--- license: apple-ascl pipeline_tag: depth-estimation library_name: pytorch base_model: - apple/DepthPro tags: - safetensors --- Takara.ai Logo From the Frontier Research Team at **Takara.ai** we present **DepthPro-Safetensors**, a memory-efficient and optimized implementation of Apple's high-precision depth estimation model. --- # DepthPro-Safetensors This repository contains Apple's [DepthPro](https://huggingface.co/apple/DepthPro) depth estimation model converted to the SafeTensors format for improved memory efficiency, security, and faster loading times. ## Model Overview DepthPro is a state-of-the-art monocular depth estimation model developed by Apple that produces sharp and accurate metric depth maps from a single image in less than a second. This converted version preserves all the capabilities of the original model while providing the benefits of the SafeTensors format. ## Technical Specifications - **Total Parameters**: 951,991,330 - **Memory Usage**: 1815.78 MB - **Precision**: torch.float16 - **Estimated FLOPs**: 3,501,896,768 _Details calculated with [TensorKIKO](https://github.com/takara-ai/TensorKiko)_ ## Usage ```python from transformers import AutoModelForDepthEstimation, AutoImageProcessor import torch from PIL import Image # Load model and processor model = AutoModelForDepthEstimation.from_pretrained("takara-ai/DepthPro-Safetensors") processor = AutoImageProcessor.from_pretrained("takara-ai/DepthPro-Safetensors") # Prepare image image = Image.open("your_image.jpg") inputs = processor(images=image, return_tensors="pt") # Inference with torch.no_grad(): outputs = model(**inputs) predicted_depth = outputs.predicted_depth # Post-process for visualization depth_map = processor.post_process_depth_estimation(outputs, target_size=image.size[::-1]) ``` ## Benefits of SafeTensors Format - **Improved Security**: Resistant to code execution vulnerabilities - **Faster Loading Times**: Optimized memory mapping for quicker model initialization - **Memory Efficiency**: Better handling of tensor storage for reduced memory footprint - **Parallel Loading**: Support for efficient parallel tensor loading ## Citation ```bibtex @article{Bochkovskii2024:arxiv, author = {Aleksei Bochkovskii and Ama\"{e}l Delaunoy and Hugo Germain and Marcel Santos and Yichao Zhou and Stephan R. Richter and Vladlen Koltun}, title = {Depth Pro: Sharp Monocular Metric Depth in Less Than a Second}, journal = {arXiv}, year = {2024}, } ``` --- For research inquiries and press, please reach out to research@takara.ai > 人類を変革する