Update README.md
Browse files
README.md
CHANGED
@@ -3,197 +3,145 @@ library_name: transformers
|
|
3 |
tags: []
|
4 |
---
|
5 |
|
6 |
-
# Model Card for
|
7 |
-
|
8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
-
|
10 |
|
|
|
11 |
|
12 |
## Model Details
|
13 |
|
14 |
### Model Description
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
-
|
20 |
-
- **Developed by:** [More Information Needed]
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
-
|
28 |
-
### Model Sources [optional]
|
29 |
-
|
30 |
-
<!-- Provide the basic links for the model. -->
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
-
|
36 |
-
## Uses
|
37 |
|
38 |
-
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
###
|
41 |
|
42 |
-
|
43 |
|
44 |
-
[More Information Needed]
|
45 |
-
|
46 |
-
### Downstream Use [optional]
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
-
|
52 |
-
### Out-of-Scope Use
|
53 |
-
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
|
70 |
## How to Get Started with the Model
|
71 |
|
72 |
Use the code below to get started with the model.
|
73 |
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
## Training Details
|
77 |
|
78 |
### Training Data
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
|
84 |
### Training Procedure
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
|
90 |
-
|
|
|
|
|
|
|
91 |
|
|
|
92 |
|
93 |
-
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
|
103 |
## Evaluation
|
104 |
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
### Testing Data, Factors & Metrics
|
108 |
|
109 |
#### Testing Data
|
110 |
|
111 |
-
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
|
115 |
#### Factors
|
116 |
|
117 |
-
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
|
121 |
#### Metrics
|
122 |
|
123 |
-
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
|
127 |
### Results
|
128 |
|
129 |
-
|
|
|
|
|
130 |
|
131 |
#### Summary
|
132 |
|
|
|
133 |
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
|
139 |
[More Information Needed]
|
140 |
|
141 |
## Environmental Impact
|
142 |
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
|
147 |
-
- **Hardware Type:**
|
148 |
-
- **Hours used:**
|
149 |
- **Cloud Provider:** [More Information Needed]
|
150 |
- **Compute Region:** [More Information Needed]
|
151 |
- **Carbon Emitted:** [More Information Needed]
|
152 |
|
153 |
-
## Technical Specifications
|
154 |
|
155 |
### Model Architecture and Objective
|
156 |
|
157 |
-
|
158 |
|
159 |
### Compute Infrastructure
|
160 |
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
#### Hardware
|
164 |
|
165 |
-
|
|
|
166 |
|
167 |
#### Software
|
168 |
|
169 |
-
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
|
173 |
-
|
174 |
|
175 |
**BibTeX:**
|
176 |
|
177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
|
179 |
**APA:**
|
180 |
|
181 |
-
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
|
185 |
-
|
186 |
|
187 |
-
[
|
188 |
|
189 |
-
##
|
190 |
|
191 |
-
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
|
197 |
## Model Card Contact
|
198 |
|
199 |
-
|
|
|
3 |
tags: []
|
4 |
---
|
5 |
|
6 |
+
# Model Card for DistilBERT Text Classification
|
|
|
|
|
|
|
7 |
|
8 |
+
This is a DistilBERT model fine-tuned for text classification tasks.
|
9 |
|
10 |
## Model Details
|
11 |
|
12 |
### Model Description
|
13 |
|
14 |
+
This DistilBERT model is fine-tuned for text classification tasks. It is designed to classify texts into different categories based on the provided dataset.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
+
- **Developed by:** Thiago Adriano
|
17 |
+
- **Model type:** DistilBERT for Sequence Classification
|
18 |
+
- **Language(s) (NLP):** Portuguese
|
19 |
+
- **License:** MIT License
|
20 |
+
- **Finetuned from model:** distilbert-base-uncased
|
21 |
|
22 |
+
### Model Sources
|
23 |
|
24 |
+
- **Repository:** [Link to your repository](https://huggingface.co/tadrianonet/distilbert-text-classification)
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
## How to Get Started with the Model
|
28 |
|
29 |
Use the code below to get started with the model.
|
30 |
|
31 |
+
```python
|
32 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
33 |
+
|
34 |
+
tokenizer = AutoTokenizer.from_pretrained("tadrianonet/distilbert-text-classification")
|
35 |
+
model = AutoModelForSequenceClassification.from_pretrained("tadrianonet/distilbert-text-classification")
|
36 |
+
|
37 |
+
inputs = tokenizer("Sample text for classification", return_tensors="pt")
|
38 |
+
outputs = model(**inputs)
|
39 |
+
```
|
40 |
|
41 |
## Training Details
|
42 |
|
43 |
### Training Data
|
44 |
|
45 |
+
The training data consists of text-label pairs in Portuguese. The data is preprocessed to tokenize the text and convert labels to numerical format.
|
|
|
|
|
46 |
|
47 |
### Training Procedure
|
48 |
|
49 |
+
The model is fine-tuned using the Hugging Face `Trainer` API with the following hyperparameters:
|
|
|
|
|
50 |
|
51 |
+
- **Training regime:** fp32
|
52 |
+
- **Learning rate:** 2e-5
|
53 |
+
- **Batch size:** 16
|
54 |
+
- **Epochs:** 3
|
55 |
|
56 |
+
#### Speeds, Sizes, Times
|
57 |
|
58 |
+
- **Training time:** Approximately 10 minutes on a single GPU
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
## Evaluation
|
61 |
|
|
|
|
|
62 |
### Testing Data, Factors & Metrics
|
63 |
|
64 |
#### Testing Data
|
65 |
|
66 |
+
The testing data is a separate set of text-label pairs used to evaluate the model's performance.
|
|
|
|
|
67 |
|
68 |
#### Factors
|
69 |
|
70 |
+
The evaluation is disaggregated by accuracy and loss.
|
|
|
|
|
71 |
|
72 |
#### Metrics
|
73 |
|
74 |
+
- **Accuracy:** Measures the proportion of correct predictions
|
75 |
+
- **Loss:** Measures the error in the model's predictions
|
|
|
76 |
|
77 |
### Results
|
78 |
|
79 |
+
- **Evaluation Results:**
|
80 |
+
- **Loss:** 0.692
|
81 |
+
- **Accuracy:** 50%
|
82 |
|
83 |
#### Summary
|
84 |
|
85 |
+
The model achieves 50% accuracy on the evaluation dataset, indicating that further fine-tuning and evaluation on a more diverse dataset may be necessary.
|
86 |
|
87 |
+
## Model Examination
|
|
|
|
|
|
|
88 |
|
89 |
[More Information Needed]
|
90 |
|
91 |
## Environmental Impact
|
92 |
|
|
|
|
|
93 |
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
94 |
|
95 |
+
- **Hardware Type:** GPU
|
96 |
+
- **Hours used:** 0.2 hours
|
97 |
- **Cloud Provider:** [More Information Needed]
|
98 |
- **Compute Region:** [More Information Needed]
|
99 |
- **Carbon Emitted:** [More Information Needed]
|
100 |
|
101 |
+
## Technical Specifications
|
102 |
|
103 |
### Model Architecture and Objective
|
104 |
|
105 |
+
The model is based on DistilBERT, a smaller, faster, and cheaper version of BERT, designed for efficient text classification.
|
106 |
|
107 |
### Compute Infrastructure
|
108 |
|
|
|
|
|
109 |
#### Hardware
|
110 |
|
111 |
+
- **Hardware Type:** Single GPU
|
112 |
+
- **GPU Model:** [More Information Needed]
|
113 |
|
114 |
#### Software
|
115 |
|
116 |
+
- **Framework:** Transformers 4.x
|
117 |
+
- **Library:** PyTorch
|
|
|
118 |
|
119 |
+
## Citation
|
120 |
|
121 |
**BibTeX:**
|
122 |
|
123 |
+
1 ```bibtex
|
124 |
+
@misc{thiago_adriano_2024_distilbert,
|
125 |
+
author = {Thiago Adriano},
|
126 |
+
title = {DistilBERT Text Classification},
|
127 |
+
year = {2024},
|
128 |
+
publisher = {Hugging Face},
|
129 |
+
howpublished = {\url{https://huggingface.co/tadrianonet/distilbert-text-classification}},
|
130 |
+
}
|
131 |
+
1 ```
|
132 |
|
133 |
**APA:**
|
134 |
|
135 |
+
Thiago Adriano. (2024). DistilBERT Text Classification. Hugging Face. https://huggingface.co/tadrianonet/distilbert-text-classification
|
|
|
|
|
136 |
|
137 |
+
## More Information
|
138 |
|
139 |
+
For more details, visit the [Hugging Face model page](https://huggingface.co/tadrianonet/distilbert-text-classification).
|
140 |
|
141 |
+
## Model Card Authors
|
142 |
|
143 |
+
Thiago Adriano
|
|
|
|
|
|
|
|
|
144 |
|
145 |
## Model Card Contact
|
146 |
|
147 |
+
For more information, contact Thiago Adriano at [[email protected]]
|