szoplakz commited on
Commit
f717991
·
verified ·
1 Parent(s): e02ad17

Upload 6 files

Browse files
README.md ADDED
@@ -0,0 +1,485 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:500000
8
+ - loss:CosineSimilarityLoss
9
+ base_model: kinit/slovakbert-sts-stsb
10
+ widget:
11
+ - source_sentence: V súlade so zisteným skutkovým stavom a citovaným ustanovením zákona
12
+ súd návrhu vyhovel.
13
+ sentences:
14
+ - V súlade so zisteným skutkovým stavom a citovaným ustanovením zákona súd návrhu
15
+ vyhovel.
16
+ - 13C/88/2013, rozsudok Okresného súdu Revúca sp.zn.
17
+ - Výrok o trovách konania bol odôvodnený ustanovením § 142 ods.
18
+ - source_sentence: '2013 tak, aby sa do školenia vmestil praktický
 nácvik (č.l.'
19
+ sentences:
20
+ - '2013 tak, aby sa do školenia vmestil praktický
 nácvik (č.l.'
21
+ - 'Povinnosť súdu posúdiť
 uplatnený nárok aj z hľadiska súladu s dobrými mravmi je zvýraznená v tých prípadoch,
22
+ keď ich účastník
 konania vyslovene namieta, musí však na ňu prihliadnuť aj v prípadoch, kedy takýto
23
+ rozpor zistí súd
 sám pri prieskume ex officio, keďže na absolútnu neplatnosť úkonu súd musí prihliadať
24
+ ex lege.'
25
+ - 'Nie je preto možné súhlasiť
 s názorom súdu prvého stupňa, že sú závislé na úverovom vzťahu.'
26
+ - source_sentence: 'Žalobca je povinný nahradiť vedľajšiemu účastníkovi na účet jeho
27
+ právneho zástupcu trovy odvolacieho
 konania vo výške 59,84 eur do 3 dní od právoplatnosti tohto rozsudku.'
28
+ sentences:
29
+ - 'Zdôraznil, že navrhovateľ
 skutočnosti o existencii iného vzťahu medzi pôvodným majiteľom zmenky a odporcom
30
+ vôbec netvrdil,



 teda nebol nositeľom dôkazného bremena.'
31
+ - 'Žalobca je povinný nahradiť vedľajšiemu účastníkovi na účet jeho právneho zástupcu
32
+ trovy odvolacieho
 konania vo výške 59,84 eur do 3 dní od právoplatnosti tohto rozsudku.'
33
+ - 'Za týmto účelom žiadal žalobcu o doplnenie podaného návrhu,
 aby bolo možné posúdiť skutočnosť, či ide o uplatnenie práv zo spotrebiteľského
34
+ vzťahu, alebo nie.'
35
+ - source_sentence: 'Dátum začiatku úročenia zmenkovej sumy vyplní na
 zmenke remitent tak, že ním bude deň, kedy sa v zmysle bodu 4 týchto podmienok
36
+ stal splatný celý dlh.'
37
+ sentences:
38
+ - 'Kumulatívne s tým musí byť splnená podmienka, že pohľadávka sa nezdá byť zjavne
39
+ neopodstatnená,
 alebo návrh neprípustný.'
40
+ - 2 veta druhá O.s.p.
41
+ - 'Dátum začiatku úročenia zmenkovej sumy vyplní na
 zmenke remitent tak, že ním bude deň, kedy sa v zmysle bodu 4 týchto podmienok
42
+ stal splatný celý dlh.'
43
+ - source_sentence: 'Ustanovenie tohto odseku platí aj v prípade zmeny majiteľa zmenky
44
+ alebo postúpenia práva zo
 zmenky.'
45
+ sentences:
46
+ - 'Ustanovenie tohto odseku platí aj v prípade zmeny majiteľa zmenky alebo postúpenia
47
+ práva zo
 zmenky.'
48
+ - 'Miroslav Šedivec
 ECLI: ECLI:SK:OSRA:2016:6816204309.1

 Uznesenie
 Okresný súd Revúca vo veci

 navrhovateľa: Dopravný podnik mesta Košice, a.s., IČO: 31701914
 Bardejovská 6
 043 29 Košice

 zast.'
49
+ - '3 (ktorému súdu je
 určené, kto ho robí, ktorej veci sa týka a čo sleduje, jeho datovania a podpísania)
50
+ uviesť, proti ktorému
 rozhodnutiu smeruje, v akom rozsahu sa napáda, v čom sa toto rozhodnutie alebo
51
+ postup súdu považuje
 za nesprávny a čoho sa odvolateľ domáha.'
52
+ pipeline_tag: sentence-similarity
53
+ library_name: sentence-transformers
54
+ ---
55
+
56
+ # SentenceTransformer based on kinit/slovakbert-sts-stsb
57
+
58
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [kinit/slovakbert-sts-stsb](https://huggingface.co/kinit/slovakbert-sts-stsb). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
59
+
60
+ ## Model Details
61
+
62
+ ### Model Description
63
+ - **Model Type:** Sentence Transformer
64
+ - **Base model:** [kinit/slovakbert-sts-stsb](https://huggingface.co/kinit/slovakbert-sts-stsb) <!-- at revision 770633080dda1d1867e7179a456ed53138280c08 -->
65
+ - **Maximum Sequence Length:** 256 tokens
66
+ - **Output Dimensionality:** 768 dimensions
67
+ - **Similarity Function:** Cosine Similarity
68
+ <!-- - **Training Dataset:** Unknown -->
69
+ <!-- - **Language:** Unknown -->
70
+ <!-- - **License:** Unknown -->
71
+
72
+ ### Model Sources
73
+
74
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
75
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
76
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
77
+
78
+ ### Full Model Architecture
79
+
80
+ ```
81
+ SentenceTransformer(
82
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: RobertaModel
83
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
84
+ )
85
+ ```
86
+
87
+ ## Usage
88
+
89
+ ### Direct Usage (Sentence Transformers)
90
+
91
+ First install the Sentence Transformers library:
92
+
93
+ ```bash
94
+ pip install -U sentence-transformers
95
+ ```
96
+
97
+ Then you can load this model and run inference.
98
+ ```python
99
+ from sentence_transformers import SentenceTransformer
100
+
101
+ # Download from the 🤗 Hub
102
+ model = SentenceTransformer("sentence_transformers_model_id")
103
+ # Run inference
104
+ sentences = [
105
+ 'Ustanovenie tohto odseku platí aj v prípade zmeny majiteľa zmenky alebo postúpenia práva zo\u2028zmenky.',
106
+ 'Ustanovenie tohto odseku platí aj v prípade zmeny majiteľa zmenky alebo postúpenia práva zo\u2028zmenky.',
107
+ '3 (ktorému súdu je\u2028určené, kto ho robí, ktorej veci sa týka a čo sleduje, jeho datovania a podpísania) uviesť, proti ktorému\u2028rozhodnutiu smeruje, v akom rozsahu sa napáda, v čom sa toto rozhodnutie alebo postup súdu považuje\u2028za nesprávny a čoho sa odvolateľ domáha.',
108
+ ]
109
+ embeddings = model.encode(sentences)
110
+ print(embeddings.shape)
111
+ # [3, 768]
112
+
113
+ # Get the similarity scores for the embeddings
114
+ similarities = model.similarity(embeddings, embeddings)
115
+ print(similarities.shape)
116
+ # [3, 3]
117
+ ```
118
+
119
+ <!--
120
+ ### Direct Usage (Transformers)
121
+
122
+ <details><summary>Click to see the direct usage in Transformers</summary>
123
+
124
+ </details>
125
+ -->
126
+
127
+ <!--
128
+ ### Downstream Usage (Sentence Transformers)
129
+
130
+ You can finetune this model on your own dataset.
131
+
132
+ <details><summary>Click to expand</summary>
133
+
134
+ </details>
135
+ -->
136
+
137
+ <!--
138
+ ### Out-of-Scope Use
139
+
140
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
141
+ -->
142
+
143
+ <!--
144
+ ## Bias, Risks and Limitations
145
+
146
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
147
+ -->
148
+
149
+ <!--
150
+ ### Recommendations
151
+
152
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
153
+ -->
154
+
155
+ ## Training Details
156
+
157
+ ### Training Dataset
158
+
159
+ #### Unnamed Dataset
160
+
161
+ * Size: 500,000 training samples
162
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
163
+ * Approximate statistics based on the first 1000 samples:
164
+ | | sentence_0 | sentence_1 | label |
165
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:--------------------------------------------------------------|
166
+ | type | string | string | float |
167
+ | details | <ul><li>min: 4 tokens</li><li>mean: 31.75 tokens</li><li>max: 256 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 31.75 tokens</li><li>max: 256 tokens</li></ul> | <ul><li>min: 1.0</li><li>mean: 1.0</li><li>max: 1.0</li></ul> |
168
+ * Samples:
169
+ | sentence_0 | sentence_1 | label |
170
+ |:--------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
171
+ | <code>
 Súd: Okresný súd Námestovo
 Spisová značka: 5C/265/2015
 Identifikačné číslo súdneho spisu: 5815205480
 Dátum vydania rozhodnutia: 02.</code> | <code>
 Súd: Okresný súd Námestovo
 Spisová značka: 5C/265/2015
 Identifikačné číslo súdneho spisu: 5815205480
 Dátum vydania rozhodnutia: 02.</code> | <code>1.0</code> |
172
+ | <code>06.</code> | <code>06.</code> | <code>1.0</code> |
173
+ | <code>2016
 Meno a priezvisko sudcu, VSÚ: JUDr.</code> | <code>2016
 Meno a priezvisko sudcu, VSÚ: JUDr.</code> | <code>1.0</code> |
174
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
175
+ ```json
176
+ {
177
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
178
+ }
179
+ ```
180
+
181
+ ### Training Hyperparameters
182
+ #### Non-Default Hyperparameters
183
+
184
+ - `per_device_train_batch_size`: 4
185
+ - `per_device_eval_batch_size`: 4
186
+ - `num_train_epochs`: 1
187
+ - `fp16`: True
188
+ - `multi_dataset_batch_sampler`: round_robin
189
+
190
+ #### All Hyperparameters
191
+ <details><summary>Click to expand</summary>
192
+
193
+ - `overwrite_output_dir`: False
194
+ - `do_predict`: False
195
+ - `eval_strategy`: no
196
+ - `prediction_loss_only`: True
197
+ - `per_device_train_batch_size`: 4
198
+ - `per_device_eval_batch_size`: 4
199
+ - `per_gpu_train_batch_size`: None
200
+ - `per_gpu_eval_batch_size`: None
201
+ - `gradient_accumulation_steps`: 1
202
+ - `eval_accumulation_steps`: None
203
+ - `torch_empty_cache_steps`: None
204
+ - `learning_rate`: 5e-05
205
+ - `weight_decay`: 0.0
206
+ - `adam_beta1`: 0.9
207
+ - `adam_beta2`: 0.999
208
+ - `adam_epsilon`: 1e-08
209
+ - `max_grad_norm`: 1
210
+ - `num_train_epochs`: 1
211
+ - `max_steps`: -1
212
+ - `lr_scheduler_type`: linear
213
+ - `lr_scheduler_kwargs`: {}
214
+ - `warmup_ratio`: 0.0
215
+ - `warmup_steps`: 0
216
+ - `log_level`: passive
217
+ - `log_level_replica`: warning
218
+ - `log_on_each_node`: True
219
+ - `logging_nan_inf_filter`: True
220
+ - `save_safetensors`: True
221
+ - `save_on_each_node`: False
222
+ - `save_only_model`: False
223
+ - `restore_callback_states_from_checkpoint`: False
224
+ - `no_cuda`: False
225
+ - `use_cpu`: False
226
+ - `use_mps_device`: False
227
+ - `seed`: 42
228
+ - `data_seed`: None
229
+ - `jit_mode_eval`: False
230
+ - `use_ipex`: False
231
+ - `bf16`: False
232
+ - `fp16`: True
233
+ - `fp16_opt_level`: O1
234
+ - `half_precision_backend`: auto
235
+ - `bf16_full_eval`: False
236
+ - `fp16_full_eval`: False
237
+ - `tf32`: None
238
+ - `local_rank`: 0
239
+ - `ddp_backend`: None
240
+ - `tpu_num_cores`: None
241
+ - `tpu_metrics_debug`: False
242
+ - `debug`: []
243
+ - `dataloader_drop_last`: False
244
+ - `dataloader_num_workers`: 0
245
+ - `dataloader_prefetch_factor`: None
246
+ - `past_index`: -1
247
+ - `disable_tqdm`: False
248
+ - `remove_unused_columns`: True
249
+ - `label_names`: None
250
+ - `load_best_model_at_end`: False
251
+ - `ignore_data_skip`: False
252
+ - `fsdp`: []
253
+ - `fsdp_min_num_params`: 0
254
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
255
+ - `tp_size`: 0
256
+ - `fsdp_transformer_layer_cls_to_wrap`: None
257
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
258
+ - `deepspeed`: None
259
+ - `label_smoothing_factor`: 0.0
260
+ - `optim`: adamw_torch
261
+ - `optim_args`: None
262
+ - `adafactor`: False
263
+ - `group_by_length`: False
264
+ - `length_column_name`: length
265
+ - `ddp_find_unused_parameters`: None
266
+ - `ddp_bucket_cap_mb`: None
267
+ - `ddp_broadcast_buffers`: False
268
+ - `dataloader_pin_memory`: True
269
+ - `dataloader_persistent_workers`: False
270
+ - `skip_memory_metrics`: True
271
+ - `use_legacy_prediction_loop`: False
272
+ - `push_to_hub`: False
273
+ - `resume_from_checkpoint`: None
274
+ - `hub_model_id`: None
275
+ - `hub_strategy`: every_save
276
+ - `hub_private_repo`: None
277
+ - `hub_always_push`: False
278
+ - `gradient_checkpointing`: False
279
+ - `gradient_checkpointing_kwargs`: None
280
+ - `include_inputs_for_metrics`: False
281
+ - `include_for_metrics`: []
282
+ - `eval_do_concat_batches`: True
283
+ - `fp16_backend`: auto
284
+ - `push_to_hub_model_id`: None
285
+ - `push_to_hub_organization`: None
286
+ - `mp_parameters`:
287
+ - `auto_find_batch_size`: False
288
+ - `full_determinism`: False
289
+ - `torchdynamo`: None
290
+ - `ray_scope`: last
291
+ - `ddp_timeout`: 1800
292
+ - `torch_compile`: False
293
+ - `torch_compile_backend`: None
294
+ - `torch_compile_mode`: None
295
+ - `include_tokens_per_second`: False
296
+ - `include_num_input_tokens_seen`: False
297
+ - `neftune_noise_alpha`: None
298
+ - `optim_target_modules`: None
299
+ - `batch_eval_metrics`: False
300
+ - `eval_on_start`: False
301
+ - `use_liger_kernel`: False
302
+ - `eval_use_gather_object`: False
303
+ - `average_tokens_across_devices`: False
304
+ - `prompts`: None
305
+ - `batch_sampler`: batch_sampler
306
+ - `multi_dataset_batch_sampler`: round_robin
307
+
308
+ </details>
309
+
310
+ ### Training Logs
311
+ <details><summary>Click to expand</summary>
312
+
313
+ | Epoch | Step | Training Loss |
314
+ |:-----:|:-----:|:-------------:|
315
+ | 0.008 | 500 | 0.0089 |
316
+ | 0.016 | 1000 | 0.0001 |
317
+ | 0.024 | 1500 | 0.0 |
318
+ | 0.032 | 2000 | 0.0 |
319
+ | 0.04 | 2500 | 0.0 |
320
+ | 0.048 | 3000 | 0.0 |
321
+ | 0.056 | 3500 | 0.0 |
322
+ | 0.064 | 4000 | 0.0 |
323
+ | 0.072 | 4500 | 0.0 |
324
+ | 0.08 | 5000 | 0.0 |
325
+ | 0.088 | 5500 | 0.0 |
326
+ | 0.096 | 6000 | 0.0 |
327
+ | 0.104 | 6500 | 0.0 |
328
+ | 0.112 | 7000 | 0.0 |
329
+ | 0.12 | 7500 | 0.0 |
330
+ | 0.128 | 8000 | 0.0 |
331
+ | 0.136 | 8500 | 0.0 |
332
+ | 0.144 | 9000 | 0.0 |
333
+ | 0.152 | 9500 | 0.0 |
334
+ | 0.16 | 10000 | 0.0 |
335
+ | 0.168 | 10500 | 0.0 |
336
+ | 0.176 | 11000 | 0.0 |
337
+ | 0.184 | 11500 | 0.0 |
338
+ | 0.192 | 12000 | 0.0 |
339
+ | 0.2 | 12500 | 0.0 |
340
+ | 0.208 | 13000 | 0.0 |
341
+ | 0.216 | 13500 | 0.0 |
342
+ | 0.224 | 14000 | 0.0 |
343
+ | 0.232 | 14500 | 0.0 |
344
+ | 0.24 | 15000 | 0.0 |
345
+ | 0.248 | 15500 | 0.0 |
346
+ | 0.256 | 16000 | 0.0 |
347
+ | 0.264 | 16500 | 0.0 |
348
+ | 0.272 | 17000 | 0.0 |
349
+ | 0.28 | 17500 | 0.0 |
350
+ | 0.288 | 18000 | 0.0 |
351
+ | 0.296 | 18500 | 0.0 |
352
+ | 0.304 | 19000 | 0.0 |
353
+ | 0.312 | 19500 | 0.0 |
354
+ | 0.32 | 20000 | 0.0 |
355
+ | 0.328 | 20500 | 0.0 |
356
+ | 0.336 | 21000 | 0.0 |
357
+ | 0.344 | 21500 | 0.0 |
358
+ | 0.352 | 22000 | 0.0 |
359
+ | 0.36 | 22500 | 0.0 |
360
+ | 0.368 | 23000 | 0.0 |
361
+ | 0.376 | 23500 | 0.0 |
362
+ | 0.384 | 24000 | 0.0 |
363
+ | 0.392 | 24500 | 0.0 |
364
+ | 0.4 | 25000 | 0.0 |
365
+ | 0.408 | 25500 | 0.0 |
366
+ | 0.416 | 26000 | 0.0 |
367
+ | 0.424 | 26500 | 0.0 |
368
+ | 0.432 | 27000 | 0.0 |
369
+ | 0.44 | 27500 | 0.0 |
370
+ | 0.448 | 28000 | 0.0 |
371
+ | 0.456 | 28500 | 0.0 |
372
+ | 0.464 | 29000 | 0.0 |
373
+ | 0.472 | 29500 | 0.0 |
374
+ | 0.48 | 30000 | 0.0 |
375
+ | 0.488 | 30500 | 0.0 |
376
+ | 0.496 | 31000 | 0.0 |
377
+ | 0.504 | 31500 | 0.0 |
378
+ | 0.512 | 32000 | 0.0 |
379
+ | 0.52 | 32500 | 0.0 |
380
+ | 0.528 | 33000 | 0.0 |
381
+ | 0.536 | 33500 | 0.0 |
382
+ | 0.544 | 34000 | 0.0 |
383
+ | 0.552 | 34500 | 0.0 |
384
+ | 0.56 | 35000 | 0.0 |
385
+ | 0.568 | 35500 | 0.0 |
386
+ | 0.576 | 36000 | 0.0 |
387
+ | 0.584 | 36500 | 0.0 |
388
+ | 0.592 | 37000 | 0.0 |
389
+ | 0.6 | 37500 | 0.0 |
390
+ | 0.608 | 38000 | 0.0 |
391
+ | 0.616 | 38500 | 0.0 |
392
+ | 0.624 | 39000 | 0.0 |
393
+ | 0.632 | 39500 | 0.0 |
394
+ | 0.64 | 40000 | 0.0 |
395
+ | 0.648 | 40500 | 0.0 |
396
+ | 0.656 | 41000 | 0.0 |
397
+ | 0.664 | 41500 | 0.0 |
398
+ | 0.672 | 42000 | 0.0 |
399
+ | 0.68 | 42500 | 0.0 |
400
+ | 0.688 | 43000 | 0.0 |
401
+ | 0.696 | 43500 | 0.0 |
402
+ | 0.704 | 44000 | 0.0 |
403
+ | 0.712 | 44500 | 0.0 |
404
+ | 0.72 | 45000 | 0.0 |
405
+ | 0.728 | 45500 | 0.0 |
406
+ | 0.736 | 46000 | 0.0 |
407
+ | 0.744 | 46500 | 0.0 |
408
+ | 0.752 | 47000 | 0.0 |
409
+ | 0.76 | 47500 | 0.0 |
410
+ | 0.768 | 48000 | 0.0 |
411
+ | 0.776 | 48500 | 0.0 |
412
+ | 0.784 | 49000 | 0.0 |
413
+ | 0.792 | 49500 | 0.0 |
414
+ | 0.8 | 50000 | 0.0 |
415
+ | 0.808 | 50500 | 0.0 |
416
+ | 0.816 | 51000 | 0.0 |
417
+ | 0.824 | 51500 | 0.0 |
418
+ | 0.832 | 52000 | 0.0 |
419
+ | 0.84 | 52500 | 0.0 |
420
+ | 0.848 | 53000 | 0.0 |
421
+ | 0.856 | 53500 | 0.0 |
422
+ | 0.864 | 54000 | 0.0 |
423
+ | 0.872 | 54500 | 0.0 |
424
+ | 0.88 | 55000 | 0.0 |
425
+ | 0.888 | 55500 | 0.0 |
426
+ | 0.896 | 56000 | 0.0 |
427
+ | 0.904 | 56500 | 0.0 |
428
+ | 0.912 | 57000 | 0.0 |
429
+ | 0.92 | 57500 | 0.0 |
430
+ | 0.928 | 58000 | 0.0 |
431
+ | 0.936 | 58500 | 0.0 |
432
+ | 0.944 | 59000 | 0.0 |
433
+ | 0.952 | 59500 | 0.0 |
434
+ | 0.96 | 60000 | 0.0 |
435
+ | 0.968 | 60500 | 0.0 |
436
+ | 0.976 | 61000 | 0.0 |
437
+ | 0.984 | 61500 | 0.0 |
438
+ | 0.992 | 62000 | 0.0 |
439
+ | 1.0 | 62500 | 0.0 |
440
+
441
+ </details>
442
+
443
+ ### Framework Versions
444
+ - Python: 3.9.13
445
+ - Sentence Transformers: 4.1.0
446
+ - Transformers: 4.51.3
447
+ - PyTorch: 2.6.0+cu124
448
+ - Accelerate: 1.6.0
449
+ - Datasets: 3.5.0
450
+ - Tokenizers: 0.21.1
451
+
452
+ ## Citation
453
+
454
+ ### BibTeX
455
+
456
+ #### Sentence Transformers
457
+ ```bibtex
458
+ @inproceedings{reimers-2019-sentence-bert,
459
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
460
+ author = "Reimers, Nils and Gurevych, Iryna",
461
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
462
+ month = "11",
463
+ year = "2019",
464
+ publisher = "Association for Computational Linguistics",
465
+ url = "https://arxiv.org/abs/1908.10084",
466
+ }
467
+ ```
468
+
469
+ <!--
470
+ ## Glossary
471
+
472
+ *Clearly define terms in order to be accessible across audiences.*
473
+ -->
474
+
475
+ <!--
476
+ ## Model Card Authors
477
+
478
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
479
+ -->
480
+
481
+ <!--
482
+ ## Model Card Contact
483
+
484
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
485
+ -->
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": true,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": true,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": true,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": true,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": true,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<s>",
6
+ "lstrip": false,
7
+ "normalized": true,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<pad>",
14
+ "lstrip": false,
15
+ "normalized": true,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": true,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": true,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "50263": {
37
+ "content": "<mask>",
38
+ "lstrip": true,
39
+ "normalized": true,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ }
44
+ },
45
+ "bos_token": "<s>",
46
+ "clean_up_tokenization_spaces": false,
47
+ "cls_token": "<s>",
48
+ "eos_token": "</s>",
49
+ "errors": "replace",
50
+ "extra_special_tokens": {},
51
+ "mask_token": "<mask>",
52
+ "model_max_length": 256,
53
+ "pad_token": "<pad>",
54
+ "sep_token": "</s>",
55
+ "tokenizer_class": "RobertaTokenizer",
56
+ "trim_offsets": true,
57
+ "unk_token": "<unk>"
58
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff