pretrain core 1
Browse files- config-0.json +1 -1
- scripts/pretrain_core_model_0.yaml +12 -24
config-0.json
CHANGED
@@ -21,7 +21,7 @@
|
|
21 |
"rms_norm_eps": 1e-05,
|
22 |
"rope_scaling": null,
|
23 |
"rope_theta": 4300.0,
|
24 |
-
"tie_word_embeddings":
|
25 |
"torch_dtype": "bfloat16",
|
26 |
"transformers_version": "4.45.0.dev0",
|
27 |
"use_cache": true,
|
|
|
21 |
"rms_norm_eps": 1e-05,
|
22 |
"rope_scaling": null,
|
23 |
"rope_theta": 4300.0,
|
24 |
+
"tie_word_embeddings": false,
|
25 |
"torch_dtype": "bfloat16",
|
26 |
"transformers_version": "4.45.0.dev0",
|
27 |
"use_cache": true,
|
scripts/pretrain_core_model_0.yaml
CHANGED
@@ -61,7 +61,6 @@ train:
|
|
61 |
global_batch_size: 512
|
62 |
|
63 |
# Number of samples per data-parallel rank (type: int, default: 4)
|
64 |
-
# micro_batch_size: 2
|
65 |
micro_batch_size: 8
|
66 |
|
67 |
# Number of iterations with learning rate warmup active (type: int, default: 2000)
|
@@ -77,11 +76,10 @@ train:
|
|
77 |
max_steps:
|
78 |
|
79 |
# Limits the length of samples. Off by default (type: Optional[int], default: null)
|
80 |
-
# max_seq_length: 4096
|
81 |
max_seq_length: 1024
|
82 |
|
83 |
# Whether to tie the embedding weights with the language modeling head weights. (type: Optional[bool], default: False)
|
84 |
-
tie_embeddings:
|
85 |
|
86 |
# (type: Optional[float], default: 1.0)
|
87 |
max_norm: 1.0
|
@@ -107,22 +105,17 @@ eval:
|
|
107 |
final_validation: true
|
108 |
|
109 |
# Optimizer-related arguments
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
#
|
114 |
-
|
115 |
-
#
|
116 |
-
|
117 |
-
#
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
# weight_decay: 0.01
|
122 |
-
# # (type: tuple, default: (0.9,0.999))
|
123 |
-
# betas:
|
124 |
-
# - 0.9
|
125 |
-
# - 0.999
|
126 |
|
127 |
# optimizer:
|
128 |
# class_path: sophia_opt.SophiaG
|
@@ -134,11 +127,6 @@ eval:
|
|
134 |
# rho: 0.05
|
135 |
# weight_decay: 0.1
|
136 |
|
137 |
-
optimizer:
|
138 |
-
class_path: dolphinflow.DolphinFlow
|
139 |
-
init_args:
|
140 |
-
lr: 3e-4
|
141 |
-
|
142 |
# How many devices/GPUs to use. Uses all GPUs by default. (type: Union[int, str], default: auto)
|
143 |
devices: auto
|
144 |
|
|
|
61 |
global_batch_size: 512
|
62 |
|
63 |
# Number of samples per data-parallel rank (type: int, default: 4)
|
|
|
64 |
micro_batch_size: 8
|
65 |
|
66 |
# Number of iterations with learning rate warmup active (type: int, default: 2000)
|
|
|
76 |
max_steps:
|
77 |
|
78 |
# Limits the length of samples. Off by default (type: Optional[int], default: null)
|
|
|
79 |
max_seq_length: 1024
|
80 |
|
81 |
# Whether to tie the embedding weights with the language modeling head weights. (type: Optional[bool], default: False)
|
82 |
+
tie_embeddings: false
|
83 |
|
84 |
# (type: Optional[float], default: 1.0)
|
85 |
max_norm: 1.0
|
|
|
105 |
final_validation: true
|
106 |
|
107 |
# Optimizer-related arguments
|
108 |
+
optimizer:
|
109 |
+
class_path: torch.optim.AdamW
|
110 |
+
init_args:
|
111 |
+
# (type: float, default: 0.001)
|
112 |
+
lr: 3e-4
|
113 |
+
# (type: float, default: 0.01)
|
114 |
+
weight_decay: 0.01
|
115 |
+
# (type: tuple, default: (0.9,0.999))
|
116 |
+
betas:
|
117 |
+
- 0.9
|
118 |
+
- 0.999
|
|
|
|
|
|
|
|
|
|
|
119 |
|
120 |
# optimizer:
|
121 |
# class_path: sophia_opt.SophiaG
|
|
|
127 |
# rho: 0.05
|
128 |
# weight_decay: 0.1
|
129 |
|
|
|
|
|
|
|
|
|
|
|
130 |
# How many devices/GPUs to use. Uses all GPUs by default. (type: Union[int, str], default: auto)
|
131 |
devices: auto
|
132 |
|