--- base_model: mistralai/Mistral-7B-v0.1 datasets: - HuggingFaceH4/ultrafeedback_binarized library_name: peft license: apache-2.0 tags: - alignment-handbook - trl - dpo - generated_from_trainer model-index: - name: zephyr-7b-dpo-qlora results: [] --- # zephyr-7b-dpo-qlora This model is a fine-tuned version of [alignment-handbook/zephyr-7b-sft-qlora](https://huggingface.co/alignment-handbook/zephyr-7b-sft-qlora) on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set: - Loss: 0.4945 - Rewards/chosen: -2.5530 - Rewards/rejected: -3.6159 - Rewards/accuracies: 0.7778 - Rewards/margins: 1.0629 - Logps/rejected: -606.2373 - Logps/chosen: -520.2218 - Logits/rejected: -0.9908 - Logits/chosen: -1.1030 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.6212 | 0.1047 | 100 | 0.6321 | -0.3313 | -0.5450 | 0.6944 | 0.2137 | -299.1472 | -298.0506 | -2.0086 | -2.0933 | | 0.5618 | 0.2094 | 200 | 0.5601 | -0.8198 | -1.3660 | 0.7222 | 0.5461 | -381.2446 | -346.9064 | -1.6694 | -1.7551 | | 0.54 | 0.3141 | 300 | 0.5265 | -1.5221 | -2.3343 | 0.7460 | 0.8122 | -478.0748 | -417.1275 | -1.0704 | -1.1715 | | 0.5261 | 0.4187 | 400 | 0.5082 | -1.6553 | -2.5263 | 0.7540 | 0.8710 | -497.2759 | -430.4526 | -1.1014 | -1.2013 | | 0.5107 | 0.5234 | 500 | 0.5059 | -2.4506 | -3.4250 | 0.75 | 0.9744 | -587.1476 | -509.9848 | -0.9852 | -1.0956 | | 0.4851 | 0.6281 | 600 | 0.5023 | -2.2726 | -3.2316 | 0.7679 | 0.9590 | -567.8049 | -492.1783 | -0.9970 | -1.1078 | | 0.4681 | 0.7328 | 700 | 0.4993 | -2.3170 | -3.3688 | 0.7679 | 1.0517 | -581.5197 | -496.6232 | -1.0068 | -1.1190 | | 0.4852 | 0.8375 | 800 | 0.4950 | -2.3970 | -3.4117 | 0.7738 | 1.0147 | -585.8156 | -504.6183 | -1.0237 | -1.1353 | | 0.4907 | 0.9422 | 900 | 0.4945 | -2.5678 | -3.6349 | 0.7778 | 1.0671 | -608.1346 | -521.7063 | -0.9901 | -1.1024 | ### Framework versions - PEFT 0.12.0 - Transformers 4.44.2 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1