File size: 5,214 Bytes
149db23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10c051e
 
 
 
 
 
 
149db23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10c051e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
149db23
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
---
base_model: AIRI-Institute/gena-lm-bert-base-t2t-multi
tags:
- generated_from_trainer
metrics:
- precision
- recall
- accuracy
model-index:
- name: gena-lm-bert-base-t2t-multi_ft_BioS45_1kbpHG19_DHSs_H3K27AC
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# gena-lm-bert-base-t2t-multi_ft_BioS45_1kbpHG19_DHSs_H3K27AC

This model is a fine-tuned version of [AIRI-Institute/gena-lm-bert-base-t2t-multi](https://huggingface.co/AIRI-Institute/gena-lm-bert-base-t2t-multi) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7191
- F1 Score: 0.8258
- Precision: 0.8725
- Recall: 0.7839
- Accuracy: 0.8275
- Auc: 0.8676
- Prc: 0.8589

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step  | Validation Loss | F1 Score | Precision | Recall | Accuracy | Auc    | Prc    |
|:-------------:|:------:|:-----:|:---------------:|:--------:|:---------:|:------:|:--------:|:------:|:------:|
| 0.6927        | 0.2103 | 500   | 0.6550          | 0.6325   | 0.8027    | 0.5218 | 0.6836   | 0.7657 | 0.7801 |
| 0.6285        | 0.4207 | 1000  | 0.5540          | 0.7342   | 0.8129    | 0.6694 | 0.7472   | 0.8065 | 0.8058 |
| 0.5306        | 0.6310 | 1500  | 0.5262          | 0.7747   | 0.8010    | 0.75   | 0.7724   | 0.8369 | 0.8222 |
| 0.4969        | 0.8414 | 2000  | 0.4964          | 0.8208   | 0.7561    | 0.8976 | 0.7955   | 0.8721 | 0.8624 |
| 0.4722        | 1.0517 | 2500  | 0.4584          | 0.8228   | 0.8354    | 0.8105 | 0.8178   | 0.8876 | 0.8792 |
| 0.4466        | 1.2621 | 3000  | 0.4567          | 0.8424   | 0.7943    | 0.8968 | 0.8250   | 0.8896 | 0.8698 |
| 0.4418        | 1.4724 | 3500  | 0.4333          | 0.8416   | 0.8436    | 0.8395 | 0.8351   | 0.9004 | 0.8883 |
| 0.422         | 1.6828 | 4000  | 0.4661          | 0.8227   | 0.8588    | 0.7895 | 0.8225   | 0.9030 | 0.8967 |
| 0.4107        | 1.8931 | 4500  | 0.4329          | 0.8468   | 0.8009    | 0.8984 | 0.8305   | 0.8937 | 0.8585 |
| 0.3906        | 2.1035 | 5000  | 0.4643          | 0.8479   | 0.8290    | 0.8677 | 0.8376   | 0.8902 | 0.8512 |
| 0.4098        | 2.3138 | 5500  | 0.4532          | 0.8526   | 0.8060    | 0.9048 | 0.8368   | 0.8782 | 0.8309 |
| 0.4118        | 2.5242 | 6000  | 0.4862          | 0.8465   | 0.8503    | 0.8427 | 0.8406   | 0.9018 | 0.8845 |
| 0.4207        | 2.7345 | 6500  | 0.4667          | 0.8519   | 0.8126    | 0.8952 | 0.8376   | 0.8927 | 0.8561 |
| 0.4382        | 2.9449 | 7000  | 0.5130          | 0.8202   | 0.8763    | 0.7710 | 0.8237   | 0.9094 | 0.9039 |
| 0.3846        | 3.1552 | 7500  | 0.5103          | 0.8381   | 0.8659    | 0.8121 | 0.8363   | 0.9077 | 0.8992 |
| 0.4023        | 3.3656 | 8000  | 0.4508          | 0.8613   | 0.8225    | 0.9040 | 0.8481   | 0.9123 | 0.8963 |
| 0.3788        | 3.5759 | 8500  | 0.4996          | 0.8517   | 0.7933    | 0.9194 | 0.8330   | 0.8901 | 0.8517 |
| 0.3778        | 3.7863 | 9000  | 0.5016          | 0.8606   | 0.8237    | 0.9008 | 0.8477   | 0.8967 | 0.8631 |
| 0.3923        | 3.9966 | 9500  | 0.5175          | 0.8579   | 0.8356    | 0.8815 | 0.8477   | 0.8895 | 0.8575 |
| 0.3628        | 4.2070 | 10000 | 0.5557          | 0.8616   | 0.8427    | 0.8815 | 0.8523   | 0.8935 | 0.8706 |
| 0.4124        | 4.4173 | 10500 | 0.5216          | 0.8621   | 0.8252    | 0.9024 | 0.8494   | 0.8721 | 0.8318 |
| 0.388         | 4.6277 | 11000 | 0.6025          | 0.8584   | 0.8127    | 0.9097 | 0.8435   | 0.8572 | 0.8122 |
| 0.4513        | 4.8380 | 11500 | 0.5943          | 0.8500   | 0.8524    | 0.8476 | 0.8439   | 0.9012 | 0.8886 |
| 0.4206        | 5.0484 | 12000 | 0.5724          | 0.8610   | 0.8414    | 0.8815 | 0.8515   | 0.9016 | 0.8855 |
| 0.3882        | 5.2587 | 12500 | 0.5748          | 0.8616   | 0.8524    | 0.8710 | 0.8540   | 0.8901 | 0.8724 |
| 0.3756        | 5.4691 | 13000 | 0.5839          | 0.8635   | 0.8477    | 0.8798 | 0.8549   | 0.8756 | 0.8325 |
| 0.4158        | 5.6794 | 13500 | 0.5782          | 0.8593   | 0.8169    | 0.9065 | 0.8452   | 0.9048 | 0.8848 |
| 0.3859        | 5.8898 | 14000 | 0.5989          | 0.8530   | 0.8496    | 0.8565 | 0.8460   | 0.8947 | 0.8717 |
| 0.336         | 6.1001 | 14500 | 0.6641          | 0.8542   | 0.7996    | 0.9169 | 0.8368   | 0.8697 | 0.8287 |
| 0.3724        | 6.3105 | 15000 | 0.6330          | 0.8599   | 0.8205    | 0.9032 | 0.8464   | 0.8776 | 0.8500 |
| 0.3809        | 6.5208 | 15500 | 0.7191          | 0.8258   | 0.8725    | 0.7839 | 0.8275   | 0.8676 | 0.8589 |


### Framework versions

- Transformers 4.42.3
- Pytorch 2.3.0+cu121
- Datasets 2.18.0
- Tokenizers 0.19.0