tadrianonet commited on
Commit
2442baa
·
verified ·
1 Parent(s): 9a5beb8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +60 -112
README.md CHANGED
@@ -3,197 +3,145 @@ library_name: transformers
3
  tags: []
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
 
 
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
 
 
 
39
 
40
- ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
71
 
72
  Use the code below to get started with the model.
73
 
74
- [More Information Needed]
 
 
 
 
 
 
 
 
75
 
76
  ## Training Details
77
 
78
  ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
 
84
  ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
 
90
- [More Information Needed]
 
 
 
91
 
 
92
 
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
 
103
  ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
  ### Testing Data, Factors & Metrics
108
 
109
  #### Testing Data
110
 
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
 
115
  #### Factors
116
 
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
 
121
  #### Metrics
122
 
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
 
127
  ### Results
128
 
129
- [More Information Needed]
 
 
130
 
131
  #### Summary
132
 
 
133
 
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
 
139
  [More Information Needed]
140
 
141
  ## Environmental Impact
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
  Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
 
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
  - **Cloud Provider:** [More Information Needed]
150
  - **Compute Region:** [More Information Needed]
151
  - **Carbon Emitted:** [More Information Needed]
152
 
153
- ## Technical Specifications [optional]
154
 
155
  ### Model Architecture and Objective
156
 
157
- [More Information Needed]
158
 
159
  ### Compute Infrastructure
160
 
161
- [More Information Needed]
162
-
163
  #### Hardware
164
 
165
- [More Information Needed]
 
166
 
167
  #### Software
168
 
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
  **BibTeX:**
176
 
177
- [More Information Needed]
 
 
 
 
 
 
 
 
178
 
179
  **APA:**
180
 
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
 
197
  ## Model Card Contact
198
 
199
- [More Information Needed]
 
3
  tags: []
4
  ---
5
 
6
+ # Model Card for DistilBERT Text Classification
 
 
 
7
 
8
+ This is a DistilBERT model fine-tuned for text classification tasks.
9
 
10
  ## Model Details
11
 
12
  ### Model Description
13
 
14
+ This DistilBERT model is fine-tuned for text classification tasks. It is designed to classify texts into different categories based on the provided dataset.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
 
16
+ - **Developed by:** Thiago Adriano
17
+ - **Model type:** DistilBERT for Sequence Classification
18
+ - **Language(s) (NLP):** Portuguese
19
+ - **License:** MIT License
20
+ - **Finetuned from model:** distilbert-base-uncased
21
 
22
+ ### Model Sources
23
 
24
+ - **Repository:** [Link to your repository](https://huggingface.co/tadrianonet/distilbert-text-classification)
25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
 
27
  ## How to Get Started with the Model
28
 
29
  Use the code below to get started with the model.
30
 
31
+ ```python
32
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
33
+
34
+ tokenizer = AutoTokenizer.from_pretrained("tadrianonet/distilbert-text-classification")
35
+ model = AutoModelForSequenceClassification.from_pretrained("tadrianonet/distilbert-text-classification")
36
+
37
+ inputs = tokenizer("Sample text for classification", return_tensors="pt")
38
+ outputs = model(**inputs)
39
+ ```
40
 
41
  ## Training Details
42
 
43
  ### Training Data
44
 
45
+ The training data consists of text-label pairs in Portuguese. The data is preprocessed to tokenize the text and convert labels to numerical format.
 
 
46
 
47
  ### Training Procedure
48
 
49
+ The model is fine-tuned using the Hugging Face `Trainer` API with the following hyperparameters:
 
 
50
 
51
+ - **Training regime:** fp32
52
+ - **Learning rate:** 2e-5
53
+ - **Batch size:** 16
54
+ - **Epochs:** 3
55
 
56
+ #### Speeds, Sizes, Times
57
 
58
+ - **Training time:** Approximately 10 minutes on a single GPU
 
 
 
 
 
 
 
 
59
 
60
  ## Evaluation
61
 
 
 
62
  ### Testing Data, Factors & Metrics
63
 
64
  #### Testing Data
65
 
66
+ The testing data is a separate set of text-label pairs used to evaluate the model's performance.
 
 
67
 
68
  #### Factors
69
 
70
+ The evaluation is disaggregated by accuracy and loss.
 
 
71
 
72
  #### Metrics
73
 
74
+ - **Accuracy:** Measures the proportion of correct predictions
75
+ - **Loss:** Measures the error in the model's predictions
 
76
 
77
  ### Results
78
 
79
+ - **Evaluation Results:**
80
+ - **Loss:** 0.692
81
+ - **Accuracy:** 50%
82
 
83
  #### Summary
84
 
85
+ The model achieves 50% accuracy on the evaluation dataset, indicating that further fine-tuning and evaluation on a more diverse dataset may be necessary.
86
 
87
+ ## Model Examination
 
 
 
88
 
89
  [More Information Needed]
90
 
91
  ## Environmental Impact
92
 
 
 
93
  Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
94
 
95
+ - **Hardware Type:** GPU
96
+ - **Hours used:** 0.2 hours
97
  - **Cloud Provider:** [More Information Needed]
98
  - **Compute Region:** [More Information Needed]
99
  - **Carbon Emitted:** [More Information Needed]
100
 
101
+ ## Technical Specifications
102
 
103
  ### Model Architecture and Objective
104
 
105
+ The model is based on DistilBERT, a smaller, faster, and cheaper version of BERT, designed for efficient text classification.
106
 
107
  ### Compute Infrastructure
108
 
 
 
109
  #### Hardware
110
 
111
+ - **Hardware Type:** Single GPU
112
+ - **GPU Model:** [More Information Needed]
113
 
114
  #### Software
115
 
116
+ - **Framework:** Transformers 4.x
117
+ - **Library:** PyTorch
 
118
 
119
+ ## Citation
120
 
121
  **BibTeX:**
122
 
123
+ 1 ```bibtex
124
+ @misc{thiago_adriano_2024_distilbert,
125
+ author = {Thiago Adriano},
126
+ title = {DistilBERT Text Classification},
127
+ year = {2024},
128
+ publisher = {Hugging Face},
129
+ howpublished = {\url{https://huggingface.co/tadrianonet/distilbert-text-classification}},
130
+ }
131
+ 1 ```
132
 
133
  **APA:**
134
 
135
+ Thiago Adriano. (2024). DistilBERT Text Classification. Hugging Face. https://huggingface.co/tadrianonet/distilbert-text-classification
 
 
136
 
137
+ ## More Information
138
 
139
+ For more details, visit the [Hugging Face model page](https://huggingface.co/tadrianonet/distilbert-text-classification).
140
 
141
+ ## Model Card Authors
142
 
143
+ Thiago Adriano
 
 
 
 
144
 
145
  ## Model Card Contact
146
 
147
+ For more information, contact Thiago Adriano at [[email protected]]