taki555 commited on
Commit
45977a5
·
verified ·
1 Parent(s): 3f4accc

Upload folder using huggingface_hub

Browse files
Files changed (4) hide show
  1. .gitattributes +2 -0
  2. README.md +59 -9
  3. framework.png +3 -0
  4. performance.png +3 -0
.gitattributes CHANGED
@@ -34,3 +34,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  tokenizer.json filter=lfs diff=lfs merge=lfs -text
 
 
 
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ framework.png filter=lfs diff=lfs merge=lfs -text
38
+ performance.png filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,9 +1,59 @@
1
- ---
2
- license: llama3.1
3
- datasets:
4
- - BAAI/Infinity-Instruct
5
- base_model:
6
- - meta-llama/Llama-3.1-8B-Instruct
7
- tags:
8
- - Instruct_Tuning
9
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: llama3.1
3
+ datasets:
4
+ - BAAI/Infinity-Instruct
5
+ base_model:
6
+ - meta-llama/Llama-3.1-8B-Instruct
7
+ tags:
8
+ - Instruct_Tuning
9
+ ---
10
+
11
+ # Shadow-FT
12
+
13
+ <a href="https://arxiv.org/pdf/2505.12716"><b>[📜 Paper]</b></a> •
14
+ <a href="https://huggingface.co/collections/taki555/shadow-ft-683288b49e1e5e1edcf03135"><b>[🤗 HF Models]</b></a> •
15
+ <a href="https://github.com/wutaiqiang/Shadow-FT"><b>[🐱 GitHub]</b></a>
16
+
17
+ This repo contains the weights from our paper: <a href="https://arxiv.org/abs/2411.06839" target="_blank">Shadow-FT: Tuning Instruct via Base</a> by <a href="https://wutaiqiang.github.io" target="_blank">Taiqiang Wu*</a> <a href="https://rummyyang.github.io/" target="_blank">Runming Yang*</a>, Jiayi Li, Pengfei Hu, Ngai Wong and Yujiu Yang.
18
+
19
+ \* for equal contributions.
20
+
21
+
22
+
23
+ ## Overview
24
+
25
+ <img src="framework.png" width="100%" />
26
+
27
+ Observation:
28
+
29
+ - Directly tuning the INSTRUCT (i.e., instruction tuned) models often leads to marginal improvements and even performance degeneration.
30
+
31
+ - Paired BASE models, the foundation for these INSTRUCT variants, contain highly similar weight values (i.e., less than 2% on average for Llama 3.1 8B).
32
+
33
+ $\Rightarrow$ We propose the Shadow-FT framework to tune the INSTRUCT models by leveraging the corresponding BASE models. The key insight is to fine-tune the BASE model, and then _directly_ graft the learned weight updates to the INSTRUCT model.
34
+
35
+
36
+ ## Performance
37
+
38
+ This repository contains the Llama-3.1-8B tuned on BAAI-2k subsets using Shadow-FT.
39
+
40
+ <img src="performance.png" width="100%" />
41
+
42
+ please refer to [our paper](https://arxiv.org/pdf/2505.12716) for details.
43
+
44
+
45
+
46
+ ## ☕️ Citation
47
+
48
+ If you find this repository helpful, please consider citing our paper:
49
+
50
+ ```
51
+ @article{wu2025shadow,
52
+ title={Shadow-FT: Tuning Instruct via Base},
53
+ author={Wu, Taiqiang and Yang, Runming and Li, Jiayi and Hu, Pengfei and Wong, Ngai and Yang, Yujiu},
54
+ journal={arXiv preprint arXiv:2505.12716},
55
+ year={2025}
56
+ }
57
+ ```
58
+
59
+ For any questions, please pull an issue or email at `[email protected]`
framework.png ADDED

Git LFS Details

  • SHA256: a6dee92802c87c0698995fa2f147d0b3568bda9ad861ff22d6251b14ab7c1e99
  • Pointer size: 131 Bytes
  • Size of remote file: 251 kB
performance.png ADDED

Git LFS Details

  • SHA256: 21558b6db38d2f6b99837cd01efe764e5d3197c149873e7cec7329402f864348
  • Pointer size: 131 Bytes
  • Size of remote file: 260 kB