--- license: mit base_model: microsoft/deberta-v3-small tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: subcate-cs results: [] --- # subcate-cs This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0762 - Accuracy: 0.6868 - F1: 0.7105 - Precision: 0.7235 - Recall: 0.6980 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 1.0 | 98 | 0.0743 | 0.6887 | 0.7074 | 0.7103 | 0.7044 | | No log | 2.0 | 196 | 0.0753 | 0.6926 | 0.7141 | 0.7262 | 0.7025 | | No log | 3.0 | 294 | 0.0751 | 0.6829 | 0.7078 | 0.7219 | 0.6942 | | No log | 4.0 | 392 | 0.0774 | 0.6797 | 0.7009 | 0.7117 | 0.6903 | | No log | 5.0 | 490 | 0.0762 | 0.6868 | 0.7105 | 0.7235 | 0.6980 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1