Upload folder using huggingface_hub
Browse files- checkpoint-490/README.md +202 -0
- checkpoint-490/adapter_config.json +34 -0
- checkpoint-490/adapter_model.safetensors +3 -0
- checkpoint-490/added_tokens.json +25 -0
- checkpoint-490/merges.txt +0 -0
- checkpoint-490/optimizer.pt +3 -0
- checkpoint-490/rng_state_0.pth +3 -0
- checkpoint-490/rng_state_1.pth +3 -0
- checkpoint-490/rng_state_2.pth +3 -0
- checkpoint-490/rng_state_3.pth +3 -0
- checkpoint-490/scheduler.pt +3 -0
- checkpoint-490/special_tokens_map.json +31 -0
- checkpoint-490/tokenizer.json +0 -0
- checkpoint-490/tokenizer_config.json +216 -0
- checkpoint-490/trainer_state.json +3487 -0
- checkpoint-490/training_args.bin +3 -0
- checkpoint-490/vocab.json +0 -0
- checkpoint-980/README.md +202 -0
- checkpoint-980/adapter_config.json +34 -0
- checkpoint-980/adapter_model.safetensors +3 -0
- checkpoint-980/added_tokens.json +25 -0
- checkpoint-980/merges.txt +0 -0
- checkpoint-980/optimizer.pt +3 -0
- checkpoint-980/rng_state_0.pth +3 -0
- checkpoint-980/rng_state_1.pth +3 -0
- checkpoint-980/rng_state_2.pth +3 -0
- checkpoint-980/rng_state_3.pth +3 -0
- checkpoint-980/scheduler.pt +3 -0
- checkpoint-980/special_tokens_map.json +31 -0
- checkpoint-980/tokenizer.json +0 -0
- checkpoint-980/tokenizer_config.json +216 -0
- checkpoint-980/trainer_state.json +0 -0
- checkpoint-980/training_args.bin +3 -0
- checkpoint-980/vocab.json +0 -0
- merged/added_tokens.json +25 -0
- merged/config.json +29 -0
- merged/generation_config.json +11 -0
- merged/merges.txt +0 -0
- merged/pytorch_model-00001-of-00004.bin +3 -0
- merged/pytorch_model-00002-of-00004.bin +3 -0
- merged/pytorch_model-00003-of-00004.bin +3 -0
- merged/pytorch_model-00004-of-00004.bin +3 -0
- merged/pytorch_model.bin.index.json +346 -0
- merged/special_tokens_map.json +31 -0
- merged/tokenizer.json +0 -0
- merged/tokenizer_config.json +216 -0
- merged/vocab.json +0 -0
checkpoint-490/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: unsloth/Qwen2.5-Math-7B-Instruct
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.11.1
|
checkpoint-490/adapter_config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "unsloth/Qwen2.5-Math-7B-Instruct",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": null,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 16,
|
14 |
+
"lora_dropout": 0.05,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 32,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"gate_proj",
|
24 |
+
"v_proj",
|
25 |
+
"o_proj",
|
26 |
+
"k_proj",
|
27 |
+
"up_proj",
|
28 |
+
"down_proj",
|
29 |
+
"q_proj"
|
30 |
+
],
|
31 |
+
"task_type": "CAUSAL_LM",
|
32 |
+
"use_dora": false,
|
33 |
+
"use_rslora": false
|
34 |
+
}
|
checkpoint-490/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6677d26c2d20b730a166642c149d5662400618d2675a8527c6dc01a4553755f3
|
3 |
+
size 323014168
|
checkpoint-490/added_tokens.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<tool_call>": 151657,
|
4 |
+
"<|PAD_TOKEN|>": 151665,
|
5 |
+
"<|box_end|>": 151649,
|
6 |
+
"<|box_start|>": 151648,
|
7 |
+
"<|endoftext|>": 151643,
|
8 |
+
"<|file_sep|>": 151664,
|
9 |
+
"<|fim_middle|>": 151660,
|
10 |
+
"<|fim_pad|>": 151662,
|
11 |
+
"<|fim_prefix|>": 151659,
|
12 |
+
"<|fim_suffix|>": 151661,
|
13 |
+
"<|im_end|>": 151645,
|
14 |
+
"<|im_start|>": 151644,
|
15 |
+
"<|image_pad|>": 151655,
|
16 |
+
"<|object_ref_end|>": 151647,
|
17 |
+
"<|object_ref_start|>": 151646,
|
18 |
+
"<|quad_end|>": 151651,
|
19 |
+
"<|quad_start|>": 151650,
|
20 |
+
"<|repo_name|>": 151663,
|
21 |
+
"<|video_pad|>": 151656,
|
22 |
+
"<|vision_end|>": 151653,
|
23 |
+
"<|vision_pad|>": 151654,
|
24 |
+
"<|vision_start|>": 151652
|
25 |
+
}
|
checkpoint-490/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-490/optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:53c78b5ada8ff37aa30b771c3b8501e12f700e56480e31b97c437adfd4183aa7
|
3 |
+
size 162231028
|
checkpoint-490/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5f6ae4213043965e71fd346c87a42ac011bb8933e0a8d4b751e69e05989f02c0
|
3 |
+
size 14960
|
checkpoint-490/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:73d49dd7ab96b981ab7b8cd418990f9fd393eccc306c0d80469330ed4fae0255
|
3 |
+
size 14960
|
checkpoint-490/rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:96be712774ef26cba6aedd43fb96088571e6c70d5b09bc34161dbb9c0eb14607
|
3 |
+
size 14960
|
checkpoint-490/rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b2735853bb5aabe937b892088b8a0e18cc309a1c6ea97cd9fe24d215628ab782
|
3 |
+
size 14960
|
checkpoint-490/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:54b09e6e913be00570a3d98a93378e2cc44ad984f02b0247d3108dcff649dbcd
|
3 |
+
size 1064
|
checkpoint-490/special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|PAD_TOKEN|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
checkpoint-490/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-490/tokenizer_config.json
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
},
|
181 |
+
"151665": {
|
182 |
+
"content": "<|PAD_TOKEN|>",
|
183 |
+
"lstrip": false,
|
184 |
+
"normalized": false,
|
185 |
+
"rstrip": false,
|
186 |
+
"single_word": false,
|
187 |
+
"special": true
|
188 |
+
}
|
189 |
+
},
|
190 |
+
"additional_special_tokens": [
|
191 |
+
"<|im_start|>",
|
192 |
+
"<|im_end|>",
|
193 |
+
"<|object_ref_start|>",
|
194 |
+
"<|object_ref_end|>",
|
195 |
+
"<|box_start|>",
|
196 |
+
"<|box_end|>",
|
197 |
+
"<|quad_start|>",
|
198 |
+
"<|quad_end|>",
|
199 |
+
"<|vision_start|>",
|
200 |
+
"<|vision_end|>",
|
201 |
+
"<|vision_pad|>",
|
202 |
+
"<|image_pad|>",
|
203 |
+
"<|video_pad|>"
|
204 |
+
],
|
205 |
+
"bos_token": null,
|
206 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'Please reason step by step, and put your final answer within \\\\boxed{}.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nPlease reason step by step, and put your final answer within \\\\boxed{}.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
207 |
+
"clean_up_tokenization_spaces": false,
|
208 |
+
"eos_token": "<|im_end|>",
|
209 |
+
"errors": "replace",
|
210 |
+
"model_max_length": 131072,
|
211 |
+
"pad_token": "<|PAD_TOKEN|>",
|
212 |
+
"padding_side": "left",
|
213 |
+
"split_special_tokens": false,
|
214 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
215 |
+
"unk_token": null
|
216 |
+
}
|
checkpoint-490/trainer_state.json
ADDED
@@ -0,0 +1,3487 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.9994900560938297,
|
5 |
+
"eval_steps": 245,
|
6 |
+
"global_step": 490,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.002039775624681285,
|
13 |
+
"grad_norm": 0.08994754403829575,
|
14 |
+
"learning_rate": 2e-05,
|
15 |
+
"loss": 2.6733,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.002039775624681285,
|
20 |
+
"eval_loss": 2.6805498600006104,
|
21 |
+
"eval_runtime": 48.2372,
|
22 |
+
"eval_samples_per_second": 17.124,
|
23 |
+
"eval_steps_per_second": 2.156,
|
24 |
+
"step": 1
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.00407955124936257,
|
28 |
+
"grad_norm": 0.09641231596469879,
|
29 |
+
"learning_rate": 4e-05,
|
30 |
+
"loss": 2.7875,
|
31 |
+
"step": 2
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.006119326874043855,
|
35 |
+
"grad_norm": 0.10044872015714645,
|
36 |
+
"learning_rate": 6e-05,
|
37 |
+
"loss": 2.6516,
|
38 |
+
"step": 3
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.00815910249872514,
|
42 |
+
"grad_norm": 0.08677750825881958,
|
43 |
+
"learning_rate": 8e-05,
|
44 |
+
"loss": 2.4109,
|
45 |
+
"step": 4
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.010198878123406425,
|
49 |
+
"grad_norm": 0.10869669914245605,
|
50 |
+
"learning_rate": 0.0001,
|
51 |
+
"loss": 2.6336,
|
52 |
+
"step": 5
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"epoch": 0.01223865374808771,
|
56 |
+
"grad_norm": 0.1180991679430008,
|
57 |
+
"learning_rate": 0.00012,
|
58 |
+
"loss": 2.6001,
|
59 |
+
"step": 6
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"epoch": 0.014278429372768995,
|
63 |
+
"grad_norm": 0.1641693264245987,
|
64 |
+
"learning_rate": 0.00014,
|
65 |
+
"loss": 2.9137,
|
66 |
+
"step": 7
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"epoch": 0.01631820499745028,
|
70 |
+
"grad_norm": 0.17794281244277954,
|
71 |
+
"learning_rate": 0.00016,
|
72 |
+
"loss": 2.835,
|
73 |
+
"step": 8
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"epoch": 0.018357980622131564,
|
77 |
+
"grad_norm": 0.16260501742362976,
|
78 |
+
"learning_rate": 0.00018,
|
79 |
+
"loss": 2.6015,
|
80 |
+
"step": 9
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.02039775624681285,
|
84 |
+
"grad_norm": 0.13795699179172516,
|
85 |
+
"learning_rate": 0.0002,
|
86 |
+
"loss": 2.2552,
|
87 |
+
"step": 10
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.022437531871494134,
|
91 |
+
"grad_norm": 0.15532873570919037,
|
92 |
+
"learning_rate": 0.00019999947552365961,
|
93 |
+
"loss": 2.4393,
|
94 |
+
"step": 11
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"epoch": 0.02447730749617542,
|
98 |
+
"grad_norm": 0.159002423286438,
|
99 |
+
"learning_rate": 0.00019999790210013988,
|
100 |
+
"loss": 2.7684,
|
101 |
+
"step": 12
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"epoch": 0.026517083120856707,
|
105 |
+
"grad_norm": 0.17115084826946259,
|
106 |
+
"learning_rate": 0.0001999952797459453,
|
107 |
+
"loss": 2.2409,
|
108 |
+
"step": 13
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"epoch": 0.02855685874553799,
|
112 |
+
"grad_norm": 0.26108402013778687,
|
113 |
+
"learning_rate": 0.0001999916084885832,
|
114 |
+
"loss": 2.6388,
|
115 |
+
"step": 14
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"epoch": 0.030596634370219276,
|
119 |
+
"grad_norm": 0.29758986830711365,
|
120 |
+
"learning_rate": 0.00019998688836656323,
|
121 |
+
"loss": 2.4358,
|
122 |
+
"step": 15
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.03263640999490056,
|
126 |
+
"grad_norm": 0.2338196337223053,
|
127 |
+
"learning_rate": 0.0001999811194293973,
|
128 |
+
"loss": 2.3898,
|
129 |
+
"step": 16
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.03467618561958185,
|
133 |
+
"grad_norm": 0.2143183797597885,
|
134 |
+
"learning_rate": 0.00019997430173759875,
|
135 |
+
"loss": 2.6874,
|
136 |
+
"step": 17
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 0.03671596124426313,
|
140 |
+
"grad_norm": 0.19598309695720673,
|
141 |
+
"learning_rate": 0.00019996643536268204,
|
142 |
+
"loss": 2.409,
|
143 |
+
"step": 18
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"epoch": 0.038755736868944415,
|
147 |
+
"grad_norm": 0.16046980023384094,
|
148 |
+
"learning_rate": 0.00019995752038716168,
|
149 |
+
"loss": 2.2378,
|
150 |
+
"step": 19
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"epoch": 0.0407955124936257,
|
154 |
+
"grad_norm": 0.15274696052074432,
|
155 |
+
"learning_rate": 0.00019994755690455152,
|
156 |
+
"loss": 2.3413,
|
157 |
+
"step": 20
|
158 |
+
},
|
159 |
+
{
|
160 |
+
"epoch": 0.04283528811830699,
|
161 |
+
"grad_norm": 0.24761317670345306,
|
162 |
+
"learning_rate": 0.0001999365450193638,
|
163 |
+
"loss": 2.3382,
|
164 |
+
"step": 21
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 0.04487506374298827,
|
168 |
+
"grad_norm": 0.2602517604827881,
|
169 |
+
"learning_rate": 0.00019992448484710797,
|
170 |
+
"loss": 2.3355,
|
171 |
+
"step": 22
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.046914839367669554,
|
175 |
+
"grad_norm": 0.25506100058555603,
|
176 |
+
"learning_rate": 0.00019991137651428957,
|
177 |
+
"loss": 2.4828,
|
178 |
+
"step": 23
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"epoch": 0.04895461499235084,
|
182 |
+
"grad_norm": 0.19493895769119263,
|
183 |
+
"learning_rate": 0.0001998972201584088,
|
184 |
+
"loss": 2.3154,
|
185 |
+
"step": 24
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"epoch": 0.05099439061703213,
|
189 |
+
"grad_norm": 0.16005843877792358,
|
190 |
+
"learning_rate": 0.0001998820159279591,
|
191 |
+
"loss": 2.1472,
|
192 |
+
"step": 25
|
193 |
+
},
|
194 |
+
{
|
195 |
+
"epoch": 0.053034166241713414,
|
196 |
+
"grad_norm": 0.17840257287025452,
|
197 |
+
"learning_rate": 0.00019986576398242566,
|
198 |
+
"loss": 2.1624,
|
199 |
+
"step": 26
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"epoch": 0.05507394186639469,
|
203 |
+
"grad_norm": 0.15280942618846893,
|
204 |
+
"learning_rate": 0.0001998484644922837,
|
205 |
+
"loss": 2.0526,
|
206 |
+
"step": 27
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 0.05711371749107598,
|
210 |
+
"grad_norm": 0.16933050751686096,
|
211 |
+
"learning_rate": 0.00019983011763899673,
|
212 |
+
"loss": 2.2176,
|
213 |
+
"step": 28
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 0.059153493115757266,
|
217 |
+
"grad_norm": 0.21265609562397003,
|
218 |
+
"learning_rate": 0.0001998107236150145,
|
219 |
+
"loss": 2.2559,
|
220 |
+
"step": 29
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"epoch": 0.06119326874043855,
|
224 |
+
"grad_norm": 0.19340573251247406,
|
225 |
+
"learning_rate": 0.00019979028262377118,
|
226 |
+
"loss": 2.3202,
|
227 |
+
"step": 30
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"epoch": 0.06323304436511984,
|
231 |
+
"grad_norm": 0.16693681478500366,
|
232 |
+
"learning_rate": 0.0001997687948796831,
|
233 |
+
"loss": 2.0623,
|
234 |
+
"step": 31
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 0.06527281998980113,
|
238 |
+
"grad_norm": 0.18830184638500214,
|
239 |
+
"learning_rate": 0.00019974626060814647,
|
240 |
+
"loss": 2.1929,
|
241 |
+
"step": 32
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 0.06731259561448241,
|
245 |
+
"grad_norm": 0.16206099092960358,
|
246 |
+
"learning_rate": 0.0001997226800455352,
|
247 |
+
"loss": 2.3048,
|
248 |
+
"step": 33
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 0.0693523712391637,
|
252 |
+
"grad_norm": 0.21650008857250214,
|
253 |
+
"learning_rate": 0.00019969805343919821,
|
254 |
+
"loss": 2.2928,
|
255 |
+
"step": 34
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"epoch": 0.07139214686384497,
|
259 |
+
"grad_norm": 0.19560708105564117,
|
260 |
+
"learning_rate": 0.00019967238104745696,
|
261 |
+
"loss": 2.4389,
|
262 |
+
"step": 35
|
263 |
+
},
|
264 |
+
{
|
265 |
+
"epoch": 0.07343192248852626,
|
266 |
+
"grad_norm": 0.17428375780582428,
|
267 |
+
"learning_rate": 0.00019964566313960264,
|
268 |
+
"loss": 2.1017,
|
269 |
+
"step": 36
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"epoch": 0.07547169811320754,
|
273 |
+
"grad_norm": 0.14846819639205933,
|
274 |
+
"learning_rate": 0.00019961789999589356,
|
275 |
+
"loss": 2.0431,
|
276 |
+
"step": 37
|
277 |
+
},
|
278 |
+
{
|
279 |
+
"epoch": 0.07751147373788883,
|
280 |
+
"grad_norm": 0.14796215295791626,
|
281 |
+
"learning_rate": 0.00019958909190755187,
|
282 |
+
"loss": 2.0363,
|
283 |
+
"step": 38
|
284 |
+
},
|
285 |
+
{
|
286 |
+
"epoch": 0.07955124936257012,
|
287 |
+
"grad_norm": 0.17396488785743713,
|
288 |
+
"learning_rate": 0.0001995592391767608,
|
289 |
+
"loss": 2.0835,
|
290 |
+
"step": 39
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"epoch": 0.0815910249872514,
|
294 |
+
"grad_norm": 0.1914213001728058,
|
295 |
+
"learning_rate": 0.0001995283421166614,
|
296 |
+
"loss": 2.0242,
|
297 |
+
"step": 40
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 0.08363080061193269,
|
301 |
+
"grad_norm": 0.16040053963661194,
|
302 |
+
"learning_rate": 0.00019949640105134918,
|
303 |
+
"loss": 2.2171,
|
304 |
+
"step": 41
|
305 |
+
},
|
306 |
+
{
|
307 |
+
"epoch": 0.08567057623661398,
|
308 |
+
"grad_norm": 0.16291815042495728,
|
309 |
+
"learning_rate": 0.00019946341631587087,
|
310 |
+
"loss": 2.2144,
|
311 |
+
"step": 42
|
312 |
+
},
|
313 |
+
{
|
314 |
+
"epoch": 0.08771035186129526,
|
315 |
+
"grad_norm": 0.16890890896320343,
|
316 |
+
"learning_rate": 0.00019942938825622065,
|
317 |
+
"loss": 2.0775,
|
318 |
+
"step": 43
|
319 |
+
},
|
320 |
+
{
|
321 |
+
"epoch": 0.08975012748597654,
|
322 |
+
"grad_norm": 0.18898645043373108,
|
323 |
+
"learning_rate": 0.0001993943172293368,
|
324 |
+
"loss": 2.262,
|
325 |
+
"step": 44
|
326 |
+
},
|
327 |
+
{
|
328 |
+
"epoch": 0.09178990311065782,
|
329 |
+
"grad_norm": 0.19105440378189087,
|
330 |
+
"learning_rate": 0.00019935820360309777,
|
331 |
+
"loss": 2.0232,
|
332 |
+
"step": 45
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"epoch": 0.09382967873533911,
|
336 |
+
"grad_norm": 0.17944768071174622,
|
337 |
+
"learning_rate": 0.00019932104775631846,
|
338 |
+
"loss": 2.2564,
|
339 |
+
"step": 46
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 0.0958694543600204,
|
343 |
+
"grad_norm": 0.1691497266292572,
|
344 |
+
"learning_rate": 0.0001992828500787461,
|
345 |
+
"loss": 2.0249,
|
346 |
+
"step": 47
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 0.09790922998470168,
|
350 |
+
"grad_norm": 0.18704521656036377,
|
351 |
+
"learning_rate": 0.00019924361097105623,
|
352 |
+
"loss": 2.2058,
|
353 |
+
"step": 48
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"epoch": 0.09994900560938297,
|
357 |
+
"grad_norm": 0.24133948981761932,
|
358 |
+
"learning_rate": 0.00019920333084484857,
|
359 |
+
"loss": 2.2835,
|
360 |
+
"step": 49
|
361 |
+
},
|
362 |
+
{
|
363 |
+
"epoch": 0.10198878123406425,
|
364 |
+
"grad_norm": 0.210649773478508,
|
365 |
+
"learning_rate": 0.00019916201012264254,
|
366 |
+
"loss": 2.1052,
|
367 |
+
"step": 50
|
368 |
+
},
|
369 |
+
{
|
370 |
+
"epoch": 0.10402855685874554,
|
371 |
+
"grad_norm": 0.19624340534210205,
|
372 |
+
"learning_rate": 0.00019911964923787295,
|
373 |
+
"loss": 2.2474,
|
374 |
+
"step": 51
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"epoch": 0.10606833248342683,
|
378 |
+
"grad_norm": 0.2529032230377197,
|
379 |
+
"learning_rate": 0.0001990762486348855,
|
380 |
+
"loss": 1.9782,
|
381 |
+
"step": 52
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"epoch": 0.10810810810810811,
|
385 |
+
"grad_norm": 0.2078029066324234,
|
386 |
+
"learning_rate": 0.00019903180876893194,
|
387 |
+
"loss": 2.3627,
|
388 |
+
"step": 53
|
389 |
+
},
|
390 |
+
{
|
391 |
+
"epoch": 0.11014788373278939,
|
392 |
+
"grad_norm": 0.23153568804264069,
|
393 |
+
"learning_rate": 0.00019898633010616542,
|
394 |
+
"loss": 1.9749,
|
395 |
+
"step": 54
|
396 |
+
},
|
397 |
+
{
|
398 |
+
"epoch": 0.11218765935747067,
|
399 |
+
"grad_norm": 0.20798815786838531,
|
400 |
+
"learning_rate": 0.00019893981312363562,
|
401 |
+
"loss": 2.111,
|
402 |
+
"step": 55
|
403 |
+
},
|
404 |
+
{
|
405 |
+
"epoch": 0.11422743498215196,
|
406 |
+
"grad_norm": 0.20742167532444,
|
407 |
+
"learning_rate": 0.00019889225830928365,
|
408 |
+
"loss": 2.113,
|
409 |
+
"step": 56
|
410 |
+
},
|
411 |
+
{
|
412 |
+
"epoch": 0.11626721060683325,
|
413 |
+
"grad_norm": 0.21235893666744232,
|
414 |
+
"learning_rate": 0.00019884366616193706,
|
415 |
+
"loss": 2.0307,
|
416 |
+
"step": 57
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"epoch": 0.11830698623151453,
|
420 |
+
"grad_norm": 0.19754983484745026,
|
421 |
+
"learning_rate": 0.0001987940371913044,
|
422 |
+
"loss": 1.9883,
|
423 |
+
"step": 58
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"epoch": 0.12034676185619582,
|
427 |
+
"grad_norm": 0.20224173367023468,
|
428 |
+
"learning_rate": 0.0001987433719179702,
|
429 |
+
"loss": 2.0299,
|
430 |
+
"step": 59
|
431 |
+
},
|
432 |
+
{
|
433 |
+
"epoch": 0.1223865374808771,
|
434 |
+
"grad_norm": 0.20431111752986908,
|
435 |
+
"learning_rate": 0.00019869167087338907,
|
436 |
+
"loss": 2.0,
|
437 |
+
"step": 60
|
438 |
+
},
|
439 |
+
{
|
440 |
+
"epoch": 0.12442631310555839,
|
441 |
+
"grad_norm": 0.21355204284191132,
|
442 |
+
"learning_rate": 0.00019863893459988062,
|
443 |
+
"loss": 1.9365,
|
444 |
+
"step": 61
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 0.12646608873023968,
|
448 |
+
"grad_norm": 0.2394651174545288,
|
449 |
+
"learning_rate": 0.00019858516365062334,
|
450 |
+
"loss": 1.9264,
|
451 |
+
"step": 62
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 0.12850586435492095,
|
455 |
+
"grad_norm": 0.20690159499645233,
|
456 |
+
"learning_rate": 0.00019853035858964906,
|
457 |
+
"loss": 1.9777,
|
458 |
+
"step": 63
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"epoch": 0.13054563997960225,
|
462 |
+
"grad_norm": 0.21029432117938995,
|
463 |
+
"learning_rate": 0.00019847451999183694,
|
464 |
+
"loss": 2.2063,
|
465 |
+
"step": 64
|
466 |
+
},
|
467 |
+
{
|
468 |
+
"epoch": 0.13258541560428352,
|
469 |
+
"grad_norm": 0.2483580857515335,
|
470 |
+
"learning_rate": 0.00019841764844290744,
|
471 |
+
"loss": 1.9817,
|
472 |
+
"step": 65
|
473 |
+
},
|
474 |
+
{
|
475 |
+
"epoch": 0.13462519122896482,
|
476 |
+
"grad_norm": 0.2200578898191452,
|
477 |
+
"learning_rate": 0.0001983597445394162,
|
478 |
+
"loss": 1.8286,
|
479 |
+
"step": 66
|
480 |
+
},
|
481 |
+
{
|
482 |
+
"epoch": 0.1366649668536461,
|
483 |
+
"grad_norm": 0.23194506764411926,
|
484 |
+
"learning_rate": 0.00019830080888874778,
|
485 |
+
"loss": 1.8918,
|
486 |
+
"step": 67
|
487 |
+
},
|
488 |
+
{
|
489 |
+
"epoch": 0.1387047424783274,
|
490 |
+
"grad_norm": 0.2092316597700119,
|
491 |
+
"learning_rate": 0.00019824084210910925,
|
492 |
+
"loss": 2.0326,
|
493 |
+
"step": 68
|
494 |
+
},
|
495 |
+
{
|
496 |
+
"epoch": 0.14074451810300867,
|
497 |
+
"grad_norm": 0.226849764585495,
|
498 |
+
"learning_rate": 0.00019817984482952376,
|
499 |
+
"loss": 2.1387,
|
500 |
+
"step": 69
|
501 |
+
},
|
502 |
+
{
|
503 |
+
"epoch": 0.14278429372768994,
|
504 |
+
"grad_norm": 0.25519493222236633,
|
505 |
+
"learning_rate": 0.0001981178176898239,
|
506 |
+
"loss": 1.9261,
|
507 |
+
"step": 70
|
508 |
+
},
|
509 |
+
{
|
510 |
+
"epoch": 0.14482406935237124,
|
511 |
+
"grad_norm": 0.2155541330575943,
|
512 |
+
"learning_rate": 0.00019805476134064507,
|
513 |
+
"loss": 2.2176,
|
514 |
+
"step": 71
|
515 |
+
},
|
516 |
+
{
|
517 |
+
"epoch": 0.14686384497705252,
|
518 |
+
"grad_norm": 0.23612210154533386,
|
519 |
+
"learning_rate": 0.00019799067644341844,
|
520 |
+
"loss": 2.1125,
|
521 |
+
"step": 72
|
522 |
+
},
|
523 |
+
{
|
524 |
+
"epoch": 0.14890362060173382,
|
525 |
+
"grad_norm": 0.2563931941986084,
|
526 |
+
"learning_rate": 0.00019792556367036432,
|
527 |
+
"loss": 1.9459,
|
528 |
+
"step": 73
|
529 |
+
},
|
530 |
+
{
|
531 |
+
"epoch": 0.1509433962264151,
|
532 |
+
"grad_norm": 0.34834709763526917,
|
533 |
+
"learning_rate": 0.0001978594237044849,
|
534 |
+
"loss": 2.091,
|
535 |
+
"step": 74
|
536 |
+
},
|
537 |
+
{
|
538 |
+
"epoch": 0.1529831718510964,
|
539 |
+
"grad_norm": 0.221855029463768,
|
540 |
+
"learning_rate": 0.00019779225723955707,
|
541 |
+
"loss": 1.8867,
|
542 |
+
"step": 75
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"epoch": 0.15502294747577766,
|
546 |
+
"grad_norm": 0.2613975405693054,
|
547 |
+
"learning_rate": 0.0001977240649801253,
|
548 |
+
"loss": 1.9889,
|
549 |
+
"step": 76
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 0.15706272310045896,
|
553 |
+
"grad_norm": 0.3117937743663788,
|
554 |
+
"learning_rate": 0.00019765484764149415,
|
555 |
+
"loss": 2.0743,
|
556 |
+
"step": 77
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"epoch": 0.15910249872514023,
|
560 |
+
"grad_norm": 0.23428964614868164,
|
561 |
+
"learning_rate": 0.00019758460594972068,
|
562 |
+
"loss": 2.1752,
|
563 |
+
"step": 78
|
564 |
+
},
|
565 |
+
{
|
566 |
+
"epoch": 0.1611422743498215,
|
567 |
+
"grad_norm": 0.23182815313339233,
|
568 |
+
"learning_rate": 0.00019751334064160706,
|
569 |
+
"loss": 1.9315,
|
570 |
+
"step": 79
|
571 |
+
},
|
572 |
+
{
|
573 |
+
"epoch": 0.1631820499745028,
|
574 |
+
"grad_norm": 0.3055015206336975,
|
575 |
+
"learning_rate": 0.00019744105246469263,
|
576 |
+
"loss": 2.0348,
|
577 |
+
"step": 80
|
578 |
+
},
|
579 |
+
{
|
580 |
+
"epoch": 0.16522182559918408,
|
581 |
+
"grad_norm": 0.22985045611858368,
|
582 |
+
"learning_rate": 0.00019736774217724614,
|
583 |
+
"loss": 1.792,
|
584 |
+
"step": 81
|
585 |
+
},
|
586 |
+
{
|
587 |
+
"epoch": 0.16726160122386538,
|
588 |
+
"grad_norm": 0.2585189938545227,
|
589 |
+
"learning_rate": 0.00019729341054825782,
|
590 |
+
"loss": 2.0945,
|
591 |
+
"step": 82
|
592 |
+
},
|
593 |
+
{
|
594 |
+
"epoch": 0.16930137684854665,
|
595 |
+
"grad_norm": 0.2798707187175751,
|
596 |
+
"learning_rate": 0.00019721805835743134,
|
597 |
+
"loss": 2.0114,
|
598 |
+
"step": 83
|
599 |
+
},
|
600 |
+
{
|
601 |
+
"epoch": 0.17134115247322795,
|
602 |
+
"grad_norm": 0.2886582016944885,
|
603 |
+
"learning_rate": 0.00019714168639517544,
|
604 |
+
"loss": 2.0575,
|
605 |
+
"step": 84
|
606 |
+
},
|
607 |
+
{
|
608 |
+
"epoch": 0.17338092809790923,
|
609 |
+
"grad_norm": 0.2944013178348541,
|
610 |
+
"learning_rate": 0.00019706429546259593,
|
611 |
+
"loss": 2.1074,
|
612 |
+
"step": 85
|
613 |
+
},
|
614 |
+
{
|
615 |
+
"epoch": 0.17542070372259053,
|
616 |
+
"grad_norm": 0.318002313375473,
|
617 |
+
"learning_rate": 0.00019698588637148703,
|
618 |
+
"loss": 1.9883,
|
619 |
+
"step": 86
|
620 |
+
},
|
621 |
+
{
|
622 |
+
"epoch": 0.1774604793472718,
|
623 |
+
"grad_norm": 0.256496787071228,
|
624 |
+
"learning_rate": 0.00019690645994432305,
|
625 |
+
"loss": 1.8408,
|
626 |
+
"step": 87
|
627 |
+
},
|
628 |
+
{
|
629 |
+
"epoch": 0.17950025497195307,
|
630 |
+
"grad_norm": 0.3593447208404541,
|
631 |
+
"learning_rate": 0.0001968260170142496,
|
632 |
+
"loss": 1.9313,
|
633 |
+
"step": 88
|
634 |
+
},
|
635 |
+
{
|
636 |
+
"epoch": 0.18154003059663437,
|
637 |
+
"grad_norm": 0.4645783305168152,
|
638 |
+
"learning_rate": 0.00019674455842507492,
|
639 |
+
"loss": 1.9448,
|
640 |
+
"step": 89
|
641 |
+
},
|
642 |
+
{
|
643 |
+
"epoch": 0.18357980622131564,
|
644 |
+
"grad_norm": 0.2802218198776245,
|
645 |
+
"learning_rate": 0.00019666208503126112,
|
646 |
+
"loss": 1.9091,
|
647 |
+
"step": 90
|
648 |
+
},
|
649 |
+
{
|
650 |
+
"epoch": 0.18561958184599694,
|
651 |
+
"grad_norm": 0.39699026942253113,
|
652 |
+
"learning_rate": 0.00019657859769791505,
|
653 |
+
"loss": 1.9936,
|
654 |
+
"step": 91
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"epoch": 0.18765935747067822,
|
658 |
+
"grad_norm": 0.4515025317668915,
|
659 |
+
"learning_rate": 0.00019649409730077935,
|
660 |
+
"loss": 2.2269,
|
661 |
+
"step": 92
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"epoch": 0.18969913309535952,
|
665 |
+
"grad_norm": 0.24775496125221252,
|
666 |
+
"learning_rate": 0.00019640858472622316,
|
667 |
+
"loss": 1.8843,
|
668 |
+
"step": 93
|
669 |
+
},
|
670 |
+
{
|
671 |
+
"epoch": 0.1917389087200408,
|
672 |
+
"grad_norm": 0.35014575719833374,
|
673 |
+
"learning_rate": 0.00019632206087123296,
|
674 |
+
"loss": 2.0159,
|
675 |
+
"step": 94
|
676 |
+
},
|
677 |
+
{
|
678 |
+
"epoch": 0.1937786843447221,
|
679 |
+
"grad_norm": 0.4293341040611267,
|
680 |
+
"learning_rate": 0.00019623452664340306,
|
681 |
+
"loss": 2.1129,
|
682 |
+
"step": 95
|
683 |
+
},
|
684 |
+
{
|
685 |
+
"epoch": 0.19581845996940336,
|
686 |
+
"grad_norm": 0.249364972114563,
|
687 |
+
"learning_rate": 0.000196145982960926,
|
688 |
+
"loss": 2.1385,
|
689 |
+
"step": 96
|
690 |
+
},
|
691 |
+
{
|
692 |
+
"epoch": 0.19785823559408466,
|
693 |
+
"grad_norm": 0.3796793222427368,
|
694 |
+
"learning_rate": 0.00019605643075258321,
|
695 |
+
"loss": 1.9737,
|
696 |
+
"step": 97
|
697 |
+
},
|
698 |
+
{
|
699 |
+
"epoch": 0.19989801121876594,
|
700 |
+
"grad_norm": 0.41410332918167114,
|
701 |
+
"learning_rate": 0.00019596587095773495,
|
702 |
+
"loss": 1.895,
|
703 |
+
"step": 98
|
704 |
+
},
|
705 |
+
{
|
706 |
+
"epoch": 0.2019377868434472,
|
707 |
+
"grad_norm": 0.2810049057006836,
|
708 |
+
"learning_rate": 0.0001958743045263106,
|
709 |
+
"loss": 1.9859,
|
710 |
+
"step": 99
|
711 |
+
},
|
712 |
+
{
|
713 |
+
"epoch": 0.2039775624681285,
|
714 |
+
"grad_norm": 0.37417009472846985,
|
715 |
+
"learning_rate": 0.00019578173241879872,
|
716 |
+
"loss": 1.9447,
|
717 |
+
"step": 100
|
718 |
+
},
|
719 |
+
{
|
720 |
+
"epoch": 0.20601733809280978,
|
721 |
+
"grad_norm": 0.33988890051841736,
|
722 |
+
"learning_rate": 0.0001956881556062369,
|
723 |
+
"loss": 1.8362,
|
724 |
+
"step": 101
|
725 |
+
},
|
726 |
+
{
|
727 |
+
"epoch": 0.20805711371749108,
|
728 |
+
"grad_norm": 0.27952101826667786,
|
729 |
+
"learning_rate": 0.00019559357507020162,
|
730 |
+
"loss": 1.9745,
|
731 |
+
"step": 102
|
732 |
+
},
|
733 |
+
{
|
734 |
+
"epoch": 0.21009688934217235,
|
735 |
+
"grad_norm": 0.24870562553405762,
|
736 |
+
"learning_rate": 0.00019549799180279792,
|
737 |
+
"loss": 1.8926,
|
738 |
+
"step": 103
|
739 |
+
},
|
740 |
+
{
|
741 |
+
"epoch": 0.21213666496685366,
|
742 |
+
"grad_norm": 0.33430561423301697,
|
743 |
+
"learning_rate": 0.00019540140680664913,
|
744 |
+
"loss": 2.0914,
|
745 |
+
"step": 104
|
746 |
+
},
|
747 |
+
{
|
748 |
+
"epoch": 0.21417644059153493,
|
749 |
+
"grad_norm": 0.3203825056552887,
|
750 |
+
"learning_rate": 0.0001953038210948861,
|
751 |
+
"loss": 2.0238,
|
752 |
+
"step": 105
|
753 |
+
},
|
754 |
+
{
|
755 |
+
"epoch": 0.21621621621621623,
|
756 |
+
"grad_norm": 0.2822887897491455,
|
757 |
+
"learning_rate": 0.00019520523569113677,
|
758 |
+
"loss": 2.053,
|
759 |
+
"step": 106
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 0.2182559918408975,
|
763 |
+
"grad_norm": 0.31055620312690735,
|
764 |
+
"learning_rate": 0.00019510565162951537,
|
765 |
+
"loss": 1.8936,
|
766 |
+
"step": 107
|
767 |
+
},
|
768 |
+
{
|
769 |
+
"epoch": 0.22029576746557877,
|
770 |
+
"grad_norm": 0.3920172452926636,
|
771 |
+
"learning_rate": 0.0001950050699546116,
|
772 |
+
"loss": 2.1061,
|
773 |
+
"step": 108
|
774 |
+
},
|
775 |
+
{
|
776 |
+
"epoch": 0.22233554309026007,
|
777 |
+
"grad_norm": 0.2737603187561035,
|
778 |
+
"learning_rate": 0.00019490349172147963,
|
779 |
+
"loss": 2.0772,
|
780 |
+
"step": 109
|
781 |
+
},
|
782 |
+
{
|
783 |
+
"epoch": 0.22437531871494135,
|
784 |
+
"grad_norm": 0.27526190876960754,
|
785 |
+
"learning_rate": 0.00019480091799562704,
|
786 |
+
"loss": 1.9078,
|
787 |
+
"step": 110
|
788 |
+
},
|
789 |
+
{
|
790 |
+
"epoch": 0.22641509433962265,
|
791 |
+
"grad_norm": 0.3213340938091278,
|
792 |
+
"learning_rate": 0.00019469734985300371,
|
793 |
+
"loss": 1.8632,
|
794 |
+
"step": 111
|
795 |
+
},
|
796 |
+
{
|
797 |
+
"epoch": 0.22845486996430392,
|
798 |
+
"grad_norm": 0.3409796953201294,
|
799 |
+
"learning_rate": 0.00019459278837999046,
|
800 |
+
"loss": 1.8264,
|
801 |
+
"step": 112
|
802 |
+
},
|
803 |
+
{
|
804 |
+
"epoch": 0.23049464558898522,
|
805 |
+
"grad_norm": 0.2637316882610321,
|
806 |
+
"learning_rate": 0.00019448723467338763,
|
807 |
+
"loss": 1.9274,
|
808 |
+
"step": 113
|
809 |
+
},
|
810 |
+
{
|
811 |
+
"epoch": 0.2325344212136665,
|
812 |
+
"grad_norm": 0.2738693952560425,
|
813 |
+
"learning_rate": 0.00019438068984040365,
|
814 |
+
"loss": 2.0925,
|
815 |
+
"step": 114
|
816 |
+
},
|
817 |
+
{
|
818 |
+
"epoch": 0.2345741968383478,
|
819 |
+
"grad_norm": 0.43626368045806885,
|
820 |
+
"learning_rate": 0.00019427315499864344,
|
821 |
+
"loss": 1.9424,
|
822 |
+
"step": 115
|
823 |
+
},
|
824 |
+
{
|
825 |
+
"epoch": 0.23661397246302907,
|
826 |
+
"grad_norm": 0.3207686245441437,
|
827 |
+
"learning_rate": 0.00019416463127609656,
|
828 |
+
"loss": 1.8188,
|
829 |
+
"step": 116
|
830 |
+
},
|
831 |
+
{
|
832 |
+
"epoch": 0.23865374808771037,
|
833 |
+
"grad_norm": 0.28913381695747375,
|
834 |
+
"learning_rate": 0.0001940551198111255,
|
835 |
+
"loss": 1.9561,
|
836 |
+
"step": 117
|
837 |
+
},
|
838 |
+
{
|
839 |
+
"epoch": 0.24069352371239164,
|
840 |
+
"grad_norm": 0.3558366894721985,
|
841 |
+
"learning_rate": 0.00019394462175245381,
|
842 |
+
"loss": 1.8839,
|
843 |
+
"step": 118
|
844 |
+
},
|
845 |
+
{
|
846 |
+
"epoch": 0.2427332993370729,
|
847 |
+
"grad_norm": 0.3230222463607788,
|
848 |
+
"learning_rate": 0.0001938331382591537,
|
849 |
+
"loss": 1.8197,
|
850 |
+
"step": 119
|
851 |
+
},
|
852 |
+
{
|
853 |
+
"epoch": 0.2447730749617542,
|
854 |
+
"grad_norm": 0.31508007645606995,
|
855 |
+
"learning_rate": 0.00019372067050063438,
|
856 |
+
"loss": 2.0963,
|
857 |
+
"step": 120
|
858 |
+
},
|
859 |
+
{
|
860 |
+
"epoch": 0.24681285058643548,
|
861 |
+
"grad_norm": 0.28743404150009155,
|
862 |
+
"learning_rate": 0.00019360721965662933,
|
863 |
+
"loss": 1.8382,
|
864 |
+
"step": 121
|
865 |
+
},
|
866 |
+
{
|
867 |
+
"epoch": 0.24885262621111678,
|
868 |
+
"grad_norm": 0.32556018233299255,
|
869 |
+
"learning_rate": 0.00019349278691718427,
|
870 |
+
"loss": 1.8255,
|
871 |
+
"step": 122
|
872 |
+
},
|
873 |
+
{
|
874 |
+
"epoch": 0.2508924018357981,
|
875 |
+
"grad_norm": 0.3947349488735199,
|
876 |
+
"learning_rate": 0.00019337737348264447,
|
877 |
+
"loss": 2.1048,
|
878 |
+
"step": 123
|
879 |
+
},
|
880 |
+
{
|
881 |
+
"epoch": 0.25293217746047936,
|
882 |
+
"grad_norm": 0.280627965927124,
|
883 |
+
"learning_rate": 0.00019326098056364222,
|
884 |
+
"loss": 1.7557,
|
885 |
+
"step": 124
|
886 |
+
},
|
887 |
+
{
|
888 |
+
"epoch": 0.25497195308516063,
|
889 |
+
"grad_norm": 0.34356269240379333,
|
890 |
+
"learning_rate": 0.00019314360938108425,
|
891 |
+
"loss": 1.9692,
|
892 |
+
"step": 125
|
893 |
+
},
|
894 |
+
{
|
895 |
+
"epoch": 0.2570117287098419,
|
896 |
+
"grad_norm": 0.30822035670280457,
|
897 |
+
"learning_rate": 0.00019302526116613864,
|
898 |
+
"loss": 1.9135,
|
899 |
+
"step": 126
|
900 |
+
},
|
901 |
+
{
|
902 |
+
"epoch": 0.2590515043345232,
|
903 |
+
"grad_norm": 0.28359460830688477,
|
904 |
+
"learning_rate": 0.00019290593716022217,
|
905 |
+
"loss": 2.0667,
|
906 |
+
"step": 127
|
907 |
+
},
|
908 |
+
{
|
909 |
+
"epoch": 0.2610912799592045,
|
910 |
+
"grad_norm": 0.2782716751098633,
|
911 |
+
"learning_rate": 0.00019278563861498723,
|
912 |
+
"loss": 1.7958,
|
913 |
+
"step": 128
|
914 |
+
},
|
915 |
+
{
|
916 |
+
"epoch": 0.2631310555838858,
|
917 |
+
"grad_norm": 0.2571290135383606,
|
918 |
+
"learning_rate": 0.00019266436679230865,
|
919 |
+
"loss": 2.1198,
|
920 |
+
"step": 129
|
921 |
+
},
|
922 |
+
{
|
923 |
+
"epoch": 0.26517083120856705,
|
924 |
+
"grad_norm": 0.3336668908596039,
|
925 |
+
"learning_rate": 0.00019254212296427044,
|
926 |
+
"loss": 1.8137,
|
927 |
+
"step": 130
|
928 |
+
},
|
929 |
+
{
|
930 |
+
"epoch": 0.2672106068332483,
|
931 |
+
"grad_norm": 0.23998981714248657,
|
932 |
+
"learning_rate": 0.00019241890841315248,
|
933 |
+
"loss": 2.0071,
|
934 |
+
"step": 131
|
935 |
+
},
|
936 |
+
{
|
937 |
+
"epoch": 0.26925038245792965,
|
938 |
+
"grad_norm": 0.3191507160663605,
|
939 |
+
"learning_rate": 0.0001922947244314172,
|
940 |
+
"loss": 2.0239,
|
941 |
+
"step": 132
|
942 |
+
},
|
943 |
+
{
|
944 |
+
"epoch": 0.2712901580826109,
|
945 |
+
"grad_norm": 0.30696266889572144,
|
946 |
+
"learning_rate": 0.0001921695723216957,
|
947 |
+
"loss": 2.2377,
|
948 |
+
"step": 133
|
949 |
+
},
|
950 |
+
{
|
951 |
+
"epoch": 0.2733299337072922,
|
952 |
+
"grad_norm": 0.2688175439834595,
|
953 |
+
"learning_rate": 0.00019204345339677442,
|
954 |
+
"loss": 1.8686,
|
955 |
+
"step": 134
|
956 |
+
},
|
957 |
+
{
|
958 |
+
"epoch": 0.27536970933197347,
|
959 |
+
"grad_norm": 0.27408865094184875,
|
960 |
+
"learning_rate": 0.00019191636897958122,
|
961 |
+
"loss": 2.0253,
|
962 |
+
"step": 135
|
963 |
+
},
|
964 |
+
{
|
965 |
+
"epoch": 0.2774094849566548,
|
966 |
+
"grad_norm": 0.2917419672012329,
|
967 |
+
"learning_rate": 0.00019178832040317155,
|
968 |
+
"loss": 1.905,
|
969 |
+
"step": 136
|
970 |
+
},
|
971 |
+
{
|
972 |
+
"epoch": 0.27944926058133607,
|
973 |
+
"grad_norm": 0.27972346544265747,
|
974 |
+
"learning_rate": 0.0001916593090107143,
|
975 |
+
"loss": 1.8001,
|
976 |
+
"step": 137
|
977 |
+
},
|
978 |
+
{
|
979 |
+
"epoch": 0.28148903620601734,
|
980 |
+
"grad_norm": 0.2744503915309906,
|
981 |
+
"learning_rate": 0.00019152933615547798,
|
982 |
+
"loss": 1.9057,
|
983 |
+
"step": 138
|
984 |
+
},
|
985 |
+
{
|
986 |
+
"epoch": 0.2835288118306986,
|
987 |
+
"grad_norm": 0.27640461921691895,
|
988 |
+
"learning_rate": 0.0001913984032008163,
|
989 |
+
"loss": 2.0683,
|
990 |
+
"step": 139
|
991 |
+
},
|
992 |
+
{
|
993 |
+
"epoch": 0.2855685874553799,
|
994 |
+
"grad_norm": 0.28741398453712463,
|
995 |
+
"learning_rate": 0.00019126651152015403,
|
996 |
+
"loss": 1.9567,
|
997 |
+
"step": 140
|
998 |
+
},
|
999 |
+
{
|
1000 |
+
"epoch": 0.2876083630800612,
|
1001 |
+
"grad_norm": 0.31334587931632996,
|
1002 |
+
"learning_rate": 0.0001911336624969725,
|
1003 |
+
"loss": 1.8974,
|
1004 |
+
"step": 141
|
1005 |
+
},
|
1006 |
+
{
|
1007 |
+
"epoch": 0.2896481387047425,
|
1008 |
+
"grad_norm": 0.2697933614253998,
|
1009 |
+
"learning_rate": 0.00019099985752479506,
|
1010 |
+
"loss": 1.8786,
|
1011 |
+
"step": 142
|
1012 |
+
},
|
1013 |
+
{
|
1014 |
+
"epoch": 0.29168791432942376,
|
1015 |
+
"grad_norm": 0.2917918562889099,
|
1016 |
+
"learning_rate": 0.00019086509800717258,
|
1017 |
+
"loss": 2.0443,
|
1018 |
+
"step": 143
|
1019 |
+
},
|
1020 |
+
{
|
1021 |
+
"epoch": 0.29372768995410503,
|
1022 |
+
"grad_norm": 0.2908966541290283,
|
1023 |
+
"learning_rate": 0.00019072938535766865,
|
1024 |
+
"loss": 1.9817,
|
1025 |
+
"step": 144
|
1026 |
+
},
|
1027 |
+
{
|
1028 |
+
"epoch": 0.29576746557878636,
|
1029 |
+
"grad_norm": 0.2819146513938904,
|
1030 |
+
"learning_rate": 0.0001905927209998447,
|
1031 |
+
"loss": 2.0689,
|
1032 |
+
"step": 145
|
1033 |
+
},
|
1034 |
+
{
|
1035 |
+
"epoch": 0.29780724120346763,
|
1036 |
+
"grad_norm": 0.3112149238586426,
|
1037 |
+
"learning_rate": 0.0001904551063672452,
|
1038 |
+
"loss": 1.9045,
|
1039 |
+
"step": 146
|
1040 |
+
},
|
1041 |
+
{
|
1042 |
+
"epoch": 0.2998470168281489,
|
1043 |
+
"grad_norm": 0.2511192560195923,
|
1044 |
+
"learning_rate": 0.00019031654290338254,
|
1045 |
+
"loss": 2.007,
|
1046 |
+
"step": 147
|
1047 |
+
},
|
1048 |
+
{
|
1049 |
+
"epoch": 0.3018867924528302,
|
1050 |
+
"grad_norm": 0.2944158911705017,
|
1051 |
+
"learning_rate": 0.00019017703206172185,
|
1052 |
+
"loss": 1.9059,
|
1053 |
+
"step": 148
|
1054 |
+
},
|
1055 |
+
{
|
1056 |
+
"epoch": 0.30392656807751145,
|
1057 |
+
"grad_norm": 0.2799970209598541,
|
1058 |
+
"learning_rate": 0.0001900365753056659,
|
1059 |
+
"loss": 1.8268,
|
1060 |
+
"step": 149
|
1061 |
+
},
|
1062 |
+
{
|
1063 |
+
"epoch": 0.3059663437021928,
|
1064 |
+
"grad_norm": 0.3119431436061859,
|
1065 |
+
"learning_rate": 0.00018989517410853955,
|
1066 |
+
"loss": 1.7999,
|
1067 |
+
"step": 150
|
1068 |
+
},
|
1069 |
+
{
|
1070 |
+
"epoch": 0.30800611932687405,
|
1071 |
+
"grad_norm": 0.27174267172813416,
|
1072 |
+
"learning_rate": 0.00018975282995357446,
|
1073 |
+
"loss": 1.8971,
|
1074 |
+
"step": 151
|
1075 |
+
},
|
1076 |
+
{
|
1077 |
+
"epoch": 0.3100458949515553,
|
1078 |
+
"grad_norm": 0.3147140443325043,
|
1079 |
+
"learning_rate": 0.00018960954433389345,
|
1080 |
+
"loss": 1.9755,
|
1081 |
+
"step": 152
|
1082 |
+
},
|
1083 |
+
{
|
1084 |
+
"epoch": 0.3120856705762366,
|
1085 |
+
"grad_norm": 0.27466344833374023,
|
1086 |
+
"learning_rate": 0.00018946531875249493,
|
1087 |
+
"loss": 1.9819,
|
1088 |
+
"step": 153
|
1089 |
+
},
|
1090 |
+
{
|
1091 |
+
"epoch": 0.3141254462009179,
|
1092 |
+
"grad_norm": 0.2912920117378235,
|
1093 |
+
"learning_rate": 0.00018932015472223693,
|
1094 |
+
"loss": 2.1079,
|
1095 |
+
"step": 154
|
1096 |
+
},
|
1097 |
+
{
|
1098 |
+
"epoch": 0.3161652218255992,
|
1099 |
+
"grad_norm": 0.3123255968093872,
|
1100 |
+
"learning_rate": 0.00018917405376582145,
|
1101 |
+
"loss": 1.93,
|
1102 |
+
"step": 155
|
1103 |
+
},
|
1104 |
+
{
|
1105 |
+
"epoch": 0.31820499745028047,
|
1106 |
+
"grad_norm": 0.3270852565765381,
|
1107 |
+
"learning_rate": 0.0001890270174157784,
|
1108 |
+
"loss": 1.8386,
|
1109 |
+
"step": 156
|
1110 |
+
},
|
1111 |
+
{
|
1112 |
+
"epoch": 0.32024477307496174,
|
1113 |
+
"grad_norm": 0.30445969104766846,
|
1114 |
+
"learning_rate": 0.00018887904721444953,
|
1115 |
+
"loss": 2.1993,
|
1116 |
+
"step": 157
|
1117 |
+
},
|
1118 |
+
{
|
1119 |
+
"epoch": 0.322284548699643,
|
1120 |
+
"grad_norm": 0.2974015474319458,
|
1121 |
+
"learning_rate": 0.00018873014471397224,
|
1122 |
+
"loss": 1.8965,
|
1123 |
+
"step": 158
|
1124 |
+
},
|
1125 |
+
{
|
1126 |
+
"epoch": 0.32432432432432434,
|
1127 |
+
"grad_norm": 0.3236542046070099,
|
1128 |
+
"learning_rate": 0.00018858031147626325,
|
1129 |
+
"loss": 2.041,
|
1130 |
+
"step": 159
|
1131 |
+
},
|
1132 |
+
{
|
1133 |
+
"epoch": 0.3263640999490056,
|
1134 |
+
"grad_norm": 0.2958833575248718,
|
1135 |
+
"learning_rate": 0.00018842954907300236,
|
1136 |
+
"loss": 1.8681,
|
1137 |
+
"step": 160
|
1138 |
+
},
|
1139 |
+
{
|
1140 |
+
"epoch": 0.3284038755736869,
|
1141 |
+
"grad_norm": 0.27163368463516235,
|
1142 |
+
"learning_rate": 0.00018827785908561584,
|
1143 |
+
"loss": 1.9664,
|
1144 |
+
"step": 161
|
1145 |
+
},
|
1146 |
+
{
|
1147 |
+
"epoch": 0.33044365119836816,
|
1148 |
+
"grad_norm": 0.2662605941295624,
|
1149 |
+
"learning_rate": 0.0001881252431052599,
|
1150 |
+
"loss": 1.9255,
|
1151 |
+
"step": 162
|
1152 |
+
},
|
1153 |
+
{
|
1154 |
+
"epoch": 0.3324834268230495,
|
1155 |
+
"grad_norm": 0.2995011508464813,
|
1156 |
+
"learning_rate": 0.00018797170273280388,
|
1157 |
+
"loss": 2.1172,
|
1158 |
+
"step": 163
|
1159 |
+
},
|
1160 |
+
{
|
1161 |
+
"epoch": 0.33452320244773076,
|
1162 |
+
"grad_norm": 0.2997836768627167,
|
1163 |
+
"learning_rate": 0.00018781723957881372,
|
1164 |
+
"loss": 1.9044,
|
1165 |
+
"step": 164
|
1166 |
+
},
|
1167 |
+
{
|
1168 |
+
"epoch": 0.33656297807241203,
|
1169 |
+
"grad_norm": 0.2867211401462555,
|
1170 |
+
"learning_rate": 0.0001876618552635348,
|
1171 |
+
"loss": 1.8,
|
1172 |
+
"step": 165
|
1173 |
+
},
|
1174 |
+
{
|
1175 |
+
"epoch": 0.3386027536970933,
|
1176 |
+
"grad_norm": 0.2972771227359772,
|
1177 |
+
"learning_rate": 0.000187505551416875,
|
1178 |
+
"loss": 1.7879,
|
1179 |
+
"step": 166
|
1180 |
+
},
|
1181 |
+
{
|
1182 |
+
"epoch": 0.3406425293217746,
|
1183 |
+
"grad_norm": 0.27393755316734314,
|
1184 |
+
"learning_rate": 0.00018734832967838775,
|
1185 |
+
"loss": 2.1209,
|
1186 |
+
"step": 167
|
1187 |
+
},
|
1188 |
+
{
|
1189 |
+
"epoch": 0.3426823049464559,
|
1190 |
+
"grad_norm": 0.31422799825668335,
|
1191 |
+
"learning_rate": 0.00018719019169725472,
|
1192 |
+
"loss": 1.9435,
|
1193 |
+
"step": 168
|
1194 |
+
},
|
1195 |
+
{
|
1196 |
+
"epoch": 0.3447220805711372,
|
1197 |
+
"grad_norm": 0.3372005224227905,
|
1198 |
+
"learning_rate": 0.00018703113913226847,
|
1199 |
+
"loss": 2.0911,
|
1200 |
+
"step": 169
|
1201 |
+
},
|
1202 |
+
{
|
1203 |
+
"epoch": 0.34676185619581845,
|
1204 |
+
"grad_norm": 0.29995280504226685,
|
1205 |
+
"learning_rate": 0.00018687117365181512,
|
1206 |
+
"loss": 1.9077,
|
1207 |
+
"step": 170
|
1208 |
+
},
|
1209 |
+
{
|
1210 |
+
"epoch": 0.3488016318204997,
|
1211 |
+
"grad_norm": 0.2770789861679077,
|
1212 |
+
"learning_rate": 0.0001867102969338569,
|
1213 |
+
"loss": 1.7649,
|
1214 |
+
"step": 171
|
1215 |
+
},
|
1216 |
+
{
|
1217 |
+
"epoch": 0.35084140744518105,
|
1218 |
+
"grad_norm": 0.2982628047466278,
|
1219 |
+
"learning_rate": 0.00018654851066591448,
|
1220 |
+
"loss": 2.0258,
|
1221 |
+
"step": 172
|
1222 |
+
},
|
1223 |
+
{
|
1224 |
+
"epoch": 0.3528811830698623,
|
1225 |
+
"grad_norm": 0.2924087643623352,
|
1226 |
+
"learning_rate": 0.0001863858165450492,
|
1227 |
+
"loss": 1.9533,
|
1228 |
+
"step": 173
|
1229 |
+
},
|
1230 |
+
{
|
1231 |
+
"epoch": 0.3549209586945436,
|
1232 |
+
"grad_norm": 0.29398518800735474,
|
1233 |
+
"learning_rate": 0.0001862222162778454,
|
1234 |
+
"loss": 1.8298,
|
1235 |
+
"step": 174
|
1236 |
+
},
|
1237 |
+
{
|
1238 |
+
"epoch": 0.35696073431922487,
|
1239 |
+
"grad_norm": 0.34897300601005554,
|
1240 |
+
"learning_rate": 0.00018605771158039253,
|
1241 |
+
"loss": 1.7459,
|
1242 |
+
"step": 175
|
1243 |
+
},
|
1244 |
+
{
|
1245 |
+
"epoch": 0.35900050994390614,
|
1246 |
+
"grad_norm": 0.33509624004364014,
|
1247 |
+
"learning_rate": 0.00018589230417826697,
|
1248 |
+
"loss": 1.8843,
|
1249 |
+
"step": 176
|
1250 |
+
},
|
1251 |
+
{
|
1252 |
+
"epoch": 0.36104028556858747,
|
1253 |
+
"grad_norm": 0.30635756254196167,
|
1254 |
+
"learning_rate": 0.00018572599580651415,
|
1255 |
+
"loss": 2.0315,
|
1256 |
+
"step": 177
|
1257 |
+
},
|
1258 |
+
{
|
1259 |
+
"epoch": 0.36308006119326874,
|
1260 |
+
"grad_norm": 0.3544027805328369,
|
1261 |
+
"learning_rate": 0.00018555878820963013,
|
1262 |
+
"loss": 1.9821,
|
1263 |
+
"step": 178
|
1264 |
+
},
|
1265 |
+
{
|
1266 |
+
"epoch": 0.36511983681795,
|
1267 |
+
"grad_norm": 0.283241331577301,
|
1268 |
+
"learning_rate": 0.00018539068314154354,
|
1269 |
+
"loss": 1.7482,
|
1270 |
+
"step": 179
|
1271 |
+
},
|
1272 |
+
{
|
1273 |
+
"epoch": 0.3671596124426313,
|
1274 |
+
"grad_norm": 0.2630005478858948,
|
1275 |
+
"learning_rate": 0.00018522168236559695,
|
1276 |
+
"loss": 1.887,
|
1277 |
+
"step": 180
|
1278 |
+
},
|
1279 |
+
{
|
1280 |
+
"epoch": 0.3691993880673126,
|
1281 |
+
"grad_norm": 0.2816585898399353,
|
1282 |
+
"learning_rate": 0.00018505178765452853,
|
1283 |
+
"loss": 1.8995,
|
1284 |
+
"step": 181
|
1285 |
+
},
|
1286 |
+
{
|
1287 |
+
"epoch": 0.3712391636919939,
|
1288 |
+
"grad_norm": 0.30843281745910645,
|
1289 |
+
"learning_rate": 0.00018488100079045344,
|
1290 |
+
"loss": 1.943,
|
1291 |
+
"step": 182
|
1292 |
+
},
|
1293 |
+
{
|
1294 |
+
"epoch": 0.37327893931667516,
|
1295 |
+
"grad_norm": 0.30149805545806885,
|
1296 |
+
"learning_rate": 0.00018470932356484508,
|
1297 |
+
"loss": 1.8764,
|
1298 |
+
"step": 183
|
1299 |
+
},
|
1300 |
+
{
|
1301 |
+
"epoch": 0.37531871494135643,
|
1302 |
+
"grad_norm": 0.27851638197898865,
|
1303 |
+
"learning_rate": 0.00018453675777851627,
|
1304 |
+
"loss": 1.8901,
|
1305 |
+
"step": 184
|
1306 |
+
},
|
1307 |
+
{
|
1308 |
+
"epoch": 0.37735849056603776,
|
1309 |
+
"grad_norm": 0.34025222063064575,
|
1310 |
+
"learning_rate": 0.00018436330524160047,
|
1311 |
+
"loss": 2.167,
|
1312 |
+
"step": 185
|
1313 |
+
},
|
1314 |
+
{
|
1315 |
+
"epoch": 0.37939826619071904,
|
1316 |
+
"grad_norm": 0.3183801472187042,
|
1317 |
+
"learning_rate": 0.0001841889677735327,
|
1318 |
+
"loss": 1.9419,
|
1319 |
+
"step": 186
|
1320 |
+
},
|
1321 |
+
{
|
1322 |
+
"epoch": 0.3814380418154003,
|
1323 |
+
"grad_norm": 0.3072781562805176,
|
1324 |
+
"learning_rate": 0.00018401374720303056,
|
1325 |
+
"loss": 1.9817,
|
1326 |
+
"step": 187
|
1327 |
+
},
|
1328 |
+
{
|
1329 |
+
"epoch": 0.3834778174400816,
|
1330 |
+
"grad_norm": 0.2894771993160248,
|
1331 |
+
"learning_rate": 0.00018383764536807485,
|
1332 |
+
"loss": 2.114,
|
1333 |
+
"step": 188
|
1334 |
+
},
|
1335 |
+
{
|
1336 |
+
"epoch": 0.38551759306476285,
|
1337 |
+
"grad_norm": 0.3198698163032532,
|
1338 |
+
"learning_rate": 0.0001836606641158905,
|
1339 |
+
"loss": 1.8609,
|
1340 |
+
"step": 189
|
1341 |
+
},
|
1342 |
+
{
|
1343 |
+
"epoch": 0.3875573686894442,
|
1344 |
+
"grad_norm": 0.3462139964103699,
|
1345 |
+
"learning_rate": 0.00018348280530292713,
|
1346 |
+
"loss": 1.7753,
|
1347 |
+
"step": 190
|
1348 |
+
},
|
1349 |
+
{
|
1350 |
+
"epoch": 0.38959714431412545,
|
1351 |
+
"grad_norm": 0.2793361246585846,
|
1352 |
+
"learning_rate": 0.00018330407079483952,
|
1353 |
+
"loss": 2.1784,
|
1354 |
+
"step": 191
|
1355 |
+
},
|
1356 |
+
{
|
1357 |
+
"epoch": 0.3916369199388067,
|
1358 |
+
"grad_norm": 0.29519417881965637,
|
1359 |
+
"learning_rate": 0.0001831244624664681,
|
1360 |
+
"loss": 1.9627,
|
1361 |
+
"step": 192
|
1362 |
+
},
|
1363 |
+
{
|
1364 |
+
"epoch": 0.393676695563488,
|
1365 |
+
"grad_norm": 0.3317961096763611,
|
1366 |
+
"learning_rate": 0.00018294398220181917,
|
1367 |
+
"loss": 1.7643,
|
1368 |
+
"step": 193
|
1369 |
+
},
|
1370 |
+
{
|
1371 |
+
"epoch": 0.3957164711881693,
|
1372 |
+
"grad_norm": 0.3138796091079712,
|
1373 |
+
"learning_rate": 0.0001827626318940454,
|
1374 |
+
"loss": 1.792,
|
1375 |
+
"step": 194
|
1376 |
+
},
|
1377 |
+
{
|
1378 |
+
"epoch": 0.3977562468128506,
|
1379 |
+
"grad_norm": 0.30172964930534363,
|
1380 |
+
"learning_rate": 0.00018258041344542566,
|
1381 |
+
"loss": 1.8828,
|
1382 |
+
"step": 195
|
1383 |
+
},
|
1384 |
+
{
|
1385 |
+
"epoch": 0.3997960224375319,
|
1386 |
+
"grad_norm": 0.3473678529262543,
|
1387 |
+
"learning_rate": 0.00018239732876734527,
|
1388 |
+
"loss": 1.9373,
|
1389 |
+
"step": 196
|
1390 |
+
},
|
1391 |
+
{
|
1392 |
+
"epoch": 0.40183579806221315,
|
1393 |
+
"grad_norm": 0.3263239562511444,
|
1394 |
+
"learning_rate": 0.00018221337978027583,
|
1395 |
+
"loss": 1.9933,
|
1396 |
+
"step": 197
|
1397 |
+
},
|
1398 |
+
{
|
1399 |
+
"epoch": 0.4038755736868944,
|
1400 |
+
"grad_norm": 0.32656848430633545,
|
1401 |
+
"learning_rate": 0.00018202856841375518,
|
1402 |
+
"loss": 1.8501,
|
1403 |
+
"step": 198
|
1404 |
+
},
|
1405 |
+
{
|
1406 |
+
"epoch": 0.40591534931157575,
|
1407 |
+
"grad_norm": 0.3206334412097931,
|
1408 |
+
"learning_rate": 0.00018184289660636715,
|
1409 |
+
"loss": 2.0026,
|
1410 |
+
"step": 199
|
1411 |
+
},
|
1412 |
+
{
|
1413 |
+
"epoch": 0.407955124936257,
|
1414 |
+
"grad_norm": 0.31711164116859436,
|
1415 |
+
"learning_rate": 0.0001816563663057211,
|
1416 |
+
"loss": 1.9573,
|
1417 |
+
"step": 200
|
1418 |
+
},
|
1419 |
+
{
|
1420 |
+
"epoch": 0.4099949005609383,
|
1421 |
+
"grad_norm": 0.2891688048839569,
|
1422 |
+
"learning_rate": 0.00018146897946843163,
|
1423 |
+
"loss": 1.939,
|
1424 |
+
"step": 201
|
1425 |
+
},
|
1426 |
+
{
|
1427 |
+
"epoch": 0.41203467618561956,
|
1428 |
+
"grad_norm": 0.3304015100002289,
|
1429 |
+
"learning_rate": 0.000181280738060098,
|
1430 |
+
"loss": 1.874,
|
1431 |
+
"step": 202
|
1432 |
+
},
|
1433 |
+
{
|
1434 |
+
"epoch": 0.4140744518103009,
|
1435 |
+
"grad_norm": 0.2902586758136749,
|
1436 |
+
"learning_rate": 0.0001810916440552835,
|
1437 |
+
"loss": 1.8516,
|
1438 |
+
"step": 203
|
1439 |
+
},
|
1440 |
+
{
|
1441 |
+
"epoch": 0.41611422743498216,
|
1442 |
+
"grad_norm": 0.3066134452819824,
|
1443 |
+
"learning_rate": 0.00018090169943749476,
|
1444 |
+
"loss": 1.909,
|
1445 |
+
"step": 204
|
1446 |
+
},
|
1447 |
+
{
|
1448 |
+
"epoch": 0.41815400305966344,
|
1449 |
+
"grad_norm": 0.2844925820827484,
|
1450 |
+
"learning_rate": 0.00018071090619916093,
|
1451 |
+
"loss": 1.8373,
|
1452 |
+
"step": 205
|
1453 |
+
},
|
1454 |
+
{
|
1455 |
+
"epoch": 0.4201937786843447,
|
1456 |
+
"grad_norm": 0.2905077338218689,
|
1457 |
+
"learning_rate": 0.00018051926634161282,
|
1458 |
+
"loss": 1.8031,
|
1459 |
+
"step": 206
|
1460 |
+
},
|
1461 |
+
{
|
1462 |
+
"epoch": 0.422233554309026,
|
1463 |
+
"grad_norm": 0.3110411763191223,
|
1464 |
+
"learning_rate": 0.00018032678187506187,
|
1465 |
+
"loss": 1.9915,
|
1466 |
+
"step": 207
|
1467 |
+
},
|
1468 |
+
{
|
1469 |
+
"epoch": 0.4242733299337073,
|
1470 |
+
"grad_norm": 0.27634483575820923,
|
1471 |
+
"learning_rate": 0.00018013345481857903,
|
1472 |
+
"loss": 2.0072,
|
1473 |
+
"step": 208
|
1474 |
+
},
|
1475 |
+
{
|
1476 |
+
"epoch": 0.4263131055583886,
|
1477 |
+
"grad_norm": 0.29069051146507263,
|
1478 |
+
"learning_rate": 0.0001799392872000736,
|
1479 |
+
"loss": 2.0632,
|
1480 |
+
"step": 209
|
1481 |
+
},
|
1482 |
+
{
|
1483 |
+
"epoch": 0.42835288118306986,
|
1484 |
+
"grad_norm": 0.28966760635375977,
|
1485 |
+
"learning_rate": 0.00017974428105627208,
|
1486 |
+
"loss": 1.8184,
|
1487 |
+
"step": 210
|
1488 |
+
},
|
1489 |
+
{
|
1490 |
+
"epoch": 0.43039265680775113,
|
1491 |
+
"grad_norm": 0.2768760621547699,
|
1492 |
+
"learning_rate": 0.00017954843843269664,
|
1493 |
+
"loss": 1.8344,
|
1494 |
+
"step": 211
|
1495 |
+
},
|
1496 |
+
{
|
1497 |
+
"epoch": 0.43243243243243246,
|
1498 |
+
"grad_norm": 0.30277568101882935,
|
1499 |
+
"learning_rate": 0.0001793517613836437,
|
1500 |
+
"loss": 1.931,
|
1501 |
+
"step": 212
|
1502 |
+
},
|
1503 |
+
{
|
1504 |
+
"epoch": 0.43447220805711373,
|
1505 |
+
"grad_norm": 0.30833378434181213,
|
1506 |
+
"learning_rate": 0.00017915425197216245,
|
1507 |
+
"loss": 1.8319,
|
1508 |
+
"step": 213
|
1509 |
+
},
|
1510 |
+
{
|
1511 |
+
"epoch": 0.436511983681795,
|
1512 |
+
"grad_norm": 0.2517772316932678,
|
1513 |
+
"learning_rate": 0.00017895591227003315,
|
1514 |
+
"loss": 2.0335,
|
1515 |
+
"step": 214
|
1516 |
+
},
|
1517 |
+
{
|
1518 |
+
"epoch": 0.4385517593064763,
|
1519 |
+
"grad_norm": 0.3051300346851349,
|
1520 |
+
"learning_rate": 0.00017875674435774547,
|
1521 |
+
"loss": 1.8523,
|
1522 |
+
"step": 215
|
1523 |
+
},
|
1524 |
+
{
|
1525 |
+
"epoch": 0.44059153493115755,
|
1526 |
+
"grad_norm": 0.331875741481781,
|
1527 |
+
"learning_rate": 0.00017855675032447648,
|
1528 |
+
"loss": 1.902,
|
1529 |
+
"step": 216
|
1530 |
+
},
|
1531 |
+
{
|
1532 |
+
"epoch": 0.4426313105558389,
|
1533 |
+
"grad_norm": 0.3102109134197235,
|
1534 |
+
"learning_rate": 0.00017835593226806903,
|
1535 |
+
"loss": 1.9391,
|
1536 |
+
"step": 217
|
1537 |
+
},
|
1538 |
+
{
|
1539 |
+
"epoch": 0.44467108618052015,
|
1540 |
+
"grad_norm": 0.28581124544143677,
|
1541 |
+
"learning_rate": 0.00017815429229500946,
|
1542 |
+
"loss": 1.9595,
|
1543 |
+
"step": 218
|
1544 |
+
},
|
1545 |
+
{
|
1546 |
+
"epoch": 0.4467108618052014,
|
1547 |
+
"grad_norm": 0.2874554693698883,
|
1548 |
+
"learning_rate": 0.00017795183252040567,
|
1549 |
+
"loss": 1.8683,
|
1550 |
+
"step": 219
|
1551 |
+
},
|
1552 |
+
{
|
1553 |
+
"epoch": 0.4487506374298827,
|
1554 |
+
"grad_norm": 0.3131530284881592,
|
1555 |
+
"learning_rate": 0.00017774855506796496,
|
1556 |
+
"loss": 2.003,
|
1557 |
+
"step": 220
|
1558 |
+
},
|
1559 |
+
{
|
1560 |
+
"epoch": 0.450790413054564,
|
1561 |
+
"grad_norm": 0.3006989359855652,
|
1562 |
+
"learning_rate": 0.0001775444620699715,
|
1563 |
+
"loss": 1.8058,
|
1564 |
+
"step": 221
|
1565 |
+
},
|
1566 |
+
{
|
1567 |
+
"epoch": 0.4528301886792453,
|
1568 |
+
"grad_norm": 0.29621464014053345,
|
1569 |
+
"learning_rate": 0.0001773395556672644,
|
1570 |
+
"loss": 1.9781,
|
1571 |
+
"step": 222
|
1572 |
+
},
|
1573 |
+
{
|
1574 |
+
"epoch": 0.45486996430392657,
|
1575 |
+
"grad_norm": 0.325095534324646,
|
1576 |
+
"learning_rate": 0.00017713383800921478,
|
1577 |
+
"loss": 1.8633,
|
1578 |
+
"step": 223
|
1579 |
+
},
|
1580 |
+
{
|
1581 |
+
"epoch": 0.45690973992860784,
|
1582 |
+
"grad_norm": 0.306911826133728,
|
1583 |
+
"learning_rate": 0.00017692731125370354,
|
1584 |
+
"loss": 1.9318,
|
1585 |
+
"step": 224
|
1586 |
+
},
|
1587 |
+
{
|
1588 |
+
"epoch": 0.4589495155532891,
|
1589 |
+
"grad_norm": 0.335014283657074,
|
1590 |
+
"learning_rate": 0.00017671997756709863,
|
1591 |
+
"loss": 1.7637,
|
1592 |
+
"step": 225
|
1593 |
+
},
|
1594 |
+
{
|
1595 |
+
"epoch": 0.46098929117797044,
|
1596 |
+
"grad_norm": 0.28670719265937805,
|
1597 |
+
"learning_rate": 0.00017651183912423228,
|
1598 |
+
"loss": 1.988,
|
1599 |
+
"step": 226
|
1600 |
+
},
|
1601 |
+
{
|
1602 |
+
"epoch": 0.4630290668026517,
|
1603 |
+
"grad_norm": 0.2969343364238739,
|
1604 |
+
"learning_rate": 0.00017630289810837834,
|
1605 |
+
"loss": 1.7984,
|
1606 |
+
"step": 227
|
1607 |
+
},
|
1608 |
+
{
|
1609 |
+
"epoch": 0.465068842427333,
|
1610 |
+
"grad_norm": 0.3015127182006836,
|
1611 |
+
"learning_rate": 0.0001760931567112291,
|
1612 |
+
"loss": 1.7022,
|
1613 |
+
"step": 228
|
1614 |
+
},
|
1615 |
+
{
|
1616 |
+
"epoch": 0.46710861805201426,
|
1617 |
+
"grad_norm": 0.32308632135391235,
|
1618 |
+
"learning_rate": 0.00017588261713287267,
|
1619 |
+
"loss": 1.8067,
|
1620 |
+
"step": 229
|
1621 |
+
},
|
1622 |
+
{
|
1623 |
+
"epoch": 0.4691483936766956,
|
1624 |
+
"grad_norm": 0.30818650126457214,
|
1625 |
+
"learning_rate": 0.00017567128158176953,
|
1626 |
+
"loss": 1.7096,
|
1627 |
+
"step": 230
|
1628 |
+
},
|
1629 |
+
{
|
1630 |
+
"epoch": 0.47118816930137686,
|
1631 |
+
"grad_norm": 0.28488847613334656,
|
1632 |
+
"learning_rate": 0.00017545915227472965,
|
1633 |
+
"loss": 1.8784,
|
1634 |
+
"step": 231
|
1635 |
+
},
|
1636 |
+
{
|
1637 |
+
"epoch": 0.47322794492605813,
|
1638 |
+
"grad_norm": 0.3801325857639313,
|
1639 |
+
"learning_rate": 0.00017524623143688902,
|
1640 |
+
"loss": 1.9555,
|
1641 |
+
"step": 232
|
1642 |
+
},
|
1643 |
+
{
|
1644 |
+
"epoch": 0.4752677205507394,
|
1645 |
+
"grad_norm": 0.31661075353622437,
|
1646 |
+
"learning_rate": 0.00017503252130168657,
|
1647 |
+
"loss": 1.8717,
|
1648 |
+
"step": 233
|
1649 |
+
},
|
1650 |
+
{
|
1651 |
+
"epoch": 0.47730749617542073,
|
1652 |
+
"grad_norm": 0.296003520488739,
|
1653 |
+
"learning_rate": 0.00017481802411084042,
|
1654 |
+
"loss": 1.7293,
|
1655 |
+
"step": 234
|
1656 |
+
},
|
1657 |
+
{
|
1658 |
+
"epoch": 0.479347271800102,
|
1659 |
+
"grad_norm": 0.3210139274597168,
|
1660 |
+
"learning_rate": 0.0001746027421143246,
|
1661 |
+
"loss": 1.9587,
|
1662 |
+
"step": 235
|
1663 |
+
},
|
1664 |
+
{
|
1665 |
+
"epoch": 0.4813870474247833,
|
1666 |
+
"grad_norm": 0.2968738079071045,
|
1667 |
+
"learning_rate": 0.00017438667757034546,
|
1668 |
+
"loss": 2.0743,
|
1669 |
+
"step": 236
|
1670 |
+
},
|
1671 |
+
{
|
1672 |
+
"epoch": 0.48342682304946455,
|
1673 |
+
"grad_norm": 0.3373945355415344,
|
1674 |
+
"learning_rate": 0.00017416983274531775,
|
1675 |
+
"loss": 1.8239,
|
1676 |
+
"step": 237
|
1677 |
+
},
|
1678 |
+
{
|
1679 |
+
"epoch": 0.4854665986741458,
|
1680 |
+
"grad_norm": 0.29180705547332764,
|
1681 |
+
"learning_rate": 0.0001739522099138411,
|
1682 |
+
"loss": 1.9563,
|
1683 |
+
"step": 238
|
1684 |
+
},
|
1685 |
+
{
|
1686 |
+
"epoch": 0.48750637429882715,
|
1687 |
+
"grad_norm": 0.342316597700119,
|
1688 |
+
"learning_rate": 0.00017373381135867604,
|
1689 |
+
"loss": 1.9012,
|
1690 |
+
"step": 239
|
1691 |
+
},
|
1692 |
+
{
|
1693 |
+
"epoch": 0.4895461499235084,
|
1694 |
+
"grad_norm": 0.29859068989753723,
|
1695 |
+
"learning_rate": 0.00017351463937072004,
|
1696 |
+
"loss": 1.723,
|
1697 |
+
"step": 240
|
1698 |
+
},
|
1699 |
+
{
|
1700 |
+
"epoch": 0.4915859255481897,
|
1701 |
+
"grad_norm": 0.32331928610801697,
|
1702 |
+
"learning_rate": 0.0001732946962489836,
|
1703 |
+
"loss": 1.9278,
|
1704 |
+
"step": 241
|
1705 |
+
},
|
1706 |
+
{
|
1707 |
+
"epoch": 0.49362570117287097,
|
1708 |
+
"grad_norm": 0.3604521155357361,
|
1709 |
+
"learning_rate": 0.00017307398430056593,
|
1710 |
+
"loss": 1.9691,
|
1711 |
+
"step": 242
|
1712 |
+
},
|
1713 |
+
{
|
1714 |
+
"epoch": 0.4956654767975523,
|
1715 |
+
"grad_norm": 0.30965346097946167,
|
1716 |
+
"learning_rate": 0.000172852505840631,
|
1717 |
+
"loss": 1.7225,
|
1718 |
+
"step": 243
|
1719 |
+
},
|
1720 |
+
{
|
1721 |
+
"epoch": 0.49770525242223357,
|
1722 |
+
"grad_norm": 0.2769593894481659,
|
1723 |
+
"learning_rate": 0.00017263026319238301,
|
1724 |
+
"loss": 1.7938,
|
1725 |
+
"step": 244
|
1726 |
+
},
|
1727 |
+
{
|
1728 |
+
"epoch": 0.49974502804691484,
|
1729 |
+
"grad_norm": 0.33169788122177124,
|
1730 |
+
"learning_rate": 0.00017240725868704218,
|
1731 |
+
"loss": 1.6576,
|
1732 |
+
"step": 245
|
1733 |
+
},
|
1734 |
+
{
|
1735 |
+
"epoch": 0.49974502804691484,
|
1736 |
+
"eval_loss": 1.874290943145752,
|
1737 |
+
"eval_runtime": 49.8203,
|
1738 |
+
"eval_samples_per_second": 16.58,
|
1739 |
+
"eval_steps_per_second": 2.088,
|
1740 |
+
"step": 245
|
1741 |
+
},
|
1742 |
+
{
|
1743 |
+
"epoch": 0.5017848036715962,
|
1744 |
+
"grad_norm": 0.3088040053844452,
|
1745 |
+
"learning_rate": 0.00017218349466382023,
|
1746 |
+
"loss": 1.7977,
|
1747 |
+
"step": 246
|
1748 |
+
},
|
1749 |
+
{
|
1750 |
+
"epoch": 0.5038245792962774,
|
1751 |
+
"grad_norm": 0.3247360289096832,
|
1752 |
+
"learning_rate": 0.0001719589734698959,
|
1753 |
+
"loss": 1.9595,
|
1754 |
+
"step": 247
|
1755 |
+
},
|
1756 |
+
{
|
1757 |
+
"epoch": 0.5058643549209587,
|
1758 |
+
"grad_norm": 0.30020302534103394,
|
1759 |
+
"learning_rate": 0.00017173369746039025,
|
1760 |
+
"loss": 1.7303,
|
1761 |
+
"step": 248
|
1762 |
+
},
|
1763 |
+
{
|
1764 |
+
"epoch": 0.50790413054564,
|
1765 |
+
"grad_norm": 0.2880503833293915,
|
1766 |
+
"learning_rate": 0.00017150766899834204,
|
1767 |
+
"loss": 1.9203,
|
1768 |
+
"step": 249
|
1769 |
+
},
|
1770 |
+
{
|
1771 |
+
"epoch": 0.5099439061703213,
|
1772 |
+
"grad_norm": 0.2775571048259735,
|
1773 |
+
"learning_rate": 0.00017128089045468294,
|
1774 |
+
"loss": 1.8347,
|
1775 |
+
"step": 250
|
1776 |
+
},
|
1777 |
+
{
|
1778 |
+
"epoch": 0.5119836817950025,
|
1779 |
+
"grad_norm": 0.31517794728279114,
|
1780 |
+
"learning_rate": 0.00017105336420821247,
|
1781 |
+
"loss": 1.9258,
|
1782 |
+
"step": 251
|
1783 |
+
},
|
1784 |
+
{
|
1785 |
+
"epoch": 0.5140234574196838,
|
1786 |
+
"grad_norm": 0.315845251083374,
|
1787 |
+
"learning_rate": 0.0001708250926455733,
|
1788 |
+
"loss": 1.6125,
|
1789 |
+
"step": 252
|
1790 |
+
},
|
1791 |
+
{
|
1792 |
+
"epoch": 0.5160632330443651,
|
1793 |
+
"grad_norm": 0.3020716607570648,
|
1794 |
+
"learning_rate": 0.00017059607816122618,
|
1795 |
+
"loss": 2.036,
|
1796 |
+
"step": 253
|
1797 |
+
},
|
1798 |
+
{
|
1799 |
+
"epoch": 0.5181030086690463,
|
1800 |
+
"grad_norm": 0.3116091787815094,
|
1801 |
+
"learning_rate": 0.00017036632315742462,
|
1802 |
+
"loss": 1.7882,
|
1803 |
+
"step": 254
|
1804 |
+
},
|
1805 |
+
{
|
1806 |
+
"epoch": 0.5201427842937277,
|
1807 |
+
"grad_norm": 0.2845454216003418,
|
1808 |
+
"learning_rate": 0.00017013583004418993,
|
1809 |
+
"loss": 1.9165,
|
1810 |
+
"step": 255
|
1811 |
+
},
|
1812 |
+
{
|
1813 |
+
"epoch": 0.522182559918409,
|
1814 |
+
"grad_norm": 0.3218507468700409,
|
1815 |
+
"learning_rate": 0.00016990460123928575,
|
1816 |
+
"loss": 1.9143,
|
1817 |
+
"step": 256
|
1818 |
+
},
|
1819 |
+
{
|
1820 |
+
"epoch": 0.5242223355430903,
|
1821 |
+
"grad_norm": 0.32271113991737366,
|
1822 |
+
"learning_rate": 0.00016967263916819287,
|
1823 |
+
"loss": 1.7233,
|
1824 |
+
"step": 257
|
1825 |
+
},
|
1826 |
+
{
|
1827 |
+
"epoch": 0.5262621111677716,
|
1828 |
+
"grad_norm": 0.32956361770629883,
|
1829 |
+
"learning_rate": 0.00016943994626408363,
|
1830 |
+
"loss": 2.1151,
|
1831 |
+
"step": 258
|
1832 |
+
},
|
1833 |
+
{
|
1834 |
+
"epoch": 0.5283018867924528,
|
1835 |
+
"grad_norm": 0.309712678194046,
|
1836 |
+
"learning_rate": 0.0001692065249677965,
|
1837 |
+
"loss": 1.7285,
|
1838 |
+
"step": 259
|
1839 |
+
},
|
1840 |
+
{
|
1841 |
+
"epoch": 0.5303416624171341,
|
1842 |
+
"grad_norm": 0.3099533021450043,
|
1843 |
+
"learning_rate": 0.00016897237772781044,
|
1844 |
+
"loss": 1.8461,
|
1845 |
+
"step": 260
|
1846 |
+
},
|
1847 |
+
{
|
1848 |
+
"epoch": 0.5323814380418154,
|
1849 |
+
"grad_norm": 0.2932775914669037,
|
1850 |
+
"learning_rate": 0.00016873750700021915,
|
1851 |
+
"loss": 1.869,
|
1852 |
+
"step": 261
|
1853 |
+
},
|
1854 |
+
{
|
1855 |
+
"epoch": 0.5344212136664966,
|
1856 |
+
"grad_norm": 0.2912542223930359,
|
1857 |
+
"learning_rate": 0.00016850191524870546,
|
1858 |
+
"loss": 1.7672,
|
1859 |
+
"step": 262
|
1860 |
+
},
|
1861 |
+
{
|
1862 |
+
"epoch": 0.536460989291178,
|
1863 |
+
"grad_norm": 0.33142998814582825,
|
1864 |
+
"learning_rate": 0.00016826560494451537,
|
1865 |
+
"loss": 1.8723,
|
1866 |
+
"step": 263
|
1867 |
+
},
|
1868 |
+
{
|
1869 |
+
"epoch": 0.5385007649158593,
|
1870 |
+
"grad_norm": 0.26213347911834717,
|
1871 |
+
"learning_rate": 0.00016802857856643215,
|
1872 |
+
"loss": 1.6971,
|
1873 |
+
"step": 264
|
1874 |
+
},
|
1875 |
+
{
|
1876 |
+
"epoch": 0.5405405405405406,
|
1877 |
+
"grad_norm": 0.2854675352573395,
|
1878 |
+
"learning_rate": 0.00016779083860075033,
|
1879 |
+
"loss": 1.8517,
|
1880 |
+
"step": 265
|
1881 |
+
},
|
1882 |
+
{
|
1883 |
+
"epoch": 0.5425803161652218,
|
1884 |
+
"grad_norm": 0.3256230354309082,
|
1885 |
+
"learning_rate": 0.00016755238754124965,
|
1886 |
+
"loss": 1.9159,
|
1887 |
+
"step": 266
|
1888 |
+
},
|
1889 |
+
{
|
1890 |
+
"epoch": 0.5446200917899031,
|
1891 |
+
"grad_norm": 0.30096253752708435,
|
1892 |
+
"learning_rate": 0.00016731322788916892,
|
1893 |
+
"loss": 1.7229,
|
1894 |
+
"step": 267
|
1895 |
+
},
|
1896 |
+
{
|
1897 |
+
"epoch": 0.5466598674145844,
|
1898 |
+
"grad_norm": 0.2952723801136017,
|
1899 |
+
"learning_rate": 0.00016707336215317968,
|
1900 |
+
"loss": 1.8191,
|
1901 |
+
"step": 268
|
1902 |
+
},
|
1903 |
+
{
|
1904 |
+
"epoch": 0.5486996430392657,
|
1905 |
+
"grad_norm": 0.32182615995407104,
|
1906 |
+
"learning_rate": 0.00016683279284936004,
|
1907 |
+
"loss": 1.9188,
|
1908 |
+
"step": 269
|
1909 |
+
},
|
1910 |
+
{
|
1911 |
+
"epoch": 0.5507394186639469,
|
1912 |
+
"grad_norm": 0.3065682351589203,
|
1913 |
+
"learning_rate": 0.00016659152250116812,
|
1914 |
+
"loss": 1.5902,
|
1915 |
+
"step": 270
|
1916 |
+
},
|
1917 |
+
{
|
1918 |
+
"epoch": 0.5527791942886282,
|
1919 |
+
"grad_norm": 0.27141043543815613,
|
1920 |
+
"learning_rate": 0.00016634955363941574,
|
1921 |
+
"loss": 1.705,
|
1922 |
+
"step": 271
|
1923 |
+
},
|
1924 |
+
{
|
1925 |
+
"epoch": 0.5548189699133096,
|
1926 |
+
"grad_norm": 0.3703926205635071,
|
1927 |
+
"learning_rate": 0.00016610688880224178,
|
1928 |
+
"loss": 1.9515,
|
1929 |
+
"step": 272
|
1930 |
+
},
|
1931 |
+
{
|
1932 |
+
"epoch": 0.5568587455379909,
|
1933 |
+
"grad_norm": 0.3434322476387024,
|
1934 |
+
"learning_rate": 0.0001658635305350855,
|
1935 |
+
"loss": 1.6887,
|
1936 |
+
"step": 273
|
1937 |
+
},
|
1938 |
+
{
|
1939 |
+
"epoch": 0.5588985211626721,
|
1940 |
+
"grad_norm": 0.2847291827201843,
|
1941 |
+
"learning_rate": 0.00016561948139065996,
|
1942 |
+
"loss": 2.0415,
|
1943 |
+
"step": 274
|
1944 |
+
},
|
1945 |
+
{
|
1946 |
+
"epoch": 0.5609382967873534,
|
1947 |
+
"grad_norm": 0.27591603994369507,
|
1948 |
+
"learning_rate": 0.00016537474392892528,
|
1949 |
+
"loss": 1.8893,
|
1950 |
+
"step": 275
|
1951 |
+
},
|
1952 |
+
{
|
1953 |
+
"epoch": 0.5629780724120347,
|
1954 |
+
"grad_norm": 0.32474270462989807,
|
1955 |
+
"learning_rate": 0.00016512932071706152,
|
1956 |
+
"loss": 1.8589,
|
1957 |
+
"step": 276
|
1958 |
+
},
|
1959 |
+
{
|
1960 |
+
"epoch": 0.565017848036716,
|
1961 |
+
"grad_norm": 0.33138149976730347,
|
1962 |
+
"learning_rate": 0.0001648832143294422,
|
1963 |
+
"loss": 1.7978,
|
1964 |
+
"step": 277
|
1965 |
+
},
|
1966 |
+
{
|
1967 |
+
"epoch": 0.5670576236613972,
|
1968 |
+
"grad_norm": 0.321053683757782,
|
1969 |
+
"learning_rate": 0.0001646364273476067,
|
1970 |
+
"loss": 1.911,
|
1971 |
+
"step": 278
|
1972 |
+
},
|
1973 |
+
{
|
1974 |
+
"epoch": 0.5690973992860785,
|
1975 |
+
"grad_norm": 0.313310444355011,
|
1976 |
+
"learning_rate": 0.00016438896236023375,
|
1977 |
+
"loss": 1.7816,
|
1978 |
+
"step": 279
|
1979 |
+
},
|
1980 |
+
{
|
1981 |
+
"epoch": 0.5711371749107598,
|
1982 |
+
"grad_norm": 0.2893736958503723,
|
1983 |
+
"learning_rate": 0.000164140821963114,
|
1984 |
+
"loss": 1.7197,
|
1985 |
+
"step": 280
|
1986 |
+
},
|
1987 |
+
{
|
1988 |
+
"epoch": 0.5731769505354412,
|
1989 |
+
"grad_norm": 0.3043624758720398,
|
1990 |
+
"learning_rate": 0.00016389200875912278,
|
1991 |
+
"loss": 1.7415,
|
1992 |
+
"step": 281
|
1993 |
+
},
|
1994 |
+
{
|
1995 |
+
"epoch": 0.5752167261601224,
|
1996 |
+
"grad_norm": 0.29861506819725037,
|
1997 |
+
"learning_rate": 0.00016364252535819282,
|
1998 |
+
"loss": 1.7317,
|
1999 |
+
"step": 282
|
2000 |
+
},
|
2001 |
+
{
|
2002 |
+
"epoch": 0.5772565017848037,
|
2003 |
+
"grad_norm": 0.3631903827190399,
|
2004 |
+
"learning_rate": 0.000163392374377287,
|
2005 |
+
"loss": 1.8116,
|
2006 |
+
"step": 283
|
2007 |
+
},
|
2008 |
+
{
|
2009 |
+
"epoch": 0.579296277409485,
|
2010 |
+
"grad_norm": 0.32387158274650574,
|
2011 |
+
"learning_rate": 0.00016314155844037074,
|
2012 |
+
"loss": 1.8652,
|
2013 |
+
"step": 284
|
2014 |
+
},
|
2015 |
+
{
|
2016 |
+
"epoch": 0.5813360530341662,
|
2017 |
+
"grad_norm": 0.3442007899284363,
|
2018 |
+
"learning_rate": 0.00016289008017838445,
|
2019 |
+
"loss": 2.0466,
|
2020 |
+
"step": 285
|
2021 |
+
},
|
2022 |
+
{
|
2023 |
+
"epoch": 0.5833758286588475,
|
2024 |
+
"grad_norm": 0.3226166367530823,
|
2025 |
+
"learning_rate": 0.0001626379422292162,
|
2026 |
+
"loss": 1.8803,
|
2027 |
+
"step": 286
|
2028 |
+
},
|
2029 |
+
{
|
2030 |
+
"epoch": 0.5854156042835288,
|
2031 |
+
"grad_norm": 0.2765788733959198,
|
2032 |
+
"learning_rate": 0.00016238514723767374,
|
2033 |
+
"loss": 1.8048,
|
2034 |
+
"step": 287
|
2035 |
+
},
|
2036 |
+
{
|
2037 |
+
"epoch": 0.5874553799082101,
|
2038 |
+
"grad_norm": 0.26808875799179077,
|
2039 |
+
"learning_rate": 0.0001621316978554569,
|
2040 |
+
"loss": 1.9358,
|
2041 |
+
"step": 288
|
2042 |
+
},
|
2043 |
+
{
|
2044 |
+
"epoch": 0.5894951555328913,
|
2045 |
+
"grad_norm": 0.34248560667037964,
|
2046 |
+
"learning_rate": 0.00016187759674112973,
|
2047 |
+
"loss": 1.7614,
|
2048 |
+
"step": 289
|
2049 |
+
},
|
2050 |
+
{
|
2051 |
+
"epoch": 0.5915349311575727,
|
2052 |
+
"grad_norm": 0.3485107123851776,
|
2053 |
+
"learning_rate": 0.00016162284656009274,
|
2054 |
+
"loss": 1.7487,
|
2055 |
+
"step": 290
|
2056 |
+
},
|
2057 |
+
{
|
2058 |
+
"epoch": 0.593574706782254,
|
2059 |
+
"grad_norm": 0.31153398752212524,
|
2060 |
+
"learning_rate": 0.00016136744998455476,
|
2061 |
+
"loss": 2.0895,
|
2062 |
+
"step": 291
|
2063 |
+
},
|
2064 |
+
{
|
2065 |
+
"epoch": 0.5956144824069353,
|
2066 |
+
"grad_norm": 0.3104468584060669,
|
2067 |
+
"learning_rate": 0.00016111140969350503,
|
2068 |
+
"loss": 1.6566,
|
2069 |
+
"step": 292
|
2070 |
+
},
|
2071 |
+
{
|
2072 |
+
"epoch": 0.5976542580316165,
|
2073 |
+
"grad_norm": 0.32697245478630066,
|
2074 |
+
"learning_rate": 0.00016085472837268502,
|
2075 |
+
"loss": 1.7631,
|
2076 |
+
"step": 293
|
2077 |
+
},
|
2078 |
+
{
|
2079 |
+
"epoch": 0.5996940336562978,
|
2080 |
+
"grad_norm": 0.3330870270729065,
|
2081 |
+
"learning_rate": 0.00016059740871456036,
|
2082 |
+
"loss": 1.6047,
|
2083 |
+
"step": 294
|
2084 |
+
},
|
2085 |
+
{
|
2086 |
+
"epoch": 0.6017338092809791,
|
2087 |
+
"grad_norm": 0.3144790828227997,
|
2088 |
+
"learning_rate": 0.00016033945341829248,
|
2089 |
+
"loss": 1.5975,
|
2090 |
+
"step": 295
|
2091 |
+
},
|
2092 |
+
{
|
2093 |
+
"epoch": 0.6037735849056604,
|
2094 |
+
"grad_norm": 0.32482099533081055,
|
2095 |
+
"learning_rate": 0.00016008086518971037,
|
2096 |
+
"loss": 1.9879,
|
2097 |
+
"step": 296
|
2098 |
+
},
|
2099 |
+
{
|
2100 |
+
"epoch": 0.6058133605303416,
|
2101 |
+
"grad_norm": 0.320336252450943,
|
2102 |
+
"learning_rate": 0.0001598216467412822,
|
2103 |
+
"loss": 1.9723,
|
2104 |
+
"step": 297
|
2105 |
+
},
|
2106 |
+
{
|
2107 |
+
"epoch": 0.6078531361550229,
|
2108 |
+
"grad_norm": 0.2934703528881073,
|
2109 |
+
"learning_rate": 0.00015956180079208682,
|
2110 |
+
"loss": 1.7771,
|
2111 |
+
"step": 298
|
2112 |
+
},
|
2113 |
+
{
|
2114 |
+
"epoch": 0.6098929117797043,
|
2115 |
+
"grad_norm": 0.3081587851047516,
|
2116 |
+
"learning_rate": 0.0001593013300677853,
|
2117 |
+
"loss": 1.869,
|
2118 |
+
"step": 299
|
2119 |
+
},
|
2120 |
+
{
|
2121 |
+
"epoch": 0.6119326874043856,
|
2122 |
+
"grad_norm": 0.30365437269210815,
|
2123 |
+
"learning_rate": 0.00015904023730059228,
|
2124 |
+
"loss": 1.795,
|
2125 |
+
"step": 300
|
2126 |
+
},
|
2127 |
+
{
|
2128 |
+
"epoch": 0.6139724630290668,
|
2129 |
+
"grad_norm": 0.3306022882461548,
|
2130 |
+
"learning_rate": 0.00015877852522924732,
|
2131 |
+
"loss": 1.8786,
|
2132 |
+
"step": 301
|
2133 |
+
},
|
2134 |
+
{
|
2135 |
+
"epoch": 0.6160122386537481,
|
2136 |
+
"grad_norm": 0.3081189692020416,
|
2137 |
+
"learning_rate": 0.00015851619659898623,
|
2138 |
+
"loss": 1.8389,
|
2139 |
+
"step": 302
|
2140 |
+
},
|
2141 |
+
{
|
2142 |
+
"epoch": 0.6180520142784294,
|
2143 |
+
"grad_norm": 0.3126586973667145,
|
2144 |
+
"learning_rate": 0.00015825325416151222,
|
2145 |
+
"loss": 1.8404,
|
2146 |
+
"step": 303
|
2147 |
+
},
|
2148 |
+
{
|
2149 |
+
"epoch": 0.6200917899031106,
|
2150 |
+
"grad_norm": 0.2832873463630676,
|
2151 |
+
"learning_rate": 0.000157989700674967,
|
2152 |
+
"loss": 1.9894,
|
2153 |
+
"step": 304
|
2154 |
+
},
|
2155 |
+
{
|
2156 |
+
"epoch": 0.6221315655277919,
|
2157 |
+
"grad_norm": 0.3080177903175354,
|
2158 |
+
"learning_rate": 0.00015772553890390197,
|
2159 |
+
"loss": 1.9813,
|
2160 |
+
"step": 305
|
2161 |
+
},
|
2162 |
+
{
|
2163 |
+
"epoch": 0.6241713411524732,
|
2164 |
+
"grad_norm": 0.30326464772224426,
|
2165 |
+
"learning_rate": 0.00015746077161924905,
|
2166 |
+
"loss": 1.7597,
|
2167 |
+
"step": 306
|
2168 |
+
},
|
2169 |
+
{
|
2170 |
+
"epoch": 0.6262111167771545,
|
2171 |
+
"grad_norm": 0.3071492910385132,
|
2172 |
+
"learning_rate": 0.00015719540159829184,
|
2173 |
+
"loss": 1.8149,
|
2174 |
+
"step": 307
|
2175 |
+
},
|
2176 |
+
{
|
2177 |
+
"epoch": 0.6282508924018358,
|
2178 |
+
"grad_norm": 0.3333245515823364,
|
2179 |
+
"learning_rate": 0.00015692943162463628,
|
2180 |
+
"loss": 1.9806,
|
2181 |
+
"step": 308
|
2182 |
+
},
|
2183 |
+
{
|
2184 |
+
"epoch": 0.6302906680265171,
|
2185 |
+
"grad_norm": 0.2858702838420868,
|
2186 |
+
"learning_rate": 0.0001566628644881815,
|
2187 |
+
"loss": 1.7616,
|
2188 |
+
"step": 309
|
2189 |
+
},
|
2190 |
+
{
|
2191 |
+
"epoch": 0.6323304436511984,
|
2192 |
+
"grad_norm": 0.27514535188674927,
|
2193 |
+
"learning_rate": 0.00015639570298509064,
|
2194 |
+
"loss": 1.7516,
|
2195 |
+
"step": 310
|
2196 |
+
},
|
2197 |
+
{
|
2198 |
+
"epoch": 0.6343702192758797,
|
2199 |
+
"grad_norm": 0.29323917627334595,
|
2200 |
+
"learning_rate": 0.00015612794991776147,
|
2201 |
+
"loss": 1.8444,
|
2202 |
+
"step": 311
|
2203 |
+
},
|
2204 |
+
{
|
2205 |
+
"epoch": 0.6364099949005609,
|
2206 |
+
"grad_norm": 0.3227652907371521,
|
2207 |
+
"learning_rate": 0.00015585960809479696,
|
2208 |
+
"loss": 1.8715,
|
2209 |
+
"step": 312
|
2210 |
+
},
|
2211 |
+
{
|
2212 |
+
"epoch": 0.6384497705252422,
|
2213 |
+
"grad_norm": 0.2898751497268677,
|
2214 |
+
"learning_rate": 0.00015559068033097582,
|
2215 |
+
"loss": 1.9242,
|
2216 |
+
"step": 313
|
2217 |
+
},
|
2218 |
+
{
|
2219 |
+
"epoch": 0.6404895461499235,
|
2220 |
+
"grad_norm": 0.2990049421787262,
|
2221 |
+
"learning_rate": 0.00015532116944722308,
|
2222 |
+
"loss": 1.7412,
|
2223 |
+
"step": 314
|
2224 |
+
},
|
2225 |
+
{
|
2226 |
+
"epoch": 0.6425293217746048,
|
2227 |
+
"grad_norm": 0.28128162026405334,
|
2228 |
+
"learning_rate": 0.00015505107827058036,
|
2229 |
+
"loss": 1.7801,
|
2230 |
+
"step": 315
|
2231 |
+
},
|
2232 |
+
{
|
2233 |
+
"epoch": 0.644569097399286,
|
2234 |
+
"grad_norm": 0.32478880882263184,
|
2235 |
+
"learning_rate": 0.0001547804096341763,
|
2236 |
+
"loss": 1.681,
|
2237 |
+
"step": 316
|
2238 |
+
},
|
2239 |
+
{
|
2240 |
+
"epoch": 0.6466088730239674,
|
2241 |
+
"grad_norm": 0.31724509596824646,
|
2242 |
+
"learning_rate": 0.00015450916637719684,
|
2243 |
+
"loss": 1.9405,
|
2244 |
+
"step": 317
|
2245 |
+
},
|
2246 |
+
{
|
2247 |
+
"epoch": 0.6486486486486487,
|
2248 |
+
"grad_norm": 0.36439332365989685,
|
2249 |
+
"learning_rate": 0.00015423735134485536,
|
2250 |
+
"loss": 1.7013,
|
2251 |
+
"step": 318
|
2252 |
+
},
|
2253 |
+
{
|
2254 |
+
"epoch": 0.65068842427333,
|
2255 |
+
"grad_norm": 0.3085692226886749,
|
2256 |
+
"learning_rate": 0.00015396496738836292,
|
2257 |
+
"loss": 1.7641,
|
2258 |
+
"step": 319
|
2259 |
+
},
|
2260 |
+
{
|
2261 |
+
"epoch": 0.6527281998980112,
|
2262 |
+
"grad_norm": 0.2774830758571625,
|
2263 |
+
"learning_rate": 0.0001536920173648984,
|
2264 |
+
"loss": 1.6727,
|
2265 |
+
"step": 320
|
2266 |
+
},
|
2267 |
+
{
|
2268 |
+
"epoch": 0.6547679755226925,
|
2269 |
+
"grad_norm": 0.3212391138076782,
|
2270 |
+
"learning_rate": 0.0001534185041375783,
|
2271 |
+
"loss": 1.7221,
|
2272 |
+
"step": 321
|
2273 |
+
},
|
2274 |
+
{
|
2275 |
+
"epoch": 0.6568077511473738,
|
2276 |
+
"grad_norm": 0.30237263441085815,
|
2277 |
+
"learning_rate": 0.00015314443057542703,
|
2278 |
+
"loss": 1.7456,
|
2279 |
+
"step": 322
|
2280 |
+
},
|
2281 |
+
{
|
2282 |
+
"epoch": 0.658847526772055,
|
2283 |
+
"grad_norm": 0.2800453305244446,
|
2284 |
+
"learning_rate": 0.00015286979955334652,
|
2285 |
+
"loss": 1.7978,
|
2286 |
+
"step": 323
|
2287 |
+
},
|
2288 |
+
{
|
2289 |
+
"epoch": 0.6608873023967363,
|
2290 |
+
"grad_norm": 0.28402194380760193,
|
2291 |
+
"learning_rate": 0.00015259461395208628,
|
2292 |
+
"loss": 1.8785,
|
2293 |
+
"step": 324
|
2294 |
+
},
|
2295 |
+
{
|
2296 |
+
"epoch": 0.6629270780214176,
|
2297 |
+
"grad_norm": 0.3377262353897095,
|
2298 |
+
"learning_rate": 0.000152318876658213,
|
2299 |
+
"loss": 1.7113,
|
2300 |
+
"step": 325
|
2301 |
+
},
|
2302 |
+
{
|
2303 |
+
"epoch": 0.664966853646099,
|
2304 |
+
"grad_norm": 0.376544326543808,
|
2305 |
+
"learning_rate": 0.00015204259056408046,
|
2306 |
+
"loss": 1.6237,
|
2307 |
+
"step": 326
|
2308 |
+
},
|
2309 |
+
{
|
2310 |
+
"epoch": 0.6670066292707802,
|
2311 |
+
"grad_norm": 0.3138863742351532,
|
2312 |
+
"learning_rate": 0.00015176575856779904,
|
2313 |
+
"loss": 1.8357,
|
2314 |
+
"step": 327
|
2315 |
+
},
|
2316 |
+
{
|
2317 |
+
"epoch": 0.6690464048954615,
|
2318 |
+
"grad_norm": 0.40277865529060364,
|
2319 |
+
"learning_rate": 0.00015148838357320537,
|
2320 |
+
"loss": 1.9038,
|
2321 |
+
"step": 328
|
2322 |
+
},
|
2323 |
+
{
|
2324 |
+
"epoch": 0.6710861805201428,
|
2325 |
+
"grad_norm": 0.2998698055744171,
|
2326 |
+
"learning_rate": 0.0001512104684898319,
|
2327 |
+
"loss": 1.7583,
|
2328 |
+
"step": 329
|
2329 |
+
},
|
2330 |
+
{
|
2331 |
+
"epoch": 0.6731259561448241,
|
2332 |
+
"grad_norm": 0.33020147681236267,
|
2333 |
+
"learning_rate": 0.00015093201623287631,
|
2334 |
+
"loss": 1.7446,
|
2335 |
+
"step": 330
|
2336 |
+
},
|
2337 |
+
{
|
2338 |
+
"epoch": 0.6751657317695053,
|
2339 |
+
"grad_norm": 0.3545725643634796,
|
2340 |
+
"learning_rate": 0.00015065302972317108,
|
2341 |
+
"loss": 1.8882,
|
2342 |
+
"step": 331
|
2343 |
+
},
|
2344 |
+
{
|
2345 |
+
"epoch": 0.6772055073941866,
|
2346 |
+
"grad_norm": 0.2989177107810974,
|
2347 |
+
"learning_rate": 0.00015037351188715265,
|
2348 |
+
"loss": 1.7751,
|
2349 |
+
"step": 332
|
2350 |
+
},
|
2351 |
+
{
|
2352 |
+
"epoch": 0.6792452830188679,
|
2353 |
+
"grad_norm": 0.3225865662097931,
|
2354 |
+
"learning_rate": 0.00015009346565683087,
|
2355 |
+
"loss": 1.8539,
|
2356 |
+
"step": 333
|
2357 |
+
},
|
2358 |
+
{
|
2359 |
+
"epoch": 0.6812850586435492,
|
2360 |
+
"grad_norm": 0.31957486271858215,
|
2361 |
+
"learning_rate": 0.00014981289396975817,
|
2362 |
+
"loss": 1.6078,
|
2363 |
+
"step": 334
|
2364 |
+
},
|
2365 |
+
{
|
2366 |
+
"epoch": 0.6833248342682305,
|
2367 |
+
"grad_norm": 0.323512464761734,
|
2368 |
+
"learning_rate": 0.00014953179976899878,
|
2369 |
+
"loss": 1.9539,
|
2370 |
+
"step": 335
|
2371 |
+
},
|
2372 |
+
{
|
2373 |
+
"epoch": 0.6853646098929118,
|
2374 |
+
"grad_norm": 0.3451762795448303,
|
2375 |
+
"learning_rate": 0.00014925018600309785,
|
2376 |
+
"loss": 1.8435,
|
2377 |
+
"step": 336
|
2378 |
+
},
|
2379 |
+
{
|
2380 |
+
"epoch": 0.6874043855175931,
|
2381 |
+
"grad_norm": 0.3474057614803314,
|
2382 |
+
"learning_rate": 0.0001489680556260505,
|
2383 |
+
"loss": 1.8385,
|
2384 |
+
"step": 337
|
2385 |
+
},
|
2386 |
+
{
|
2387 |
+
"epoch": 0.6894441611422744,
|
2388 |
+
"grad_norm": 0.3119589686393738,
|
2389 |
+
"learning_rate": 0.00014868541159727096,
|
2390 |
+
"loss": 1.7582,
|
2391 |
+
"step": 338
|
2392 |
+
},
|
2393 |
+
{
|
2394 |
+
"epoch": 0.6914839367669556,
|
2395 |
+
"grad_norm": 0.3289264738559723,
|
2396 |
+
"learning_rate": 0.0001484022568815613,
|
2397 |
+
"loss": 1.8391,
|
2398 |
+
"step": 339
|
2399 |
+
},
|
2400 |
+
{
|
2401 |
+
"epoch": 0.6935237123916369,
|
2402 |
+
"grad_norm": 0.32644519209861755,
|
2403 |
+
"learning_rate": 0.00014811859444908052,
|
2404 |
+
"loss": 1.7676,
|
2405 |
+
"step": 340
|
2406 |
+
},
|
2407 |
+
{
|
2408 |
+
"epoch": 0.6955634880163182,
|
2409 |
+
"grad_norm": 0.2529926002025604,
|
2410 |
+
"learning_rate": 0.00014783442727531328,
|
2411 |
+
"loss": 1.6483,
|
2412 |
+
"step": 341
|
2413 |
+
},
|
2414 |
+
{
|
2415 |
+
"epoch": 0.6976032636409994,
|
2416 |
+
"grad_norm": 0.39409515261650085,
|
2417 |
+
"learning_rate": 0.00014754975834103877,
|
2418 |
+
"loss": 1.8951,
|
2419 |
+
"step": 342
|
2420 |
+
},
|
2421 |
+
{
|
2422 |
+
"epoch": 0.6996430392656807,
|
2423 |
+
"grad_norm": 0.312379390001297,
|
2424 |
+
"learning_rate": 0.00014726459063229945,
|
2425 |
+
"loss": 1.8388,
|
2426 |
+
"step": 343
|
2427 |
+
},
|
2428 |
+
{
|
2429 |
+
"epoch": 0.7016828148903621,
|
2430 |
+
"grad_norm": 0.3048081696033478,
|
2431 |
+
"learning_rate": 0.00014697892714036958,
|
2432 |
+
"loss": 1.9482,
|
2433 |
+
"step": 344
|
2434 |
+
},
|
2435 |
+
{
|
2436 |
+
"epoch": 0.7037225905150434,
|
2437 |
+
"grad_norm": 0.37214845418930054,
|
2438 |
+
"learning_rate": 0.00014669277086172406,
|
2439 |
+
"loss": 1.8466,
|
2440 |
+
"step": 345
|
2441 |
+
},
|
2442 |
+
{
|
2443 |
+
"epoch": 0.7057623661397247,
|
2444 |
+
"grad_norm": 0.3273617923259735,
|
2445 |
+
"learning_rate": 0.00014640612479800686,
|
2446 |
+
"loss": 1.5934,
|
2447 |
+
"step": 346
|
2448 |
+
},
|
2449 |
+
{
|
2450 |
+
"epoch": 0.7078021417644059,
|
2451 |
+
"grad_norm": 0.3283670246601105,
|
2452 |
+
"learning_rate": 0.00014611899195599953,
|
2453 |
+
"loss": 1.7837,
|
2454 |
+
"step": 347
|
2455 |
+
},
|
2456 |
+
{
|
2457 |
+
"epoch": 0.7098419173890872,
|
2458 |
+
"grad_norm": 0.38148233294487,
|
2459 |
+
"learning_rate": 0.00014583137534758967,
|
2460 |
+
"loss": 1.8952,
|
2461 |
+
"step": 348
|
2462 |
+
},
|
2463 |
+
{
|
2464 |
+
"epoch": 0.7118816930137685,
|
2465 |
+
"grad_norm": 0.35573315620422363,
|
2466 |
+
"learning_rate": 0.0001455432779897395,
|
2467 |
+
"loss": 1.6698,
|
2468 |
+
"step": 349
|
2469 |
+
},
|
2470 |
+
{
|
2471 |
+
"epoch": 0.7139214686384497,
|
2472 |
+
"grad_norm": 0.362224280834198,
|
2473 |
+
"learning_rate": 0.00014525470290445392,
|
2474 |
+
"loss": 1.7698,
|
2475 |
+
"step": 350
|
2476 |
+
},
|
2477 |
+
{
|
2478 |
+
"epoch": 0.715961244263131,
|
2479 |
+
"grad_norm": 0.3312818706035614,
|
2480 |
+
"learning_rate": 0.00014496565311874902,
|
2481 |
+
"loss": 1.7951,
|
2482 |
+
"step": 351
|
2483 |
+
},
|
2484 |
+
{
|
2485 |
+
"epoch": 0.7180010198878123,
|
2486 |
+
"grad_norm": 0.3737257719039917,
|
2487 |
+
"learning_rate": 0.00014467613166462023,
|
2488 |
+
"loss": 1.9562,
|
2489 |
+
"step": 352
|
2490 |
+
},
|
2491 |
+
{
|
2492 |
+
"epoch": 0.7200407955124937,
|
2493 |
+
"grad_norm": 0.37132444977760315,
|
2494 |
+
"learning_rate": 0.0001443861415790107,
|
2495 |
+
"loss": 1.9022,
|
2496 |
+
"step": 353
|
2497 |
+
},
|
2498 |
+
{
|
2499 |
+
"epoch": 0.7220805711371749,
|
2500 |
+
"grad_norm": 0.30398017168045044,
|
2501 |
+
"learning_rate": 0.00014409568590377918,
|
2502 |
+
"loss": 2.0578,
|
2503 |
+
"step": 354
|
2504 |
+
},
|
2505 |
+
{
|
2506 |
+
"epoch": 0.7241203467618562,
|
2507 |
+
"grad_norm": 0.3135487139225006,
|
2508 |
+
"learning_rate": 0.00014380476768566824,
|
2509 |
+
"loss": 1.777,
|
2510 |
+
"step": 355
|
2511 |
+
},
|
2512 |
+
{
|
2513 |
+
"epoch": 0.7261601223865375,
|
2514 |
+
"grad_norm": 0.3089943826198578,
|
2515 |
+
"learning_rate": 0.00014351338997627234,
|
2516 |
+
"loss": 1.638,
|
2517 |
+
"step": 356
|
2518 |
+
},
|
2519 |
+
{
|
2520 |
+
"epoch": 0.7281998980112188,
|
2521 |
+
"grad_norm": 0.2791310250759125,
|
2522 |
+
"learning_rate": 0.00014322155583200576,
|
2523 |
+
"loss": 1.7786,
|
2524 |
+
"step": 357
|
2525 |
+
},
|
2526 |
+
{
|
2527 |
+
"epoch": 0.7302396736359,
|
2528 |
+
"grad_norm": 0.30986955761909485,
|
2529 |
+
"learning_rate": 0.00014292926831407061,
|
2530 |
+
"loss": 1.7467,
|
2531 |
+
"step": 358
|
2532 |
+
},
|
2533 |
+
{
|
2534 |
+
"epoch": 0.7322794492605813,
|
2535 |
+
"grad_norm": 0.29783159494400024,
|
2536 |
+
"learning_rate": 0.0001426365304884246,
|
2537 |
+
"loss": 1.6486,
|
2538 |
+
"step": 359
|
2539 |
+
},
|
2540 |
+
{
|
2541 |
+
"epoch": 0.7343192248852626,
|
2542 |
+
"grad_norm": 0.29579076170921326,
|
2543 |
+
"learning_rate": 0.00014234334542574906,
|
2544 |
+
"loss": 1.665,
|
2545 |
+
"step": 360
|
2546 |
+
},
|
2547 |
+
{
|
2548 |
+
"epoch": 0.7363590005099439,
|
2549 |
+
"grad_norm": 0.31017670035362244,
|
2550 |
+
"learning_rate": 0.00014204971620141647,
|
2551 |
+
"loss": 1.7287,
|
2552 |
+
"step": 361
|
2553 |
+
},
|
2554 |
+
{
|
2555 |
+
"epoch": 0.7383987761346252,
|
2556 |
+
"grad_norm": 0.34222882986068726,
|
2557 |
+
"learning_rate": 0.00014175564589545854,
|
2558 |
+
"loss": 1.7475,
|
2559 |
+
"step": 362
|
2560 |
+
},
|
2561 |
+
{
|
2562 |
+
"epoch": 0.7404385517593065,
|
2563 |
+
"grad_norm": 0.2956671714782715,
|
2564 |
+
"learning_rate": 0.00014146113759253362,
|
2565 |
+
"loss": 1.757,
|
2566 |
+
"step": 363
|
2567 |
+
},
|
2568 |
+
{
|
2569 |
+
"epoch": 0.7424783273839878,
|
2570 |
+
"grad_norm": 0.35265278816223145,
|
2571 |
+
"learning_rate": 0.0001411661943818944,
|
2572 |
+
"loss": 1.6731,
|
2573 |
+
"step": 364
|
2574 |
+
},
|
2575 |
+
{
|
2576 |
+
"epoch": 0.744518103008669,
|
2577 |
+
"grad_norm": 0.3606823682785034,
|
2578 |
+
"learning_rate": 0.00014087081935735564,
|
2579 |
+
"loss": 1.8684,
|
2580 |
+
"step": 365
|
2581 |
+
},
|
2582 |
+
{
|
2583 |
+
"epoch": 0.7465578786333503,
|
2584 |
+
"grad_norm": 0.27310827374458313,
|
2585 |
+
"learning_rate": 0.00014057501561726157,
|
2586 |
+
"loss": 1.7656,
|
2587 |
+
"step": 366
|
2588 |
+
},
|
2589 |
+
{
|
2590 |
+
"epoch": 0.7485976542580316,
|
2591 |
+
"grad_norm": 0.3064682185649872,
|
2592 |
+
"learning_rate": 0.0001402787862644534,
|
2593 |
+
"loss": 1.7646,
|
2594 |
+
"step": 367
|
2595 |
+
},
|
2596 |
+
{
|
2597 |
+
"epoch": 0.7506374298827129,
|
2598 |
+
"grad_norm": 0.40648531913757324,
|
2599 |
+
"learning_rate": 0.0001399821344062369,
|
2600 |
+
"loss": 1.672,
|
2601 |
+
"step": 368
|
2602 |
+
},
|
2603 |
+
{
|
2604 |
+
"epoch": 0.7526772055073941,
|
2605 |
+
"grad_norm": 0.28727683424949646,
|
2606 |
+
"learning_rate": 0.00013968506315434974,
|
2607 |
+
"loss": 1.5766,
|
2608 |
+
"step": 369
|
2609 |
+
},
|
2610 |
+
{
|
2611 |
+
"epoch": 0.7547169811320755,
|
2612 |
+
"grad_norm": 0.30638012290000916,
|
2613 |
+
"learning_rate": 0.00013938757562492873,
|
2614 |
+
"loss": 1.6456,
|
2615 |
+
"step": 370
|
2616 |
+
},
|
2617 |
+
{
|
2618 |
+
"epoch": 0.7567567567567568,
|
2619 |
+
"grad_norm": 0.3163774311542511,
|
2620 |
+
"learning_rate": 0.0001390896749384773,
|
2621 |
+
"loss": 1.8618,
|
2622 |
+
"step": 371
|
2623 |
+
},
|
2624 |
+
{
|
2625 |
+
"epoch": 0.7587965323814381,
|
2626 |
+
"grad_norm": 0.36798760294914246,
|
2627 |
+
"learning_rate": 0.00013879136421983266,
|
2628 |
+
"loss": 2.1013,
|
2629 |
+
"step": 372
|
2630 |
+
},
|
2631 |
+
{
|
2632 |
+
"epoch": 0.7608363080061193,
|
2633 |
+
"grad_norm": 0.30383849143981934,
|
2634 |
+
"learning_rate": 0.00013849264659813312,
|
2635 |
+
"loss": 1.7117,
|
2636 |
+
"step": 373
|
2637 |
+
},
|
2638 |
+
{
|
2639 |
+
"epoch": 0.7628760836308006,
|
2640 |
+
"grad_norm": 0.35814371705055237,
|
2641 |
+
"learning_rate": 0.0001381935252067852,
|
2642 |
+
"loss": 1.9741,
|
2643 |
+
"step": 374
|
2644 |
+
},
|
2645 |
+
{
|
2646 |
+
"epoch": 0.7649158592554819,
|
2647 |
+
"grad_norm": 0.29710692167282104,
|
2648 |
+
"learning_rate": 0.00013789400318343068,
|
2649 |
+
"loss": 1.5538,
|
2650 |
+
"step": 375
|
2651 |
+
},
|
2652 |
+
{
|
2653 |
+
"epoch": 0.7669556348801632,
|
2654 |
+
"grad_norm": 0.30160966515541077,
|
2655 |
+
"learning_rate": 0.0001375940836699139,
|
2656 |
+
"loss": 1.7604,
|
2657 |
+
"step": 376
|
2658 |
+
},
|
2659 |
+
{
|
2660 |
+
"epoch": 0.7689954105048444,
|
2661 |
+
"grad_norm": 0.28164952993392944,
|
2662 |
+
"learning_rate": 0.0001372937698122487,
|
2663 |
+
"loss": 1.736,
|
2664 |
+
"step": 377
|
2665 |
+
},
|
2666 |
+
{
|
2667 |
+
"epoch": 0.7710351861295257,
|
2668 |
+
"grad_norm": 0.293729692697525,
|
2669 |
+
"learning_rate": 0.0001369930647605852,
|
2670 |
+
"loss": 1.9099,
|
2671 |
+
"step": 378
|
2672 |
+
},
|
2673 |
+
{
|
2674 |
+
"epoch": 0.7730749617542071,
|
2675 |
+
"grad_norm": 0.28284940123558044,
|
2676 |
+
"learning_rate": 0.00013669197166917723,
|
2677 |
+
"loss": 1.7251,
|
2678 |
+
"step": 379
|
2679 |
+
},
|
2680 |
+
{
|
2681 |
+
"epoch": 0.7751147373788884,
|
2682 |
+
"grad_norm": 0.26181384921073914,
|
2683 |
+
"learning_rate": 0.00013639049369634876,
|
2684 |
+
"loss": 1.6381,
|
2685 |
+
"step": 380
|
2686 |
+
},
|
2687 |
+
{
|
2688 |
+
"epoch": 0.7771545130035696,
|
2689 |
+
"grad_norm": 0.3301055431365967,
|
2690 |
+
"learning_rate": 0.00013608863400446113,
|
2691 |
+
"loss": 1.998,
|
2692 |
+
"step": 381
|
2693 |
+
},
|
2694 |
+
{
|
2695 |
+
"epoch": 0.7791942886282509,
|
2696 |
+
"grad_norm": 0.3116731643676758,
|
2697 |
+
"learning_rate": 0.00013578639575987958,
|
2698 |
+
"loss": 1.8277,
|
2699 |
+
"step": 382
|
2700 |
+
},
|
2701 |
+
{
|
2702 |
+
"epoch": 0.7812340642529322,
|
2703 |
+
"grad_norm": 0.30362340807914734,
|
2704 |
+
"learning_rate": 0.0001354837821329404,
|
2705 |
+
"loss": 1.888,
|
2706 |
+
"step": 383
|
2707 |
+
},
|
2708 |
+
{
|
2709 |
+
"epoch": 0.7832738398776135,
|
2710 |
+
"grad_norm": 0.29050615429878235,
|
2711 |
+
"learning_rate": 0.00013518079629791724,
|
2712 |
+
"loss": 1.7116,
|
2713 |
+
"step": 384
|
2714 |
+
},
|
2715 |
+
{
|
2716 |
+
"epoch": 0.7853136155022947,
|
2717 |
+
"grad_norm": 0.29679572582244873,
|
2718 |
+
"learning_rate": 0.00013487744143298822,
|
2719 |
+
"loss": 1.6066,
|
2720 |
+
"step": 385
|
2721 |
+
},
|
2722 |
+
{
|
2723 |
+
"epoch": 0.787353391126976,
|
2724 |
+
"grad_norm": 0.3293478488922119,
|
2725 |
+
"learning_rate": 0.0001345737207202023,
|
2726 |
+
"loss": 1.7222,
|
2727 |
+
"step": 386
|
2728 |
+
},
|
2729 |
+
{
|
2730 |
+
"epoch": 0.7893931667516573,
|
2731 |
+
"grad_norm": 0.34148016571998596,
|
2732 |
+
"learning_rate": 0.000134269637345446,
|
2733 |
+
"loss": 1.7243,
|
2734 |
+
"step": 387
|
2735 |
+
},
|
2736 |
+
{
|
2737 |
+
"epoch": 0.7914329423763387,
|
2738 |
+
"grad_norm": 0.31480157375335693,
|
2739 |
+
"learning_rate": 0.00013396519449841005,
|
2740 |
+
"loss": 1.8812,
|
2741 |
+
"step": 388
|
2742 |
+
},
|
2743 |
+
{
|
2744 |
+
"epoch": 0.7934727180010199,
|
2745 |
+
"grad_norm": 0.2998044192790985,
|
2746 |
+
"learning_rate": 0.0001336603953725559,
|
2747 |
+
"loss": 1.9205,
|
2748 |
+
"step": 389
|
2749 |
+
},
|
2750 |
+
{
|
2751 |
+
"epoch": 0.7955124936257012,
|
2752 |
+
"grad_norm": 0.33707278966903687,
|
2753 |
+
"learning_rate": 0.00013335524316508208,
|
2754 |
+
"loss": 1.9246,
|
2755 |
+
"step": 390
|
2756 |
+
},
|
2757 |
+
{
|
2758 |
+
"epoch": 0.7975522692503825,
|
2759 |
+
"grad_norm": 0.33658990263938904,
|
2760 |
+
"learning_rate": 0.00013304974107689087,
|
2761 |
+
"loss": 1.849,
|
2762 |
+
"step": 391
|
2763 |
+
},
|
2764 |
+
{
|
2765 |
+
"epoch": 0.7995920448750637,
|
2766 |
+
"grad_norm": 0.2800214886665344,
|
2767 |
+
"learning_rate": 0.00013274389231255466,
|
2768 |
+
"loss": 1.7607,
|
2769 |
+
"step": 392
|
2770 |
+
},
|
2771 |
+
{
|
2772 |
+
"epoch": 0.801631820499745,
|
2773 |
+
"grad_norm": 0.29528602957725525,
|
2774 |
+
"learning_rate": 0.00013243770008028224,
|
2775 |
+
"loss": 1.6146,
|
2776 |
+
"step": 393
|
2777 |
+
},
|
2778 |
+
{
|
2779 |
+
"epoch": 0.8036715961244263,
|
2780 |
+
"grad_norm": 0.316123902797699,
|
2781 |
+
"learning_rate": 0.00013213116759188523,
|
2782 |
+
"loss": 1.7578,
|
2783 |
+
"step": 394
|
2784 |
+
},
|
2785 |
+
{
|
2786 |
+
"epoch": 0.8057113717491076,
|
2787 |
+
"grad_norm": 0.339609295129776,
|
2788 |
+
"learning_rate": 0.0001318242980627444,
|
2789 |
+
"loss": 1.6968,
|
2790 |
+
"step": 395
|
2791 |
+
},
|
2792 |
+
{
|
2793 |
+
"epoch": 0.8077511473737888,
|
2794 |
+
"grad_norm": 0.29195457696914673,
|
2795 |
+
"learning_rate": 0.00013151709471177588,
|
2796 |
+
"loss": 1.6553,
|
2797 |
+
"step": 396
|
2798 |
+
},
|
2799 |
+
{
|
2800 |
+
"epoch": 0.8097909229984702,
|
2801 |
+
"grad_norm": 0.3093162477016449,
|
2802 |
+
"learning_rate": 0.00013120956076139746,
|
2803 |
+
"loss": 1.6833,
|
2804 |
+
"step": 397
|
2805 |
+
},
|
2806 |
+
{
|
2807 |
+
"epoch": 0.8118306986231515,
|
2808 |
+
"grad_norm": 0.343049019575119,
|
2809 |
+
"learning_rate": 0.00013090169943749476,
|
2810 |
+
"loss": 1.717,
|
2811 |
+
"step": 398
|
2812 |
+
},
|
2813 |
+
{
|
2814 |
+
"epoch": 0.8138704742478328,
|
2815 |
+
"grad_norm": 0.30858704447746277,
|
2816 |
+
"learning_rate": 0.0001305935139693874,
|
2817 |
+
"loss": 1.5495,
|
2818 |
+
"step": 399
|
2819 |
+
},
|
2820 |
+
{
|
2821 |
+
"epoch": 0.815910249872514,
|
2822 |
+
"grad_norm": 0.28386467695236206,
|
2823 |
+
"learning_rate": 0.00013028500758979506,
|
2824 |
+
"loss": 1.8721,
|
2825 |
+
"step": 400
|
2826 |
+
},
|
2827 |
+
{
|
2828 |
+
"epoch": 0.8179500254971953,
|
2829 |
+
"grad_norm": 0.3261226713657379,
|
2830 |
+
"learning_rate": 0.00012997618353480377,
|
2831 |
+
"loss": 1.7956,
|
2832 |
+
"step": 401
|
2833 |
+
},
|
2834 |
+
{
|
2835 |
+
"epoch": 0.8199898011218766,
|
2836 |
+
"grad_norm": 0.3289451003074646,
|
2837 |
+
"learning_rate": 0.00012966704504383168,
|
2838 |
+
"loss": 1.7322,
|
2839 |
+
"step": 402
|
2840 |
+
},
|
2841 |
+
{
|
2842 |
+
"epoch": 0.8220295767465579,
|
2843 |
+
"grad_norm": 0.3098496198654175,
|
2844 |
+
"learning_rate": 0.00012935759535959528,
|
2845 |
+
"loss": 1.7224,
|
2846 |
+
"step": 403
|
2847 |
+
},
|
2848 |
+
{
|
2849 |
+
"epoch": 0.8240693523712391,
|
2850 |
+
"grad_norm": 0.2830435335636139,
|
2851 |
+
"learning_rate": 0.00012904783772807533,
|
2852 |
+
"loss": 1.7597,
|
2853 |
+
"step": 404
|
2854 |
+
},
|
2855 |
+
{
|
2856 |
+
"epoch": 0.8261091279959204,
|
2857 |
+
"grad_norm": 0.3040255010128021,
|
2858 |
+
"learning_rate": 0.00012873777539848283,
|
2859 |
+
"loss": 1.8111,
|
2860 |
+
"step": 405
|
2861 |
+
},
|
2862 |
+
{
|
2863 |
+
"epoch": 0.8281489036206018,
|
2864 |
+
"grad_norm": 0.30722421407699585,
|
2865 |
+
"learning_rate": 0.00012842741162322487,
|
2866 |
+
"loss": 1.6308,
|
2867 |
+
"step": 406
|
2868 |
+
},
|
2869 |
+
{
|
2870 |
+
"epoch": 0.8301886792452831,
|
2871 |
+
"grad_norm": 0.28365135192871094,
|
2872 |
+
"learning_rate": 0.00012811674965787056,
|
2873 |
+
"loss": 1.932,
|
2874 |
+
"step": 407
|
2875 |
+
},
|
2876 |
+
{
|
2877 |
+
"epoch": 0.8322284548699643,
|
2878 |
+
"grad_norm": 0.26628825068473816,
|
2879 |
+
"learning_rate": 0.00012780579276111702,
|
2880 |
+
"loss": 1.5047,
|
2881 |
+
"step": 408
|
2882 |
+
},
|
2883 |
+
{
|
2884 |
+
"epoch": 0.8342682304946456,
|
2885 |
+
"grad_norm": 0.3449050486087799,
|
2886 |
+
"learning_rate": 0.00012749454419475487,
|
2887 |
+
"loss": 1.9364,
|
2888 |
+
"step": 409
|
2889 |
+
},
|
2890 |
+
{
|
2891 |
+
"epoch": 0.8363080061193269,
|
2892 |
+
"grad_norm": 0.2961723208427429,
|
2893 |
+
"learning_rate": 0.0001271830072236343,
|
2894 |
+
"loss": 1.6638,
|
2895 |
+
"step": 410
|
2896 |
+
},
|
2897 |
+
{
|
2898 |
+
"epoch": 0.8383477817440081,
|
2899 |
+
"grad_norm": 0.2808418273925781,
|
2900 |
+
"learning_rate": 0.00012687118511563075,
|
2901 |
+
"loss": 1.6743,
|
2902 |
+
"step": 411
|
2903 |
+
},
|
2904 |
+
{
|
2905 |
+
"epoch": 0.8403875573686894,
|
2906 |
+
"grad_norm": 0.30065590143203735,
|
2907 |
+
"learning_rate": 0.0001265590811416105,
|
2908 |
+
"loss": 1.8681,
|
2909 |
+
"step": 412
|
2910 |
+
},
|
2911 |
+
{
|
2912 |
+
"epoch": 0.8424273329933707,
|
2913 |
+
"grad_norm": 0.311669260263443,
|
2914 |
+
"learning_rate": 0.0001262466985753967,
|
2915 |
+
"loss": 1.7563,
|
2916 |
+
"step": 413
|
2917 |
+
},
|
2918 |
+
{
|
2919 |
+
"epoch": 0.844467108618052,
|
2920 |
+
"grad_norm": 0.31335267424583435,
|
2921 |
+
"learning_rate": 0.0001259340406937345,
|
2922 |
+
"loss": 1.9591,
|
2923 |
+
"step": 414
|
2924 |
+
},
|
2925 |
+
{
|
2926 |
+
"epoch": 0.8465068842427333,
|
2927 |
+
"grad_norm": 0.306470662355423,
|
2928 |
+
"learning_rate": 0.00012562111077625722,
|
2929 |
+
"loss": 1.7165,
|
2930 |
+
"step": 415
|
2931 |
+
},
|
2932 |
+
{
|
2933 |
+
"epoch": 0.8485466598674146,
|
2934 |
+
"grad_norm": 0.278089314699173,
|
2935 |
+
"learning_rate": 0.00012530791210545162,
|
2936 |
+
"loss": 1.7441,
|
2937 |
+
"step": 416
|
2938 |
+
},
|
2939 |
+
{
|
2940 |
+
"epoch": 0.8505864354920959,
|
2941 |
+
"grad_norm": 0.28886333107948303,
|
2942 |
+
"learning_rate": 0.00012499444796662353,
|
2943 |
+
"loss": 1.7301,
|
2944 |
+
"step": 417
|
2945 |
+
},
|
2946 |
+
{
|
2947 |
+
"epoch": 0.8526262111167772,
|
2948 |
+
"grad_norm": 0.31261351704597473,
|
2949 |
+
"learning_rate": 0.0001246807216478634,
|
2950 |
+
"loss": 2.062,
|
2951 |
+
"step": 418
|
2952 |
+
},
|
2953 |
+
{
|
2954 |
+
"epoch": 0.8546659867414584,
|
2955 |
+
"grad_norm": 0.3184990882873535,
|
2956 |
+
"learning_rate": 0.00012436673644001197,
|
2957 |
+
"loss": 2.0039,
|
2958 |
+
"step": 419
|
2959 |
+
},
|
2960 |
+
{
|
2961 |
+
"epoch": 0.8567057623661397,
|
2962 |
+
"grad_norm": 0.28797486424446106,
|
2963 |
+
"learning_rate": 0.00012405249563662537,
|
2964 |
+
"loss": 1.5982,
|
2965 |
+
"step": 420
|
2966 |
+
},
|
2967 |
+
{
|
2968 |
+
"epoch": 0.858745537990821,
|
2969 |
+
"grad_norm": 0.32951340079307556,
|
2970 |
+
"learning_rate": 0.00012373800253394102,
|
2971 |
+
"loss": 1.6121,
|
2972 |
+
"step": 421
|
2973 |
+
},
|
2974 |
+
{
|
2975 |
+
"epoch": 0.8607853136155023,
|
2976 |
+
"grad_norm": 0.28868240118026733,
|
2977 |
+
"learning_rate": 0.00012342326043084266,
|
2978 |
+
"loss": 1.7456,
|
2979 |
+
"step": 422
|
2980 |
+
},
|
2981 |
+
{
|
2982 |
+
"epoch": 0.8628250892401835,
|
2983 |
+
"grad_norm": 0.3051716387271881,
|
2984 |
+
"learning_rate": 0.00012310827262882615,
|
2985 |
+
"loss": 1.7698,
|
2986 |
+
"step": 423
|
2987 |
+
},
|
2988 |
+
{
|
2989 |
+
"epoch": 0.8648648648648649,
|
2990 |
+
"grad_norm": 0.3326285183429718,
|
2991 |
+
"learning_rate": 0.00012279304243196436,
|
2992 |
+
"loss": 1.7834,
|
2993 |
+
"step": 424
|
2994 |
+
},
|
2995 |
+
{
|
2996 |
+
"epoch": 0.8669046404895462,
|
2997 |
+
"grad_norm": 0.3435324430465698,
|
2998 |
+
"learning_rate": 0.00012247757314687297,
|
2999 |
+
"loss": 1.7208,
|
3000 |
+
"step": 425
|
3001 |
+
},
|
3002 |
+
{
|
3003 |
+
"epoch": 0.8689444161142275,
|
3004 |
+
"grad_norm": 0.35181501507759094,
|
3005 |
+
"learning_rate": 0.00012216186808267546,
|
3006 |
+
"loss": 1.7401,
|
3007 |
+
"step": 426
|
3008 |
+
},
|
3009 |
+
{
|
3010 |
+
"epoch": 0.8709841917389087,
|
3011 |
+
"grad_norm": 0.30371034145355225,
|
3012 |
+
"learning_rate": 0.00012184593055096854,
|
3013 |
+
"loss": 1.655,
|
3014 |
+
"step": 427
|
3015 |
+
},
|
3016 |
+
{
|
3017 |
+
"epoch": 0.87302396736359,
|
3018 |
+
"grad_norm": 0.29926905035972595,
|
3019 |
+
"learning_rate": 0.0001215297638657875,
|
3020 |
+
"loss": 1.686,
|
3021 |
+
"step": 428
|
3022 |
+
},
|
3023 |
+
{
|
3024 |
+
"epoch": 0.8750637429882713,
|
3025 |
+
"grad_norm": 0.32623806595802307,
|
3026 |
+
"learning_rate": 0.0001212133713435712,
|
3027 |
+
"loss": 1.6556,
|
3028 |
+
"step": 429
|
3029 |
+
},
|
3030 |
+
{
|
3031 |
+
"epoch": 0.8771035186129525,
|
3032 |
+
"grad_norm": 0.32232004404067993,
|
3033 |
+
"learning_rate": 0.00012089675630312754,
|
3034 |
+
"loss": 1.7736,
|
3035 |
+
"step": 430
|
3036 |
+
},
|
3037 |
+
{
|
3038 |
+
"epoch": 0.8791432942376338,
|
3039 |
+
"grad_norm": 0.3392092287540436,
|
3040 |
+
"learning_rate": 0.00012057992206559837,
|
3041 |
+
"loss": 1.8754,
|
3042 |
+
"step": 431
|
3043 |
+
},
|
3044 |
+
{
|
3045 |
+
"epoch": 0.8811830698623151,
|
3046 |
+
"grad_norm": 0.34549203515052795,
|
3047 |
+
"learning_rate": 0.00012026287195442503,
|
3048 |
+
"loss": 1.7624,
|
3049 |
+
"step": 432
|
3050 |
+
},
|
3051 |
+
{
|
3052 |
+
"epoch": 0.8832228454869965,
|
3053 |
+
"grad_norm": 0.3612309694290161,
|
3054 |
+
"learning_rate": 0.00011994560929531309,
|
3055 |
+
"loss": 1.6408,
|
3056 |
+
"step": 433
|
3057 |
+
},
|
3058 |
+
{
|
3059 |
+
"epoch": 0.8852626211116777,
|
3060 |
+
"grad_norm": 0.30541735887527466,
|
3061 |
+
"learning_rate": 0.00011962813741619777,
|
3062 |
+
"loss": 1.6785,
|
3063 |
+
"step": 434
|
3064 |
+
},
|
3065 |
+
{
|
3066 |
+
"epoch": 0.887302396736359,
|
3067 |
+
"grad_norm": 0.2894171476364136,
|
3068 |
+
"learning_rate": 0.00011931045964720881,
|
3069 |
+
"loss": 1.6609,
|
3070 |
+
"step": 435
|
3071 |
+
},
|
3072 |
+
{
|
3073 |
+
"epoch": 0.8893421723610403,
|
3074 |
+
"grad_norm": 0.31241005659103394,
|
3075 |
+
"learning_rate": 0.0001189925793206357,
|
3076 |
+
"loss": 1.7421,
|
3077 |
+
"step": 436
|
3078 |
+
},
|
3079 |
+
{
|
3080 |
+
"epoch": 0.8913819479857216,
|
3081 |
+
"grad_norm": 0.36774688959121704,
|
3082 |
+
"learning_rate": 0.00011867449977089265,
|
3083 |
+
"loss": 1.902,
|
3084 |
+
"step": 437
|
3085 |
+
},
|
3086 |
+
{
|
3087 |
+
"epoch": 0.8934217236104028,
|
3088 |
+
"grad_norm": 0.3658794164657593,
|
3089 |
+
"learning_rate": 0.00011835622433448361,
|
3090 |
+
"loss": 1.9666,
|
3091 |
+
"step": 438
|
3092 |
+
},
|
3093 |
+
{
|
3094 |
+
"epoch": 0.8954614992350841,
|
3095 |
+
"grad_norm": 0.33153945207595825,
|
3096 |
+
"learning_rate": 0.00011803775634996734,
|
3097 |
+
"loss": 1.6772,
|
3098 |
+
"step": 439
|
3099 |
+
},
|
3100 |
+
{
|
3101 |
+
"epoch": 0.8975012748597654,
|
3102 |
+
"grad_norm": 0.34272125363349915,
|
3103 |
+
"learning_rate": 0.0001177190991579223,
|
3104 |
+
"loss": 1.7911,
|
3105 |
+
"step": 440
|
3106 |
+
},
|
3107 |
+
{
|
3108 |
+
"epoch": 0.8995410504844467,
|
3109 |
+
"grad_norm": 0.3852793276309967,
|
3110 |
+
"learning_rate": 0.00011740025610091159,
|
3111 |
+
"loss": 1.7358,
|
3112 |
+
"step": 441
|
3113 |
+
},
|
3114 |
+
{
|
3115 |
+
"epoch": 0.901580826109128,
|
3116 |
+
"grad_norm": 0.33693379163742065,
|
3117 |
+
"learning_rate": 0.00011708123052344804,
|
3118 |
+
"loss": 1.7078,
|
3119 |
+
"step": 442
|
3120 |
+
},
|
3121 |
+
{
|
3122 |
+
"epoch": 0.9036206017338093,
|
3123 |
+
"grad_norm": 0.35405832529067993,
|
3124 |
+
"learning_rate": 0.00011676202577195901,
|
3125 |
+
"loss": 1.6454,
|
3126 |
+
"step": 443
|
3127 |
+
},
|
3128 |
+
{
|
3129 |
+
"epoch": 0.9056603773584906,
|
3130 |
+
"grad_norm": 0.38638654351234436,
|
3131 |
+
"learning_rate": 0.0001164426451947513,
|
3132 |
+
"loss": 1.7611,
|
3133 |
+
"step": 444
|
3134 |
+
},
|
3135 |
+
{
|
3136 |
+
"epoch": 0.9077001529831719,
|
3137 |
+
"grad_norm": 0.3415047824382782,
|
3138 |
+
"learning_rate": 0.00011612309214197599,
|
3139 |
+
"loss": 1.6206,
|
3140 |
+
"step": 445
|
3141 |
+
},
|
3142 |
+
{
|
3143 |
+
"epoch": 0.9097399286078531,
|
3144 |
+
"grad_norm": 0.3022047281265259,
|
3145 |
+
"learning_rate": 0.00011580336996559343,
|
3146 |
+
"loss": 1.8017,
|
3147 |
+
"step": 446
|
3148 |
+
},
|
3149 |
+
{
|
3150 |
+
"epoch": 0.9117797042325344,
|
3151 |
+
"grad_norm": 0.3650202751159668,
|
3152 |
+
"learning_rate": 0.00011548348201933798,
|
3153 |
+
"loss": 1.6507,
|
3154 |
+
"step": 447
|
3155 |
+
},
|
3156 |
+
{
|
3157 |
+
"epoch": 0.9138194798572157,
|
3158 |
+
"grad_norm": 0.44297119975090027,
|
3159 |
+
"learning_rate": 0.00011516343165868279,
|
3160 |
+
"loss": 1.8607,
|
3161 |
+
"step": 448
|
3162 |
+
},
|
3163 |
+
{
|
3164 |
+
"epoch": 0.915859255481897,
|
3165 |
+
"grad_norm": 0.3508884906768799,
|
3166 |
+
"learning_rate": 0.00011484322224080472,
|
3167 |
+
"loss": 1.6549,
|
3168 |
+
"step": 449
|
3169 |
+
},
|
3170 |
+
{
|
3171 |
+
"epoch": 0.9178990311065782,
|
3172 |
+
"grad_norm": 0.31238260865211487,
|
3173 |
+
"learning_rate": 0.00011452285712454904,
|
3174 |
+
"loss": 1.603,
|
3175 |
+
"step": 450
|
3176 |
+
},
|
3177 |
+
{
|
3178 |
+
"epoch": 0.9199388067312596,
|
3179 |
+
"grad_norm": 0.36678579449653625,
|
3180 |
+
"learning_rate": 0.00011420233967039422,
|
3181 |
+
"loss": 1.7984,
|
3182 |
+
"step": 451
|
3183 |
+
},
|
3184 |
+
{
|
3185 |
+
"epoch": 0.9219785823559409,
|
3186 |
+
"grad_norm": 0.3467310965061188,
|
3187 |
+
"learning_rate": 0.00011388167324041669,
|
3188 |
+
"loss": 1.7691,
|
3189 |
+
"step": 452
|
3190 |
+
},
|
3191 |
+
{
|
3192 |
+
"epoch": 0.9240183579806222,
|
3193 |
+
"grad_norm": 0.2987074553966522,
|
3194 |
+
"learning_rate": 0.00011356086119825553,
|
3195 |
+
"loss": 1.617,
|
3196 |
+
"step": 453
|
3197 |
+
},
|
3198 |
+
{
|
3199 |
+
"epoch": 0.9260581336053034,
|
3200 |
+
"grad_norm": 0.2808781862258911,
|
3201 |
+
"learning_rate": 0.00011323990690907733,
|
3202 |
+
"loss": 1.6362,
|
3203 |
+
"step": 454
|
3204 |
+
},
|
3205 |
+
{
|
3206 |
+
"epoch": 0.9280979092299847,
|
3207 |
+
"grad_norm": 0.356692910194397,
|
3208 |
+
"learning_rate": 0.00011291881373954065,
|
3209 |
+
"loss": 1.7279,
|
3210 |
+
"step": 455
|
3211 |
+
},
|
3212 |
+
{
|
3213 |
+
"epoch": 0.930137684854666,
|
3214 |
+
"grad_norm": 0.3478505611419678,
|
3215 |
+
"learning_rate": 0.00011259758505776092,
|
3216 |
+
"loss": 1.6011,
|
3217 |
+
"step": 456
|
3218 |
+
},
|
3219 |
+
{
|
3220 |
+
"epoch": 0.9321774604793472,
|
3221 |
+
"grad_norm": 0.3229358196258545,
|
3222 |
+
"learning_rate": 0.00011227622423327502,
|
3223 |
+
"loss": 1.7874,
|
3224 |
+
"step": 457
|
3225 |
+
},
|
3226 |
+
{
|
3227 |
+
"epoch": 0.9342172361040285,
|
3228 |
+
"grad_norm": 0.30234581232070923,
|
3229 |
+
"learning_rate": 0.0001119547346370059,
|
3230 |
+
"loss": 1.6098,
|
3231 |
+
"step": 458
|
3232 |
+
},
|
3233 |
+
{
|
3234 |
+
"epoch": 0.9362570117287098,
|
3235 |
+
"grad_norm": 0.356154203414917,
|
3236 |
+
"learning_rate": 0.00011163311964122734,
|
3237 |
+
"loss": 1.8164,
|
3238 |
+
"step": 459
|
3239 |
+
},
|
3240 |
+
{
|
3241 |
+
"epoch": 0.9382967873533912,
|
3242 |
+
"grad_norm": 0.35306453704833984,
|
3243 |
+
"learning_rate": 0.00011131138261952845,
|
3244 |
+
"loss": 1.8833,
|
3245 |
+
"step": 460
|
3246 |
+
},
|
3247 |
+
{
|
3248 |
+
"epoch": 0.9403365629780724,
|
3249 |
+
"grad_norm": 0.29947206377983093,
|
3250 |
+
"learning_rate": 0.00011098952694677829,
|
3251 |
+
"loss": 1.6675,
|
3252 |
+
"step": 461
|
3253 |
+
},
|
3254 |
+
{
|
3255 |
+
"epoch": 0.9423763386027537,
|
3256 |
+
"grad_norm": 0.3290257155895233,
|
3257 |
+
"learning_rate": 0.00011066755599909064,
|
3258 |
+
"loss": 1.7463,
|
3259 |
+
"step": 462
|
3260 |
+
},
|
3261 |
+
{
|
3262 |
+
"epoch": 0.944416114227435,
|
3263 |
+
"grad_norm": 0.32332712411880493,
|
3264 |
+
"learning_rate": 0.00011034547315378838,
|
3265 |
+
"loss": 1.5748,
|
3266 |
+
"step": 463
|
3267 |
+
},
|
3268 |
+
{
|
3269 |
+
"epoch": 0.9464558898521163,
|
3270 |
+
"grad_norm": 0.40129172801971436,
|
3271 |
+
"learning_rate": 0.00011002328178936811,
|
3272 |
+
"loss": 1.6484,
|
3273 |
+
"step": 464
|
3274 |
+
},
|
3275 |
+
{
|
3276 |
+
"epoch": 0.9484956654767975,
|
3277 |
+
"grad_norm": 0.34289342164993286,
|
3278 |
+
"learning_rate": 0.00010970098528546481,
|
3279 |
+
"loss": 1.7533,
|
3280 |
+
"step": 465
|
3281 |
+
},
|
3282 |
+
{
|
3283 |
+
"epoch": 0.9505354411014788,
|
3284 |
+
"grad_norm": 0.30435630679130554,
|
3285 |
+
"learning_rate": 0.00010937858702281631,
|
3286 |
+
"loss": 1.8037,
|
3287 |
+
"step": 466
|
3288 |
+
},
|
3289 |
+
{
|
3290 |
+
"epoch": 0.9525752167261601,
|
3291 |
+
"grad_norm": 0.29155558347702026,
|
3292 |
+
"learning_rate": 0.00010905609038322779,
|
3293 |
+
"loss": 1.5628,
|
3294 |
+
"step": 467
|
3295 |
+
},
|
3296 |
+
{
|
3297 |
+
"epoch": 0.9546149923508415,
|
3298 |
+
"grad_norm": 0.31822967529296875,
|
3299 |
+
"learning_rate": 0.0001087334987495364,
|
3300 |
+
"loss": 1.7222,
|
3301 |
+
"step": 468
|
3302 |
+
},
|
3303 |
+
{
|
3304 |
+
"epoch": 0.9566547679755227,
|
3305 |
+
"grad_norm": 0.2868748605251312,
|
3306 |
+
"learning_rate": 0.00010841081550557578,
|
3307 |
+
"loss": 1.86,
|
3308 |
+
"step": 469
|
3309 |
+
},
|
3310 |
+
{
|
3311 |
+
"epoch": 0.958694543600204,
|
3312 |
+
"grad_norm": 0.3066910207271576,
|
3313 |
+
"learning_rate": 0.00010808804403614043,
|
3314 |
+
"loss": 1.7278,
|
3315 |
+
"step": 470
|
3316 |
+
},
|
3317 |
+
{
|
3318 |
+
"epoch": 0.9607343192248853,
|
3319 |
+
"grad_norm": 0.28570494055747986,
|
3320 |
+
"learning_rate": 0.00010776518772695034,
|
3321 |
+
"loss": 1.7328,
|
3322 |
+
"step": 471
|
3323 |
+
},
|
3324 |
+
{
|
3325 |
+
"epoch": 0.9627740948495666,
|
3326 |
+
"grad_norm": 0.28472283482551575,
|
3327 |
+
"learning_rate": 0.0001074422499646154,
|
3328 |
+
"loss": 1.7311,
|
3329 |
+
"step": 472
|
3330 |
+
},
|
3331 |
+
{
|
3332 |
+
"epoch": 0.9648138704742478,
|
3333 |
+
"grad_norm": 0.30987489223480225,
|
3334 |
+
"learning_rate": 0.00010711923413659995,
|
3335 |
+
"loss": 1.7628,
|
3336 |
+
"step": 473
|
3337 |
+
},
|
3338 |
+
{
|
3339 |
+
"epoch": 0.9668536460989291,
|
3340 |
+
"grad_norm": 0.32321545481681824,
|
3341 |
+
"learning_rate": 0.00010679614363118717,
|
3342 |
+
"loss": 1.8949,
|
3343 |
+
"step": 474
|
3344 |
+
},
|
3345 |
+
{
|
3346 |
+
"epoch": 0.9688934217236104,
|
3347 |
+
"grad_norm": 0.32413583993911743,
|
3348 |
+
"learning_rate": 0.00010647298183744359,
|
3349 |
+
"loss": 1.6379,
|
3350 |
+
"step": 475
|
3351 |
+
},
|
3352 |
+
{
|
3353 |
+
"epoch": 0.9709331973482916,
|
3354 |
+
"grad_norm": 0.3008846044540405,
|
3355 |
+
"learning_rate": 0.0001061497521451835,
|
3356 |
+
"loss": 1.7546,
|
3357 |
+
"step": 476
|
3358 |
+
},
|
3359 |
+
{
|
3360 |
+
"epoch": 0.972972972972973,
|
3361 |
+
"grad_norm": 0.3248610198497772,
|
3362 |
+
"learning_rate": 0.00010582645794493337,
|
3363 |
+
"loss": 1.8915,
|
3364 |
+
"step": 477
|
3365 |
+
},
|
3366 |
+
{
|
3367 |
+
"epoch": 0.9750127485976543,
|
3368 |
+
"grad_norm": 0.3182532489299774,
|
3369 |
+
"learning_rate": 0.00010550310262789649,
|
3370 |
+
"loss": 1.8771,
|
3371 |
+
"step": 478
|
3372 |
+
},
|
3373 |
+
{
|
3374 |
+
"epoch": 0.9770525242223356,
|
3375 |
+
"grad_norm": 0.317730188369751,
|
3376 |
+
"learning_rate": 0.00010517968958591705,
|
3377 |
+
"loss": 1.7348,
|
3378 |
+
"step": 479
|
3379 |
+
},
|
3380 |
+
{
|
3381 |
+
"epoch": 0.9790922998470168,
|
3382 |
+
"grad_norm": 0.3585616648197174,
|
3383 |
+
"learning_rate": 0.00010485622221144484,
|
3384 |
+
"loss": 1.6916,
|
3385 |
+
"step": 480
|
3386 |
+
},
|
3387 |
+
{
|
3388 |
+
"epoch": 0.9811320754716981,
|
3389 |
+
"grad_norm": 0.2927946150302887,
|
3390 |
+
"learning_rate": 0.00010453270389749957,
|
3391 |
+
"loss": 1.7284,
|
3392 |
+
"step": 481
|
3393 |
+
},
|
3394 |
+
{
|
3395 |
+
"epoch": 0.9831718510963794,
|
3396 |
+
"grad_norm": 0.2869007885456085,
|
3397 |
+
"learning_rate": 0.00010420913803763521,
|
3398 |
+
"loss": 1.7312,
|
3399 |
+
"step": 482
|
3400 |
+
},
|
3401 |
+
{
|
3402 |
+
"epoch": 0.9852116267210607,
|
3403 |
+
"grad_norm": 0.34274759888648987,
|
3404 |
+
"learning_rate": 0.00010388552802590462,
|
3405 |
+
"loss": 1.6405,
|
3406 |
+
"step": 483
|
3407 |
+
},
|
3408 |
+
{
|
3409 |
+
"epoch": 0.9872514023457419,
|
3410 |
+
"grad_norm": 0.3203391134738922,
|
3411 |
+
"learning_rate": 0.00010356187725682359,
|
3412 |
+
"loss": 1.666,
|
3413 |
+
"step": 484
|
3414 |
+
},
|
3415 |
+
{
|
3416 |
+
"epoch": 0.9892911779704232,
|
3417 |
+
"grad_norm": 0.3370297849178314,
|
3418 |
+
"learning_rate": 0.00010323818912533561,
|
3419 |
+
"loss": 1.757,
|
3420 |
+
"step": 485
|
3421 |
+
},
|
3422 |
+
{
|
3423 |
+
"epoch": 0.9913309535951046,
|
3424 |
+
"grad_norm": 0.3095087707042694,
|
3425 |
+
"learning_rate": 0.00010291446702677599,
|
3426 |
+
"loss": 1.7015,
|
3427 |
+
"step": 486
|
3428 |
+
},
|
3429 |
+
{
|
3430 |
+
"epoch": 0.9933707292197859,
|
3431 |
+
"grad_norm": 0.33249640464782715,
|
3432 |
+
"learning_rate": 0.00010259071435683636,
|
3433 |
+
"loss": 1.9363,
|
3434 |
+
"step": 487
|
3435 |
+
},
|
3436 |
+
{
|
3437 |
+
"epoch": 0.9954105048444671,
|
3438 |
+
"grad_norm": 0.3441324830055237,
|
3439 |
+
"learning_rate": 0.000102266934511529,
|
3440 |
+
"loss": 1.5975,
|
3441 |
+
"step": 488
|
3442 |
+
},
|
3443 |
+
{
|
3444 |
+
"epoch": 0.9974502804691484,
|
3445 |
+
"grad_norm": 0.31439101696014404,
|
3446 |
+
"learning_rate": 0.00010194313088715135,
|
3447 |
+
"loss": 1.7025,
|
3448 |
+
"step": 489
|
3449 |
+
},
|
3450 |
+
{
|
3451 |
+
"epoch": 0.9994900560938297,
|
3452 |
+
"grad_norm": 0.34762027859687805,
|
3453 |
+
"learning_rate": 0.00010161930688025017,
|
3454 |
+
"loss": 1.7399,
|
3455 |
+
"step": 490
|
3456 |
+
},
|
3457 |
+
{
|
3458 |
+
"epoch": 0.9994900560938297,
|
3459 |
+
"eval_loss": 1.752766489982605,
|
3460 |
+
"eval_runtime": 57.5155,
|
3461 |
+
"eval_samples_per_second": 14.361,
|
3462 |
+
"eval_steps_per_second": 1.808,
|
3463 |
+
"step": 490
|
3464 |
+
}
|
3465 |
+
],
|
3466 |
+
"logging_steps": 1,
|
3467 |
+
"max_steps": 980,
|
3468 |
+
"num_input_tokens_seen": 0,
|
3469 |
+
"num_train_epochs": 2,
|
3470 |
+
"save_steps": 490,
|
3471 |
+
"stateful_callbacks": {
|
3472 |
+
"TrainerControl": {
|
3473 |
+
"args": {
|
3474 |
+
"should_epoch_stop": false,
|
3475 |
+
"should_evaluate": false,
|
3476 |
+
"should_log": false,
|
3477 |
+
"should_save": true,
|
3478 |
+
"should_training_stop": false
|
3479 |
+
},
|
3480 |
+
"attributes": {}
|
3481 |
+
}
|
3482 |
+
},
|
3483 |
+
"total_flos": 4.735357947750646e+17,
|
3484 |
+
"train_batch_size": 2,
|
3485 |
+
"trial_name": null,
|
3486 |
+
"trial_params": null
|
3487 |
+
}
|
checkpoint-490/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fd5118745a3a32cd68003e9390de78b66f6a98a0ddca61e009cc5906838ab426
|
3 |
+
size 6136
|
checkpoint-490/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-980/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: unsloth/Qwen2.5-Math-7B-Instruct
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.11.1
|
checkpoint-980/adapter_config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "unsloth/Qwen2.5-Math-7B-Instruct",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": null,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 16,
|
14 |
+
"lora_dropout": 0.05,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 32,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"gate_proj",
|
24 |
+
"v_proj",
|
25 |
+
"o_proj",
|
26 |
+
"k_proj",
|
27 |
+
"up_proj",
|
28 |
+
"down_proj",
|
29 |
+
"q_proj"
|
30 |
+
],
|
31 |
+
"task_type": "CAUSAL_LM",
|
32 |
+
"use_dora": false,
|
33 |
+
"use_rslora": false
|
34 |
+
}
|
checkpoint-980/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ffdc900a3521c14a60196d396fdae335d8649be79ac050437de521b77e6b8a04
|
3 |
+
size 323014168
|
checkpoint-980/added_tokens.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<tool_call>": 151657,
|
4 |
+
"<|PAD_TOKEN|>": 151665,
|
5 |
+
"<|box_end|>": 151649,
|
6 |
+
"<|box_start|>": 151648,
|
7 |
+
"<|endoftext|>": 151643,
|
8 |
+
"<|file_sep|>": 151664,
|
9 |
+
"<|fim_middle|>": 151660,
|
10 |
+
"<|fim_pad|>": 151662,
|
11 |
+
"<|fim_prefix|>": 151659,
|
12 |
+
"<|fim_suffix|>": 151661,
|
13 |
+
"<|im_end|>": 151645,
|
14 |
+
"<|im_start|>": 151644,
|
15 |
+
"<|image_pad|>": 151655,
|
16 |
+
"<|object_ref_end|>": 151647,
|
17 |
+
"<|object_ref_start|>": 151646,
|
18 |
+
"<|quad_end|>": 151651,
|
19 |
+
"<|quad_start|>": 151650,
|
20 |
+
"<|repo_name|>": 151663,
|
21 |
+
"<|video_pad|>": 151656,
|
22 |
+
"<|vision_end|>": 151653,
|
23 |
+
"<|vision_pad|>": 151654,
|
24 |
+
"<|vision_start|>": 151652
|
25 |
+
}
|
checkpoint-980/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-980/optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:45d7469284cb12646545bf9b816b48a49b85d677da3d5e9a144adc1e7a822b6b
|
3 |
+
size 162231028
|
checkpoint-980/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:12ee18499e4049d4acb94c8e1aab52280aa657c0445937d3359e79fb3299c678
|
3 |
+
size 14960
|
checkpoint-980/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:968e440bb6e5113db79e5fb9d0734f972965f2c5521c893c3f493df28c45ed50
|
3 |
+
size 14960
|
checkpoint-980/rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b2cf15cab9e05c5469c465b55bff4ae04e4303e44c7d4542b2e965d2f12ddf2d
|
3 |
+
size 14960
|
checkpoint-980/rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cf0aa7d73ccb686c78ef9aeaba6b28ffaa53b1e9598146582726fa3894103e45
|
3 |
+
size 14960
|
checkpoint-980/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b5d476c12da381846e3dd23747ce593bb7d9068ba7200583b801a8ee542adb9c
|
3 |
+
size 1064
|
checkpoint-980/special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|PAD_TOKEN|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
checkpoint-980/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-980/tokenizer_config.json
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
},
|
181 |
+
"151665": {
|
182 |
+
"content": "<|PAD_TOKEN|>",
|
183 |
+
"lstrip": false,
|
184 |
+
"normalized": false,
|
185 |
+
"rstrip": false,
|
186 |
+
"single_word": false,
|
187 |
+
"special": true
|
188 |
+
}
|
189 |
+
},
|
190 |
+
"additional_special_tokens": [
|
191 |
+
"<|im_start|>",
|
192 |
+
"<|im_end|>",
|
193 |
+
"<|object_ref_start|>",
|
194 |
+
"<|object_ref_end|>",
|
195 |
+
"<|box_start|>",
|
196 |
+
"<|box_end|>",
|
197 |
+
"<|quad_start|>",
|
198 |
+
"<|quad_end|>",
|
199 |
+
"<|vision_start|>",
|
200 |
+
"<|vision_end|>",
|
201 |
+
"<|vision_pad|>",
|
202 |
+
"<|image_pad|>",
|
203 |
+
"<|video_pad|>"
|
204 |
+
],
|
205 |
+
"bos_token": null,
|
206 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'Please reason step by step, and put your final answer within \\\\boxed{}.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nPlease reason step by step, and put your final answer within \\\\boxed{}.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
207 |
+
"clean_up_tokenization_spaces": false,
|
208 |
+
"eos_token": "<|im_end|>",
|
209 |
+
"errors": "replace",
|
210 |
+
"model_max_length": 131072,
|
211 |
+
"pad_token": "<|PAD_TOKEN|>",
|
212 |
+
"padding_side": "left",
|
213 |
+
"split_special_tokens": false,
|
214 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
215 |
+
"unk_token": null
|
216 |
+
}
|
checkpoint-980/trainer_state.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-980/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fd5118745a3a32cd68003e9390de78b66f6a98a0ddca61e009cc5906838ab426
|
3 |
+
size 6136
|
checkpoint-980/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
merged/added_tokens.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<tool_call>": 151657,
|
4 |
+
"<|PAD_TOKEN|>": 151665,
|
5 |
+
"<|box_end|>": 151649,
|
6 |
+
"<|box_start|>": 151648,
|
7 |
+
"<|endoftext|>": 151643,
|
8 |
+
"<|file_sep|>": 151664,
|
9 |
+
"<|fim_middle|>": 151660,
|
10 |
+
"<|fim_pad|>": 151662,
|
11 |
+
"<|fim_prefix|>": 151659,
|
12 |
+
"<|fim_suffix|>": 151661,
|
13 |
+
"<|im_end|>": 151645,
|
14 |
+
"<|im_start|>": 151644,
|
15 |
+
"<|image_pad|>": 151655,
|
16 |
+
"<|object_ref_end|>": 151647,
|
17 |
+
"<|object_ref_start|>": 151646,
|
18 |
+
"<|quad_end|>": 151651,
|
19 |
+
"<|quad_start|>": 151650,
|
20 |
+
"<|repo_name|>": 151663,
|
21 |
+
"<|video_pad|>": 151656,
|
22 |
+
"<|vision_end|>": 151653,
|
23 |
+
"<|vision_pad|>": 151654,
|
24 |
+
"<|vision_start|>": 151652
|
25 |
+
}
|
merged/config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "unsloth/Qwen2.5-Math-7B-Instruct",
|
3 |
+
"architectures": [
|
4 |
+
"Qwen2ForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"eos_token_id": 151645,
|
8 |
+
"hidden_act": "silu",
|
9 |
+
"hidden_size": 3584,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 18944,
|
12 |
+
"max_position_embeddings": 4096,
|
13 |
+
"max_window_layers": 28,
|
14 |
+
"model_type": "qwen2",
|
15 |
+
"num_attention_heads": 28,
|
16 |
+
"num_hidden_layers": 28,
|
17 |
+
"num_key_value_heads": 4,
|
18 |
+
"pad_token_id": 151665,
|
19 |
+
"rms_norm_eps": 1e-06,
|
20 |
+
"rope_theta": 10000.0,
|
21 |
+
"sliding_window": null,
|
22 |
+
"tie_word_embeddings": false,
|
23 |
+
"torch_dtype": "bfloat16",
|
24 |
+
"transformers_version": "4.42.3",
|
25 |
+
"unsloth_fixed": true,
|
26 |
+
"use_cache": false,
|
27 |
+
"use_sliding_window": false,
|
28 |
+
"vocab_size": 152064
|
29 |
+
}
|
merged/generation_config.json
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
151645,
|
6 |
+
151643
|
7 |
+
],
|
8 |
+
"max_length": 4096,
|
9 |
+
"pad_token_id": 151665,
|
10 |
+
"transformers_version": "4.42.3"
|
11 |
+
}
|
merged/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
merged/pytorch_model-00001-of-00004.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:87d8806e341e6236c810be0b83f6948493c1b665960359a7a1a9f66bc7a3be80
|
3 |
+
size 4877684182
|
merged/pytorch_model-00002-of-00004.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2a2d5904ae5af2ffd738325f0811d7fa00d0c14e9ca15a1939751eb1c44a6841
|
3 |
+
size 4932778600
|
merged/pytorch_model-00003-of-00004.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a22c2af3025a7abed7c175b68c9cb9c82a73878a6a48fc38c9467bea9dbf2fc0
|
3 |
+
size 4330890394
|
merged/pytorch_model-00004-of-00004.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c8ca6d42b61f483fc9cbd2d2bc61510c7c124dbab9c06fb9c0050ee86aad4750
|
3 |
+
size 1089996165
|
merged/pytorch_model.bin.index.json
ADDED
@@ -0,0 +1,346 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 15231233024
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "pytorch_model-00004-of-00004.bin",
|
7 |
+
"model.embed_tokens.weight": "pytorch_model-00001-of-00004.bin",
|
8 |
+
"model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
|
13 |
+
"model.layers.0.self_attn.k_proj.bias": "pytorch_model-00001-of-00004.bin",
|
14 |
+
"model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
|
15 |
+
"model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
|
16 |
+
"model.layers.0.self_attn.q_proj.bias": "pytorch_model-00001-of-00004.bin",
|
17 |
+
"model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
|
18 |
+
"model.layers.0.self_attn.v_proj.bias": "pytorch_model-00001-of-00004.bin",
|
19 |
+
"model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
|
20 |
+
"model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
|
21 |
+
"model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
|
22 |
+
"model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
|
23 |
+
"model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
|
24 |
+
"model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
|
25 |
+
"model.layers.1.self_attn.k_proj.bias": "pytorch_model-00001-of-00004.bin",
|
26 |
+
"model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
|
27 |
+
"model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
|
28 |
+
"model.layers.1.self_attn.q_proj.bias": "pytorch_model-00001-of-00004.bin",
|
29 |
+
"model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
|
30 |
+
"model.layers.1.self_attn.v_proj.bias": "pytorch_model-00001-of-00004.bin",
|
31 |
+
"model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
|
32 |
+
"model.layers.10.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
33 |
+
"model.layers.10.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
|
34 |
+
"model.layers.10.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
|
35 |
+
"model.layers.10.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
|
36 |
+
"model.layers.10.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
37 |
+
"model.layers.10.self_attn.k_proj.bias": "pytorch_model-00002-of-00004.bin",
|
38 |
+
"model.layers.10.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
|
39 |
+
"model.layers.10.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
|
40 |
+
"model.layers.10.self_attn.q_proj.bias": "pytorch_model-00002-of-00004.bin",
|
41 |
+
"model.layers.10.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
|
42 |
+
"model.layers.10.self_attn.v_proj.bias": "pytorch_model-00002-of-00004.bin",
|
43 |
+
"model.layers.10.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
|
44 |
+
"model.layers.11.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
45 |
+
"model.layers.11.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
|
46 |
+
"model.layers.11.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
|
47 |
+
"model.layers.11.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
|
48 |
+
"model.layers.11.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
49 |
+
"model.layers.11.self_attn.k_proj.bias": "pytorch_model-00002-of-00004.bin",
|
50 |
+
"model.layers.11.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
|
51 |
+
"model.layers.11.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
|
52 |
+
"model.layers.11.self_attn.q_proj.bias": "pytorch_model-00002-of-00004.bin",
|
53 |
+
"model.layers.11.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
|
54 |
+
"model.layers.11.self_attn.v_proj.bias": "pytorch_model-00002-of-00004.bin",
|
55 |
+
"model.layers.11.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
|
56 |
+
"model.layers.12.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
57 |
+
"model.layers.12.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
|
58 |
+
"model.layers.12.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
|
59 |
+
"model.layers.12.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
|
60 |
+
"model.layers.12.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
61 |
+
"model.layers.12.self_attn.k_proj.bias": "pytorch_model-00002-of-00004.bin",
|
62 |
+
"model.layers.12.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
|
63 |
+
"model.layers.12.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
|
64 |
+
"model.layers.12.self_attn.q_proj.bias": "pytorch_model-00002-of-00004.bin",
|
65 |
+
"model.layers.12.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
|
66 |
+
"model.layers.12.self_attn.v_proj.bias": "pytorch_model-00002-of-00004.bin",
|
67 |
+
"model.layers.12.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
|
68 |
+
"model.layers.13.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
69 |
+
"model.layers.13.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
|
70 |
+
"model.layers.13.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
|
71 |
+
"model.layers.13.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
|
72 |
+
"model.layers.13.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
73 |
+
"model.layers.13.self_attn.k_proj.bias": "pytorch_model-00002-of-00004.bin",
|
74 |
+
"model.layers.13.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
|
75 |
+
"model.layers.13.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
|
76 |
+
"model.layers.13.self_attn.q_proj.bias": "pytorch_model-00002-of-00004.bin",
|
77 |
+
"model.layers.13.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
|
78 |
+
"model.layers.13.self_attn.v_proj.bias": "pytorch_model-00002-of-00004.bin",
|
79 |
+
"model.layers.13.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
|
80 |
+
"model.layers.14.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
81 |
+
"model.layers.14.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
|
82 |
+
"model.layers.14.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
|
83 |
+
"model.layers.14.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
|
84 |
+
"model.layers.14.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
85 |
+
"model.layers.14.self_attn.k_proj.bias": "pytorch_model-00002-of-00004.bin",
|
86 |
+
"model.layers.14.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
|
87 |
+
"model.layers.14.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
|
88 |
+
"model.layers.14.self_attn.q_proj.bias": "pytorch_model-00002-of-00004.bin",
|
89 |
+
"model.layers.14.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
|
90 |
+
"model.layers.14.self_attn.v_proj.bias": "pytorch_model-00002-of-00004.bin",
|
91 |
+
"model.layers.14.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
|
92 |
+
"model.layers.15.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
93 |
+
"model.layers.15.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
|
94 |
+
"model.layers.15.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
|
95 |
+
"model.layers.15.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
|
96 |
+
"model.layers.15.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
97 |
+
"model.layers.15.self_attn.k_proj.bias": "pytorch_model-00002-of-00004.bin",
|
98 |
+
"model.layers.15.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
|
99 |
+
"model.layers.15.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
|
100 |
+
"model.layers.15.self_attn.q_proj.bias": "pytorch_model-00002-of-00004.bin",
|
101 |
+
"model.layers.15.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
|
102 |
+
"model.layers.15.self_attn.v_proj.bias": "pytorch_model-00002-of-00004.bin",
|
103 |
+
"model.layers.15.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
|
104 |
+
"model.layers.16.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
105 |
+
"model.layers.16.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
|
106 |
+
"model.layers.16.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
|
107 |
+
"model.layers.16.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
|
108 |
+
"model.layers.16.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
109 |
+
"model.layers.16.self_attn.k_proj.bias": "pytorch_model-00002-of-00004.bin",
|
110 |
+
"model.layers.16.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
|
111 |
+
"model.layers.16.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
|
112 |
+
"model.layers.16.self_attn.q_proj.bias": "pytorch_model-00002-of-00004.bin",
|
113 |
+
"model.layers.16.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
|
114 |
+
"model.layers.16.self_attn.v_proj.bias": "pytorch_model-00002-of-00004.bin",
|
115 |
+
"model.layers.16.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
|
116 |
+
"model.layers.17.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
117 |
+
"model.layers.17.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
|
118 |
+
"model.layers.17.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
|
119 |
+
"model.layers.17.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
|
120 |
+
"model.layers.17.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
121 |
+
"model.layers.17.self_attn.k_proj.bias": "pytorch_model-00002-of-00004.bin",
|
122 |
+
"model.layers.17.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
|
123 |
+
"model.layers.17.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
|
124 |
+
"model.layers.17.self_attn.q_proj.bias": "pytorch_model-00002-of-00004.bin",
|
125 |
+
"model.layers.17.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
|
126 |
+
"model.layers.17.self_attn.v_proj.bias": "pytorch_model-00002-of-00004.bin",
|
127 |
+
"model.layers.17.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
|
128 |
+
"model.layers.18.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
129 |
+
"model.layers.18.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
|
130 |
+
"model.layers.18.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
|
131 |
+
"model.layers.18.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
|
132 |
+
"model.layers.18.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
133 |
+
"model.layers.18.self_attn.k_proj.bias": "pytorch_model-00002-of-00004.bin",
|
134 |
+
"model.layers.18.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
|
135 |
+
"model.layers.18.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
|
136 |
+
"model.layers.18.self_attn.q_proj.bias": "pytorch_model-00002-of-00004.bin",
|
137 |
+
"model.layers.18.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
|
138 |
+
"model.layers.18.self_attn.v_proj.bias": "pytorch_model-00002-of-00004.bin",
|
139 |
+
"model.layers.18.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
|
140 |
+
"model.layers.19.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
141 |
+
"model.layers.19.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
|
142 |
+
"model.layers.19.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
|
143 |
+
"model.layers.19.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
|
144 |
+
"model.layers.19.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
145 |
+
"model.layers.19.self_attn.k_proj.bias": "pytorch_model-00003-of-00004.bin",
|
146 |
+
"model.layers.19.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
|
147 |
+
"model.layers.19.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
|
148 |
+
"model.layers.19.self_attn.q_proj.bias": "pytorch_model-00003-of-00004.bin",
|
149 |
+
"model.layers.19.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
|
150 |
+
"model.layers.19.self_attn.v_proj.bias": "pytorch_model-00003-of-00004.bin",
|
151 |
+
"model.layers.19.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
|
152 |
+
"model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
|
153 |
+
"model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
|
154 |
+
"model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
|
155 |
+
"model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
|
156 |
+
"model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
|
157 |
+
"model.layers.2.self_attn.k_proj.bias": "pytorch_model-00001-of-00004.bin",
|
158 |
+
"model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
|
159 |
+
"model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
|
160 |
+
"model.layers.2.self_attn.q_proj.bias": "pytorch_model-00001-of-00004.bin",
|
161 |
+
"model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
|
162 |
+
"model.layers.2.self_attn.v_proj.bias": "pytorch_model-00001-of-00004.bin",
|
163 |
+
"model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
|
164 |
+
"model.layers.20.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
165 |
+
"model.layers.20.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
|
166 |
+
"model.layers.20.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
|
167 |
+
"model.layers.20.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
|
168 |
+
"model.layers.20.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
169 |
+
"model.layers.20.self_attn.k_proj.bias": "pytorch_model-00003-of-00004.bin",
|
170 |
+
"model.layers.20.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
|
171 |
+
"model.layers.20.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
|
172 |
+
"model.layers.20.self_attn.q_proj.bias": "pytorch_model-00003-of-00004.bin",
|
173 |
+
"model.layers.20.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
|
174 |
+
"model.layers.20.self_attn.v_proj.bias": "pytorch_model-00003-of-00004.bin",
|
175 |
+
"model.layers.20.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
|
176 |
+
"model.layers.21.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
177 |
+
"model.layers.21.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
|
178 |
+
"model.layers.21.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
|
179 |
+
"model.layers.21.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
|
180 |
+
"model.layers.21.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
181 |
+
"model.layers.21.self_attn.k_proj.bias": "pytorch_model-00003-of-00004.bin",
|
182 |
+
"model.layers.21.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
|
183 |
+
"model.layers.21.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
|
184 |
+
"model.layers.21.self_attn.q_proj.bias": "pytorch_model-00003-of-00004.bin",
|
185 |
+
"model.layers.21.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
|
186 |
+
"model.layers.21.self_attn.v_proj.bias": "pytorch_model-00003-of-00004.bin",
|
187 |
+
"model.layers.21.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
|
188 |
+
"model.layers.22.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
189 |
+
"model.layers.22.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
|
190 |
+
"model.layers.22.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
|
191 |
+
"model.layers.22.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
|
192 |
+
"model.layers.22.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
193 |
+
"model.layers.22.self_attn.k_proj.bias": "pytorch_model-00003-of-00004.bin",
|
194 |
+
"model.layers.22.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
|
195 |
+
"model.layers.22.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
|
196 |
+
"model.layers.22.self_attn.q_proj.bias": "pytorch_model-00003-of-00004.bin",
|
197 |
+
"model.layers.22.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
|
198 |
+
"model.layers.22.self_attn.v_proj.bias": "pytorch_model-00003-of-00004.bin",
|
199 |
+
"model.layers.22.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
|
200 |
+
"model.layers.23.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
201 |
+
"model.layers.23.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
|
202 |
+
"model.layers.23.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
|
203 |
+
"model.layers.23.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
|
204 |
+
"model.layers.23.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
205 |
+
"model.layers.23.self_attn.k_proj.bias": "pytorch_model-00003-of-00004.bin",
|
206 |
+
"model.layers.23.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
|
207 |
+
"model.layers.23.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
|
208 |
+
"model.layers.23.self_attn.q_proj.bias": "pytorch_model-00003-of-00004.bin",
|
209 |
+
"model.layers.23.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
|
210 |
+
"model.layers.23.self_attn.v_proj.bias": "pytorch_model-00003-of-00004.bin",
|
211 |
+
"model.layers.23.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
|
212 |
+
"model.layers.24.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
213 |
+
"model.layers.24.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
|
214 |
+
"model.layers.24.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
|
215 |
+
"model.layers.24.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
|
216 |
+
"model.layers.24.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
217 |
+
"model.layers.24.self_attn.k_proj.bias": "pytorch_model-00003-of-00004.bin",
|
218 |
+
"model.layers.24.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
|
219 |
+
"model.layers.24.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
|
220 |
+
"model.layers.24.self_attn.q_proj.bias": "pytorch_model-00003-of-00004.bin",
|
221 |
+
"model.layers.24.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
|
222 |
+
"model.layers.24.self_attn.v_proj.bias": "pytorch_model-00003-of-00004.bin",
|
223 |
+
"model.layers.24.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
|
224 |
+
"model.layers.25.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
225 |
+
"model.layers.25.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
|
226 |
+
"model.layers.25.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
|
227 |
+
"model.layers.25.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
|
228 |
+
"model.layers.25.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
229 |
+
"model.layers.25.self_attn.k_proj.bias": "pytorch_model-00003-of-00004.bin",
|
230 |
+
"model.layers.25.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
|
231 |
+
"model.layers.25.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
|
232 |
+
"model.layers.25.self_attn.q_proj.bias": "pytorch_model-00003-of-00004.bin",
|
233 |
+
"model.layers.25.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
|
234 |
+
"model.layers.25.self_attn.v_proj.bias": "pytorch_model-00003-of-00004.bin",
|
235 |
+
"model.layers.25.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
|
236 |
+
"model.layers.26.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
237 |
+
"model.layers.26.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
|
238 |
+
"model.layers.26.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
|
239 |
+
"model.layers.26.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
|
240 |
+
"model.layers.26.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
241 |
+
"model.layers.26.self_attn.k_proj.bias": "pytorch_model-00003-of-00004.bin",
|
242 |
+
"model.layers.26.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
|
243 |
+
"model.layers.26.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
|
244 |
+
"model.layers.26.self_attn.q_proj.bias": "pytorch_model-00003-of-00004.bin",
|
245 |
+
"model.layers.26.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
|
246 |
+
"model.layers.26.self_attn.v_proj.bias": "pytorch_model-00003-of-00004.bin",
|
247 |
+
"model.layers.26.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
|
248 |
+
"model.layers.27.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
249 |
+
"model.layers.27.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
|
250 |
+
"model.layers.27.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
|
251 |
+
"model.layers.27.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
|
252 |
+
"model.layers.27.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
253 |
+
"model.layers.27.self_attn.k_proj.bias": "pytorch_model-00003-of-00004.bin",
|
254 |
+
"model.layers.27.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
|
255 |
+
"model.layers.27.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
|
256 |
+
"model.layers.27.self_attn.q_proj.bias": "pytorch_model-00003-of-00004.bin",
|
257 |
+
"model.layers.27.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
|
258 |
+
"model.layers.27.self_attn.v_proj.bias": "pytorch_model-00003-of-00004.bin",
|
259 |
+
"model.layers.27.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
|
260 |
+
"model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
|
261 |
+
"model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
|
262 |
+
"model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
|
263 |
+
"model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
|
264 |
+
"model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
|
265 |
+
"model.layers.3.self_attn.k_proj.bias": "pytorch_model-00001-of-00004.bin",
|
266 |
+
"model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
|
267 |
+
"model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
|
268 |
+
"model.layers.3.self_attn.q_proj.bias": "pytorch_model-00001-of-00004.bin",
|
269 |
+
"model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
|
270 |
+
"model.layers.3.self_attn.v_proj.bias": "pytorch_model-00001-of-00004.bin",
|
271 |
+
"model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
|
272 |
+
"model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
|
273 |
+
"model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
|
274 |
+
"model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
|
275 |
+
"model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
|
276 |
+
"model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
|
277 |
+
"model.layers.4.self_attn.k_proj.bias": "pytorch_model-00001-of-00004.bin",
|
278 |
+
"model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
|
279 |
+
"model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
|
280 |
+
"model.layers.4.self_attn.q_proj.bias": "pytorch_model-00001-of-00004.bin",
|
281 |
+
"model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
|
282 |
+
"model.layers.4.self_attn.v_proj.bias": "pytorch_model-00001-of-00004.bin",
|
283 |
+
"model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
|
284 |
+
"model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
|
285 |
+
"model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
|
286 |
+
"model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
|
287 |
+
"model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
|
288 |
+
"model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
|
289 |
+
"model.layers.5.self_attn.k_proj.bias": "pytorch_model-00001-of-00004.bin",
|
290 |
+
"model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
|
291 |
+
"model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
|
292 |
+
"model.layers.5.self_attn.q_proj.bias": "pytorch_model-00001-of-00004.bin",
|
293 |
+
"model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
|
294 |
+
"model.layers.5.self_attn.v_proj.bias": "pytorch_model-00001-of-00004.bin",
|
295 |
+
"model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
|
296 |
+
"model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
|
297 |
+
"model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
|
298 |
+
"model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
|
299 |
+
"model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
|
300 |
+
"model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
|
301 |
+
"model.layers.6.self_attn.k_proj.bias": "pytorch_model-00001-of-00004.bin",
|
302 |
+
"model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
|
303 |
+
"model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
|
304 |
+
"model.layers.6.self_attn.q_proj.bias": "pytorch_model-00001-of-00004.bin",
|
305 |
+
"model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
|
306 |
+
"model.layers.6.self_attn.v_proj.bias": "pytorch_model-00001-of-00004.bin",
|
307 |
+
"model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
|
308 |
+
"model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
|
309 |
+
"model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
|
310 |
+
"model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
|
311 |
+
"model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
|
312 |
+
"model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
|
313 |
+
"model.layers.7.self_attn.k_proj.bias": "pytorch_model-00001-of-00004.bin",
|
314 |
+
"model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
|
315 |
+
"model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
|
316 |
+
"model.layers.7.self_attn.q_proj.bias": "pytorch_model-00001-of-00004.bin",
|
317 |
+
"model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
|
318 |
+
"model.layers.7.self_attn.v_proj.bias": "pytorch_model-00001-of-00004.bin",
|
319 |
+
"model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
|
320 |
+
"model.layers.8.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
321 |
+
"model.layers.8.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
|
322 |
+
"model.layers.8.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
|
323 |
+
"model.layers.8.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
|
324 |
+
"model.layers.8.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
325 |
+
"model.layers.8.self_attn.k_proj.bias": "pytorch_model-00001-of-00004.bin",
|
326 |
+
"model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
|
327 |
+
"model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
|
328 |
+
"model.layers.8.self_attn.q_proj.bias": "pytorch_model-00001-of-00004.bin",
|
329 |
+
"model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
|
330 |
+
"model.layers.8.self_attn.v_proj.bias": "pytorch_model-00001-of-00004.bin",
|
331 |
+
"model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
|
332 |
+
"model.layers.9.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
333 |
+
"model.layers.9.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
|
334 |
+
"model.layers.9.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
|
335 |
+
"model.layers.9.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
|
336 |
+
"model.layers.9.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
337 |
+
"model.layers.9.self_attn.k_proj.bias": "pytorch_model-00002-of-00004.bin",
|
338 |
+
"model.layers.9.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
|
339 |
+
"model.layers.9.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
|
340 |
+
"model.layers.9.self_attn.q_proj.bias": "pytorch_model-00002-of-00004.bin",
|
341 |
+
"model.layers.9.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
|
342 |
+
"model.layers.9.self_attn.v_proj.bias": "pytorch_model-00002-of-00004.bin",
|
343 |
+
"model.layers.9.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
|
344 |
+
"model.norm.weight": "pytorch_model-00003-of-00004.bin"
|
345 |
+
}
|
346 |
+
}
|
merged/special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|PAD_TOKEN|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
merged/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
merged/tokenizer_config.json
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
},
|
181 |
+
"151665": {
|
182 |
+
"content": "<|PAD_TOKEN|>",
|
183 |
+
"lstrip": false,
|
184 |
+
"normalized": false,
|
185 |
+
"rstrip": false,
|
186 |
+
"single_word": false,
|
187 |
+
"special": true
|
188 |
+
}
|
189 |
+
},
|
190 |
+
"additional_special_tokens": [
|
191 |
+
"<|im_start|>",
|
192 |
+
"<|im_end|>",
|
193 |
+
"<|object_ref_start|>",
|
194 |
+
"<|object_ref_end|>",
|
195 |
+
"<|box_start|>",
|
196 |
+
"<|box_end|>",
|
197 |
+
"<|quad_start|>",
|
198 |
+
"<|quad_end|>",
|
199 |
+
"<|vision_start|>",
|
200 |
+
"<|vision_end|>",
|
201 |
+
"<|vision_pad|>",
|
202 |
+
"<|image_pad|>",
|
203 |
+
"<|video_pad|>"
|
204 |
+
],
|
205 |
+
"bos_token": null,
|
206 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'Please reason step by step, and put your final answer within \\\\boxed{}.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nPlease reason step by step, and put your final answer within \\\\boxed{}.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
207 |
+
"clean_up_tokenization_spaces": false,
|
208 |
+
"eos_token": "<|im_end|>",
|
209 |
+
"errors": "replace",
|
210 |
+
"model_max_length": 131072,
|
211 |
+
"pad_token": "<|PAD_TOKEN|>",
|
212 |
+
"padding_side": "left",
|
213 |
+
"split_special_tokens": false,
|
214 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
215 |
+
"unk_token": null
|
216 |
+
}
|
merged/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|