003-of-00004.bin",
182
+ "model.layers.21.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
183
+ "model.layers.21.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
184
+ "model.layers.21.self_attn.q_proj.bias": "pytorch_model-00003-of-00004.bin",
185
+ "model.layers.21.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
186
+ "model.layers.21.self_attn.v_proj.bias": "pytorch_model-00003-of-00004.bin",
187
+ "model.layers.21.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
188
+ "model.layers.22.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
189
+ "model.layers.22.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
190
+ "model.layers.22.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
191
+ "model.layers.22.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
192
+ "model.layers.22.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
193
+ "model.layers.22.self_attn.k_proj.bias": "pytorch_model-00003-of-00004.bin",
194
+ "model.layers.22.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
195
+ "model.layers.22.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
196
+ "model.layers.22.self_attn.q_proj.bias": "pytorch_model-00003-of-00004.bin",
197
+ "model.layers.22.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
198
+ "model.layers.22.self_attn.v_proj.bias": "pytorch_model-00003-of-00004.bin",
199
+ "model.layers.22.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
200
+ "model.layers.23.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
201
+ "model.layers.23.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
202
+ "model.layers.23.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
203
+ "model.layers.23.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
204
+ "model.layers.23.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
205
+ "model.layers.23.self_attn.k_proj.bias": "pytorch_model-00003-of-00004.bin",
206
+ "model.layers.23.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
207
+ "model.layers.23.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
208
+ "model.layers.23.self_attn.q_proj.bias": "pytorch_model-00003-of-00004.bin",
209
+ "model.layers.23.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
210
+ "model.layers.23.self_attn.v_proj.bias": "pytorch_model-00003-of-00004.bin",
211
+ "model.layers.23.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
212
+ "model.layers.24.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
213
+ "model.layers.24.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
214
+ "model.layers.24.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
215
+ "model.layers.24.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
216
+ "model.layers.24.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
217
+ "model.layers.24.self_attn.k_proj.bias": "pytorch_model-00003-of-00004.bin",
218
+ "model.layers.24.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
219
+ "model.layers.24.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
220
+ "model.layers.24.self_attn.q_proj.bias": "pytorch_model-00003-of-00004.bin",
221
+ "model.layers.24.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
222
+ "model.layers.24.self_attn.v_proj.bias": "pytorch_model-00003-of-00004.bin",
223
+ "model.layers.24.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
224
+ "model.layers.25.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
225
+ "model.layers.25.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
226
+ "model.layers.25.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
227
+ "model.layers.25.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
228
+ "model.layers.25.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
229
+ "model.layers.25.self_attn.k_proj.bias": "pytorch_model-00003-of-00004.bin",
230
+ "model.layers.25.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
231
+ "model.layers.25.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
232
+ "model.layers.25.self_attn.q_proj.bias": "pytorch_model-00003-of-00004.bin",
233
+ "model.layers.25.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
234
+ "model.layers.25.self_attn.v_proj.bias": "pytorch_model-00003-of-00004.bin",
235
+ "model.layers.25.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
236
+ "model.layers.26.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
237
+ "model.layers.26.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
238
+ "model.layers.26.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
239
+ "model.layers.26.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
240
+ "model.layers.26.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
241
+ "model.layers.26.self_attn.k_proj.bias": "pytorch_model-00003-of-00004.bin",
242
+ "model.layers.26.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
243
+ "model.layers.26.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
244
+ "model.layers.26.self_attn.q_proj.bias": "pytorch_model-00003-of-00004.bin",
245
+ "model.layers.26.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
246
+ "model.layers.26.self_attn.v_proj.bias": "pytorch_model-00003-of-00004.bin",
247
+ "model.layers.26.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
248
+ "model.layers.27.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
249
+ "model.layers.27.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
250
+ "model.layers.27.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
251
+ "model.layers.27.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
252
+ "model.layers.27.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
253
+ "model.layers.27.self_attn.k_proj.bias": "pytorch_model-00003-of-00004.bin",
254
+ "model.layers.27.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
255
+ "model.layers.27.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
256
+ "model.layers.27.self_attn.q_proj.bias": "pytorch_model-00003-of-00004.bin",
257
+ "model.layers.27.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
258
+ "model.layers.27.self_attn.v_proj.bias": "pytorch_model-00003-of-00004.bin",
259
+ "model.layers.27.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
260
+ "model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
261
+ "model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
262
+ "model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
263
+ "model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
264
+ "model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
265
+ "model.layers.3.self_attn.k_proj.bias": "pytorch_model-00001-of-00004.bin",
266
+ "model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
267
+ "model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
268
+ "model.layers.3.self_attn.q_proj.bias": "pytorch_model-00001-of-00004.bin",
269
+ "model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
270
+ "model.layers.3.self_attn.v_proj.bias": "pytorch_model-00001-of-00004.bin",
271
+ "model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
272
+ "model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
273
+ "model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
274
+ "model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
275
+ "model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
276
+ "model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
277
+ "model.layers.4.self_attn.k_proj.bias": "pytorch_model-00001-of-00004.bin",
278
+ "model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
279
+ "model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
280
+ "model.layers.4.self_attn.q_proj.bias": "pytorch_model-00001-of-00004.bin",
281
+ "model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
282
+ "model.layers.4.self_attn.v_proj.bias": "pytorch_model-00001-of-00004.bin",
283
+ "model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
284
+ "model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
285
+ "model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
286
+ "model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
287
+ "model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
288
+ "model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
289
+ "model.layers.5.self_attn.k_proj.bias": "pytorch_model-00001-of-00004.bin",
290
+ "model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
291
+ "model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
292
+ "model.layers.5.self_attn.q_proj.bias": "pytorch_model-00001-of-00004.bin",
293
+ "model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
294
+ "model.layers.5.self_attn.v_proj.bias": "pytorch_model-00001-of-00004.bin",
295
+ "model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
296
+ "model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
297
+ "model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
298
+ "model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
299
+ "model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
300
+ "model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
301
+ "model.layers.6.self_attn.k_proj.bias": "pytorch_model-00001-of-00004.bin",
302
+ "model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
303
+ "model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
304
+ "model.layers.6.self_attn.q_proj.bias": "pytorch_model-00001-of-00004.bin",
305
+ "model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
306
+ "model.layers.6.self_attn.v_proj.bias": "pytorch_model-00001-of-00004.bin",
307
+ "model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
308
+ "model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
309
+ "model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
310
+ "model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
311
+ "model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
312
+ "model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
313
+ "model.layers.7.self_attn.k_proj.bias": "pytorch_model-00001-of-00004.bin",
314
+ "model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
315
+ "model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
316
+ "model.layers.7.self_attn.q_proj.bias": "pytorch_model-00001-of-00004.bin",
317
+ "model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
318
+ "model.layers.7.self_attn.v_proj.bias": "pytorch_model-00001-of-00004.bin",
319
+ "model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
320
+ "model.layers.8.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
321
+ "model.layers.8.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
322
+ "model.layers.8.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
323
+ "model.layers.8.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
324
+ "model.layers.8.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
325
+ "model.layers.8.self_attn.k_proj.bias": "pytorch_model-00001-of-00004.bin",
326
+ "model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
327
+ "model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
328
+ "model.layers.8.self_attn.q_proj.bias": "pytorch_model-00001-of-00004.bin",
329
+ "model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
330
+ "model.layers.8.self_attn.v_proj.bias": "pytorch_model-00001-of-00004.bin",
331
+ "model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
332
+ "model.layers.9.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
333
+ "model.layers.9.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
334
+ "model.layers.9.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
335
+ "model.layers.9.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
336
+ "model.layers.9.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
337
+ "model.layers.9.self_attn.k_proj.bias": "pytorch_model-00002-of-00004.bin",
338
+ "model.layers.9.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
339
+ "model.layers.9.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
340
+ "model.layers.9.self_attn.q_proj.bias": "pytorch_model-00002-of-00004.bin",
341
+ "model.layers.9.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
342
+ "model.layers.9.self_attn.v_proj.bias": "pytorch_model-00002-of-00004.bin",
343
+ "model.layers.9.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
344
+ "model.norm.weight": "pytorch_model-00003-of-00004.bin"
345
+ }
346
+ }
merged/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|PAD_TOKEN|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
merged/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
merged/tokenizer_config.json ADDED
@@ -0,0 +1,216 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ },
181
+ "151665": {
182
+ "content": "<|PAD_TOKEN|>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": true
188
+ }
189
+ },
190
+ "additional_special_tokens": [
191
+ "<|im_start|>",
192
+ "<|im_end|>",
193
+ "<|object_ref_start|>",
194
+ "<|object_ref_end|>",
195
+ "<|box_start|>",
196
+ "<|box_end|>",
197
+ "<|quad_start|>",
198
+ "<|quad_end|>",
199
+ "<|vision_start|>",
200
+ "<|vision_end|>",
201
+ "<|vision_pad|>",
202
+ "<|image_pad|>",
203
+ "<|video_pad|>"
204
+ ],
205
+ "bos_token": null,
206
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'Please reason step by step, and put your final answer within \\\\boxed{}.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nPlease reason step by step, and put your final answer within \\\\boxed{}.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
207
+ "clean_up_tokenization_spaces": false,
208
+ "eos_token": "<|im_end|>",
209
+ "errors": "replace",
210
+ "model_max_length": 131072,
211
+ "pad_token": "<|PAD_TOKEN|>",
212
+ "padding_side": "left",
213
+ "split_special_tokens": false,
214
+ "tokenizer_class": "Qwen2Tokenizer",
215
+ "unk_token": null
216
+ }
merged/vocab.json ADDED
The diff for this file is too large to render. See raw diff