Upload 6 files
Browse files- README.md +485 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +58 -0
- vocab.json +0 -0
README.md
ADDED
@@ -0,0 +1,485 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- sentence-transformers
|
4 |
+
- sentence-similarity
|
5 |
+
- feature-extraction
|
6 |
+
- generated_from_trainer
|
7 |
+
- dataset_size:500000
|
8 |
+
- loss:CosineSimilarityLoss
|
9 |
+
base_model: kinit/slovakbert-sts-stsb
|
10 |
+
widget:
|
11 |
+
- source_sentence: V súlade so zisteným skutkovým stavom a citovaným ustanovením zákona
|
12 |
+
súd návrhu vyhovel.
|
13 |
+
sentences:
|
14 |
+
- V súlade so zisteným skutkovým stavom a citovaným ustanovením zákona súd návrhu
|
15 |
+
vyhovel.
|
16 |
+
- 13C/88/2013, rozsudok Okresného súdu Revúca sp.zn.
|
17 |
+
- Výrok o trovách konania bol odôvodnený ustanovením § 142 ods.
|
18 |
+
- source_sentence: '2013 tak, aby sa do školenia vmestil praktický
nácvik (č.l.'
|
19 |
+
sentences:
|
20 |
+
- '2013 tak, aby sa do školenia vmestil praktický
nácvik (č.l.'
|
21 |
+
- 'Povinnosť súdu posúdiť
uplatnený nárok aj z hľadiska súladu s dobrými mravmi je zvýraznená v tých prípadoch,
|
22 |
+
keď ich účastník
konania vyslovene namieta, musí však na ňu prihliadnuť aj v prípadoch, kedy takýto
|
23 |
+
rozpor zistí súd
sám pri prieskume ex officio, keďže na absolútnu neplatnosť úkonu súd musí prihliadať
|
24 |
+
ex lege.'
|
25 |
+
- 'Nie je preto možné súhlasiť
s názorom súdu prvého stupňa, že sú závislé na úverovom vzťahu.'
|
26 |
+
- source_sentence: 'Žalobca je povinný nahradiť vedľajšiemu účastníkovi na účet jeho
|
27 |
+
právneho zástupcu trovy odvolacieho
konania vo výške 59,84 eur do 3 dní od právoplatnosti tohto rozsudku.'
|
28 |
+
sentences:
|
29 |
+
- 'Zdôraznil, že navrhovateľ
skutočnosti o existencii iného vzťahu medzi pôvodným majiteľom zmenky a odporcom
|
30 |
+
vôbec netvrdil,
teda nebol nositeľom dôkazného bremena.'
|
31 |
+
- 'Žalobca je povinný nahradiť vedľajšiemu účastníkovi na účet jeho právneho zástupcu
|
32 |
+
trovy odvolacieho
konania vo výške 59,84 eur do 3 dní od právoplatnosti tohto rozsudku.'
|
33 |
+
- 'Za týmto účelom žiadal žalobcu o doplnenie podaného návrhu,
aby bolo možné posúdiť skutočnosť, či ide o uplatnenie práv zo spotrebiteľského
|
34 |
+
vzťahu, alebo nie.'
|
35 |
+
- source_sentence: 'Dátum začiatku úročenia zmenkovej sumy vyplní na
zmenke remitent tak, že ním bude deň, kedy sa v zmysle bodu 4 týchto podmienok
|
36 |
+
stal splatný celý dlh.'
|
37 |
+
sentences:
|
38 |
+
- 'Kumulatívne s tým musí byť splnená podmienka, že pohľadávka sa nezdá byť zjavne
|
39 |
+
neopodstatnená,
alebo návrh neprípustný.'
|
40 |
+
- 2 veta druhá O.s.p.
|
41 |
+
- 'Dátum začiatku úročenia zmenkovej sumy vyplní na
zmenke remitent tak, že ním bude deň, kedy sa v zmysle bodu 4 týchto podmienok
|
42 |
+
stal splatný celý dlh.'
|
43 |
+
- source_sentence: 'Ustanovenie tohto odseku platí aj v prípade zmeny majiteľa zmenky
|
44 |
+
alebo postúpenia práva zo
zmenky.'
|
45 |
+
sentences:
|
46 |
+
- 'Ustanovenie tohto odseku platí aj v prípade zmeny majiteľa zmenky alebo postúpenia
|
47 |
+
práva zo
zmenky.'
|
48 |
+
- 'Miroslav Šedivec
ECLI: ECLI:SK:OSRA:2016:6816204309.1
Uznesenie
Okresný súd Revúca vo veci
navrhovateľa: Dopravný podnik mesta Košice, a.s., IČO: 31701914
Bardejovská 6
043 29 Košice
zast.'
|
49 |
+
- '3 (ktorému súdu je
určené, kto ho robí, ktorej veci sa týka a čo sleduje, jeho datovania a podpísania)
|
50 |
+
uviesť, proti ktorému
rozhodnutiu smeruje, v akom rozsahu sa napáda, v čom sa toto rozhodnutie alebo
|
51 |
+
postup súdu považuje
za nesprávny a čoho sa odvolateľ domáha.'
|
52 |
+
pipeline_tag: sentence-similarity
|
53 |
+
library_name: sentence-transformers
|
54 |
+
---
|
55 |
+
|
56 |
+
# SentenceTransformer based on kinit/slovakbert-sts-stsb
|
57 |
+
|
58 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [kinit/slovakbert-sts-stsb](https://huggingface.co/kinit/slovakbert-sts-stsb). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
59 |
+
|
60 |
+
## Model Details
|
61 |
+
|
62 |
+
### Model Description
|
63 |
+
- **Model Type:** Sentence Transformer
|
64 |
+
- **Base model:** [kinit/slovakbert-sts-stsb](https://huggingface.co/kinit/slovakbert-sts-stsb) <!-- at revision 770633080dda1d1867e7179a456ed53138280c08 -->
|
65 |
+
- **Maximum Sequence Length:** 256 tokens
|
66 |
+
- **Output Dimensionality:** 768 dimensions
|
67 |
+
- **Similarity Function:** Cosine Similarity
|
68 |
+
<!-- - **Training Dataset:** Unknown -->
|
69 |
+
<!-- - **Language:** Unknown -->
|
70 |
+
<!-- - **License:** Unknown -->
|
71 |
+
|
72 |
+
### Model Sources
|
73 |
+
|
74 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
75 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
76 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
77 |
+
|
78 |
+
### Full Model Architecture
|
79 |
+
|
80 |
+
```
|
81 |
+
SentenceTransformer(
|
82 |
+
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: RobertaModel
|
83 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
84 |
+
)
|
85 |
+
```
|
86 |
+
|
87 |
+
## Usage
|
88 |
+
|
89 |
+
### Direct Usage (Sentence Transformers)
|
90 |
+
|
91 |
+
First install the Sentence Transformers library:
|
92 |
+
|
93 |
+
```bash
|
94 |
+
pip install -U sentence-transformers
|
95 |
+
```
|
96 |
+
|
97 |
+
Then you can load this model and run inference.
|
98 |
+
```python
|
99 |
+
from sentence_transformers import SentenceTransformer
|
100 |
+
|
101 |
+
# Download from the 🤗 Hub
|
102 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
103 |
+
# Run inference
|
104 |
+
sentences = [
|
105 |
+
'Ustanovenie tohto odseku platí aj v prípade zmeny majiteľa zmenky alebo postúpenia práva zo\u2028zmenky.',
|
106 |
+
'Ustanovenie tohto odseku platí aj v prípade zmeny majiteľa zmenky alebo postúpenia práva zo\u2028zmenky.',
|
107 |
+
'3 (ktorému súdu je\u2028určené, kto ho robí, ktorej veci sa týka a čo sleduje, jeho datovania a podpísania) uviesť, proti ktorému\u2028rozhodnutiu smeruje, v akom rozsahu sa napáda, v čom sa toto rozhodnutie alebo postup súdu považuje\u2028za nesprávny a čoho sa odvolateľ domáha.',
|
108 |
+
]
|
109 |
+
embeddings = model.encode(sentences)
|
110 |
+
print(embeddings.shape)
|
111 |
+
# [3, 768]
|
112 |
+
|
113 |
+
# Get the similarity scores for the embeddings
|
114 |
+
similarities = model.similarity(embeddings, embeddings)
|
115 |
+
print(similarities.shape)
|
116 |
+
# [3, 3]
|
117 |
+
```
|
118 |
+
|
119 |
+
<!--
|
120 |
+
### Direct Usage (Transformers)
|
121 |
+
|
122 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
123 |
+
|
124 |
+
</details>
|
125 |
+
-->
|
126 |
+
|
127 |
+
<!--
|
128 |
+
### Downstream Usage (Sentence Transformers)
|
129 |
+
|
130 |
+
You can finetune this model on your own dataset.
|
131 |
+
|
132 |
+
<details><summary>Click to expand</summary>
|
133 |
+
|
134 |
+
</details>
|
135 |
+
-->
|
136 |
+
|
137 |
+
<!--
|
138 |
+
### Out-of-Scope Use
|
139 |
+
|
140 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
141 |
+
-->
|
142 |
+
|
143 |
+
<!--
|
144 |
+
## Bias, Risks and Limitations
|
145 |
+
|
146 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
147 |
+
-->
|
148 |
+
|
149 |
+
<!--
|
150 |
+
### Recommendations
|
151 |
+
|
152 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
153 |
+
-->
|
154 |
+
|
155 |
+
## Training Details
|
156 |
+
|
157 |
+
### Training Dataset
|
158 |
+
|
159 |
+
#### Unnamed Dataset
|
160 |
+
|
161 |
+
* Size: 500,000 training samples
|
162 |
+
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
|
163 |
+
* Approximate statistics based on the first 1000 samples:
|
164 |
+
| | sentence_0 | sentence_1 | label |
|
165 |
+
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:--------------------------------------------------------------|
|
166 |
+
| type | string | string | float |
|
167 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 31.75 tokens</li><li>max: 256 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 31.75 tokens</li><li>max: 256 tokens</li></ul> | <ul><li>min: 1.0</li><li>mean: 1.0</li><li>max: 1.0</li></ul> |
|
168 |
+
* Samples:
|
169 |
+
| sentence_0 | sentence_1 | label |
|
170 |
+
|:--------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
|
171 |
+
| <code>
Súd: Okresný súd Námestovo
Spisová značka: 5C/265/2015
Identifikačné číslo súdneho spisu: 5815205480
Dátum vydania rozhodnutia: 02.</code> | <code>
Súd: Okresný súd Námestovo
Spisová značka: 5C/265/2015
Identifikačné číslo súdneho spisu: 5815205480
Dátum vydania rozhodnutia: 02.</code> | <code>1.0</code> |
|
172 |
+
| <code>06.</code> | <code>06.</code> | <code>1.0</code> |
|
173 |
+
| <code>2016
Meno a priezvisko sudcu, VSÚ: JUDr.</code> | <code>2016
Meno a priezvisko sudcu, VSÚ: JUDr.</code> | <code>1.0</code> |
|
174 |
+
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
|
175 |
+
```json
|
176 |
+
{
|
177 |
+
"loss_fct": "torch.nn.modules.loss.MSELoss"
|
178 |
+
}
|
179 |
+
```
|
180 |
+
|
181 |
+
### Training Hyperparameters
|
182 |
+
#### Non-Default Hyperparameters
|
183 |
+
|
184 |
+
- `per_device_train_batch_size`: 4
|
185 |
+
- `per_device_eval_batch_size`: 4
|
186 |
+
- `num_train_epochs`: 1
|
187 |
+
- `fp16`: True
|
188 |
+
- `multi_dataset_batch_sampler`: round_robin
|
189 |
+
|
190 |
+
#### All Hyperparameters
|
191 |
+
<details><summary>Click to expand</summary>
|
192 |
+
|
193 |
+
- `overwrite_output_dir`: False
|
194 |
+
- `do_predict`: False
|
195 |
+
- `eval_strategy`: no
|
196 |
+
- `prediction_loss_only`: True
|
197 |
+
- `per_device_train_batch_size`: 4
|
198 |
+
- `per_device_eval_batch_size`: 4
|
199 |
+
- `per_gpu_train_batch_size`: None
|
200 |
+
- `per_gpu_eval_batch_size`: None
|
201 |
+
- `gradient_accumulation_steps`: 1
|
202 |
+
- `eval_accumulation_steps`: None
|
203 |
+
- `torch_empty_cache_steps`: None
|
204 |
+
- `learning_rate`: 5e-05
|
205 |
+
- `weight_decay`: 0.0
|
206 |
+
- `adam_beta1`: 0.9
|
207 |
+
- `adam_beta2`: 0.999
|
208 |
+
- `adam_epsilon`: 1e-08
|
209 |
+
- `max_grad_norm`: 1
|
210 |
+
- `num_train_epochs`: 1
|
211 |
+
- `max_steps`: -1
|
212 |
+
- `lr_scheduler_type`: linear
|
213 |
+
- `lr_scheduler_kwargs`: {}
|
214 |
+
- `warmup_ratio`: 0.0
|
215 |
+
- `warmup_steps`: 0
|
216 |
+
- `log_level`: passive
|
217 |
+
- `log_level_replica`: warning
|
218 |
+
- `log_on_each_node`: True
|
219 |
+
- `logging_nan_inf_filter`: True
|
220 |
+
- `save_safetensors`: True
|
221 |
+
- `save_on_each_node`: False
|
222 |
+
- `save_only_model`: False
|
223 |
+
- `restore_callback_states_from_checkpoint`: False
|
224 |
+
- `no_cuda`: False
|
225 |
+
- `use_cpu`: False
|
226 |
+
- `use_mps_device`: False
|
227 |
+
- `seed`: 42
|
228 |
+
- `data_seed`: None
|
229 |
+
- `jit_mode_eval`: False
|
230 |
+
- `use_ipex`: False
|
231 |
+
- `bf16`: False
|
232 |
+
- `fp16`: True
|
233 |
+
- `fp16_opt_level`: O1
|
234 |
+
- `half_precision_backend`: auto
|
235 |
+
- `bf16_full_eval`: False
|
236 |
+
- `fp16_full_eval`: False
|
237 |
+
- `tf32`: None
|
238 |
+
- `local_rank`: 0
|
239 |
+
- `ddp_backend`: None
|
240 |
+
- `tpu_num_cores`: None
|
241 |
+
- `tpu_metrics_debug`: False
|
242 |
+
- `debug`: []
|
243 |
+
- `dataloader_drop_last`: False
|
244 |
+
- `dataloader_num_workers`: 0
|
245 |
+
- `dataloader_prefetch_factor`: None
|
246 |
+
- `past_index`: -1
|
247 |
+
- `disable_tqdm`: False
|
248 |
+
- `remove_unused_columns`: True
|
249 |
+
- `label_names`: None
|
250 |
+
- `load_best_model_at_end`: False
|
251 |
+
- `ignore_data_skip`: False
|
252 |
+
- `fsdp`: []
|
253 |
+
- `fsdp_min_num_params`: 0
|
254 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
255 |
+
- `tp_size`: 0
|
256 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
257 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
258 |
+
- `deepspeed`: None
|
259 |
+
- `label_smoothing_factor`: 0.0
|
260 |
+
- `optim`: adamw_torch
|
261 |
+
- `optim_args`: None
|
262 |
+
- `adafactor`: False
|
263 |
+
- `group_by_length`: False
|
264 |
+
- `length_column_name`: length
|
265 |
+
- `ddp_find_unused_parameters`: None
|
266 |
+
- `ddp_bucket_cap_mb`: None
|
267 |
+
- `ddp_broadcast_buffers`: False
|
268 |
+
- `dataloader_pin_memory`: True
|
269 |
+
- `dataloader_persistent_workers`: False
|
270 |
+
- `skip_memory_metrics`: True
|
271 |
+
- `use_legacy_prediction_loop`: False
|
272 |
+
- `push_to_hub`: False
|
273 |
+
- `resume_from_checkpoint`: None
|
274 |
+
- `hub_model_id`: None
|
275 |
+
- `hub_strategy`: every_save
|
276 |
+
- `hub_private_repo`: None
|
277 |
+
- `hub_always_push`: False
|
278 |
+
- `gradient_checkpointing`: False
|
279 |
+
- `gradient_checkpointing_kwargs`: None
|
280 |
+
- `include_inputs_for_metrics`: False
|
281 |
+
- `include_for_metrics`: []
|
282 |
+
- `eval_do_concat_batches`: True
|
283 |
+
- `fp16_backend`: auto
|
284 |
+
- `push_to_hub_model_id`: None
|
285 |
+
- `push_to_hub_organization`: None
|
286 |
+
- `mp_parameters`:
|
287 |
+
- `auto_find_batch_size`: False
|
288 |
+
- `full_determinism`: False
|
289 |
+
- `torchdynamo`: None
|
290 |
+
- `ray_scope`: last
|
291 |
+
- `ddp_timeout`: 1800
|
292 |
+
- `torch_compile`: False
|
293 |
+
- `torch_compile_backend`: None
|
294 |
+
- `torch_compile_mode`: None
|
295 |
+
- `include_tokens_per_second`: False
|
296 |
+
- `include_num_input_tokens_seen`: False
|
297 |
+
- `neftune_noise_alpha`: None
|
298 |
+
- `optim_target_modules`: None
|
299 |
+
- `batch_eval_metrics`: False
|
300 |
+
- `eval_on_start`: False
|
301 |
+
- `use_liger_kernel`: False
|
302 |
+
- `eval_use_gather_object`: False
|
303 |
+
- `average_tokens_across_devices`: False
|
304 |
+
- `prompts`: None
|
305 |
+
- `batch_sampler`: batch_sampler
|
306 |
+
- `multi_dataset_batch_sampler`: round_robin
|
307 |
+
|
308 |
+
</details>
|
309 |
+
|
310 |
+
### Training Logs
|
311 |
+
<details><summary>Click to expand</summary>
|
312 |
+
|
313 |
+
| Epoch | Step | Training Loss |
|
314 |
+
|:-----:|:-----:|:-------------:|
|
315 |
+
| 0.008 | 500 | 0.0089 |
|
316 |
+
| 0.016 | 1000 | 0.0001 |
|
317 |
+
| 0.024 | 1500 | 0.0 |
|
318 |
+
| 0.032 | 2000 | 0.0 |
|
319 |
+
| 0.04 | 2500 | 0.0 |
|
320 |
+
| 0.048 | 3000 | 0.0 |
|
321 |
+
| 0.056 | 3500 | 0.0 |
|
322 |
+
| 0.064 | 4000 | 0.0 |
|
323 |
+
| 0.072 | 4500 | 0.0 |
|
324 |
+
| 0.08 | 5000 | 0.0 |
|
325 |
+
| 0.088 | 5500 | 0.0 |
|
326 |
+
| 0.096 | 6000 | 0.0 |
|
327 |
+
| 0.104 | 6500 | 0.0 |
|
328 |
+
| 0.112 | 7000 | 0.0 |
|
329 |
+
| 0.12 | 7500 | 0.0 |
|
330 |
+
| 0.128 | 8000 | 0.0 |
|
331 |
+
| 0.136 | 8500 | 0.0 |
|
332 |
+
| 0.144 | 9000 | 0.0 |
|
333 |
+
| 0.152 | 9500 | 0.0 |
|
334 |
+
| 0.16 | 10000 | 0.0 |
|
335 |
+
| 0.168 | 10500 | 0.0 |
|
336 |
+
| 0.176 | 11000 | 0.0 |
|
337 |
+
| 0.184 | 11500 | 0.0 |
|
338 |
+
| 0.192 | 12000 | 0.0 |
|
339 |
+
| 0.2 | 12500 | 0.0 |
|
340 |
+
| 0.208 | 13000 | 0.0 |
|
341 |
+
| 0.216 | 13500 | 0.0 |
|
342 |
+
| 0.224 | 14000 | 0.0 |
|
343 |
+
| 0.232 | 14500 | 0.0 |
|
344 |
+
| 0.24 | 15000 | 0.0 |
|
345 |
+
| 0.248 | 15500 | 0.0 |
|
346 |
+
| 0.256 | 16000 | 0.0 |
|
347 |
+
| 0.264 | 16500 | 0.0 |
|
348 |
+
| 0.272 | 17000 | 0.0 |
|
349 |
+
| 0.28 | 17500 | 0.0 |
|
350 |
+
| 0.288 | 18000 | 0.0 |
|
351 |
+
| 0.296 | 18500 | 0.0 |
|
352 |
+
| 0.304 | 19000 | 0.0 |
|
353 |
+
| 0.312 | 19500 | 0.0 |
|
354 |
+
| 0.32 | 20000 | 0.0 |
|
355 |
+
| 0.328 | 20500 | 0.0 |
|
356 |
+
| 0.336 | 21000 | 0.0 |
|
357 |
+
| 0.344 | 21500 | 0.0 |
|
358 |
+
| 0.352 | 22000 | 0.0 |
|
359 |
+
| 0.36 | 22500 | 0.0 |
|
360 |
+
| 0.368 | 23000 | 0.0 |
|
361 |
+
| 0.376 | 23500 | 0.0 |
|
362 |
+
| 0.384 | 24000 | 0.0 |
|
363 |
+
| 0.392 | 24500 | 0.0 |
|
364 |
+
| 0.4 | 25000 | 0.0 |
|
365 |
+
| 0.408 | 25500 | 0.0 |
|
366 |
+
| 0.416 | 26000 | 0.0 |
|
367 |
+
| 0.424 | 26500 | 0.0 |
|
368 |
+
| 0.432 | 27000 | 0.0 |
|
369 |
+
| 0.44 | 27500 | 0.0 |
|
370 |
+
| 0.448 | 28000 | 0.0 |
|
371 |
+
| 0.456 | 28500 | 0.0 |
|
372 |
+
| 0.464 | 29000 | 0.0 |
|
373 |
+
| 0.472 | 29500 | 0.0 |
|
374 |
+
| 0.48 | 30000 | 0.0 |
|
375 |
+
| 0.488 | 30500 | 0.0 |
|
376 |
+
| 0.496 | 31000 | 0.0 |
|
377 |
+
| 0.504 | 31500 | 0.0 |
|
378 |
+
| 0.512 | 32000 | 0.0 |
|
379 |
+
| 0.52 | 32500 | 0.0 |
|
380 |
+
| 0.528 | 33000 | 0.0 |
|
381 |
+
| 0.536 | 33500 | 0.0 |
|
382 |
+
| 0.544 | 34000 | 0.0 |
|
383 |
+
| 0.552 | 34500 | 0.0 |
|
384 |
+
| 0.56 | 35000 | 0.0 |
|
385 |
+
| 0.568 | 35500 | 0.0 |
|
386 |
+
| 0.576 | 36000 | 0.0 |
|
387 |
+
| 0.584 | 36500 | 0.0 |
|
388 |
+
| 0.592 | 37000 | 0.0 |
|
389 |
+
| 0.6 | 37500 | 0.0 |
|
390 |
+
| 0.608 | 38000 | 0.0 |
|
391 |
+
| 0.616 | 38500 | 0.0 |
|
392 |
+
| 0.624 | 39000 | 0.0 |
|
393 |
+
| 0.632 | 39500 | 0.0 |
|
394 |
+
| 0.64 | 40000 | 0.0 |
|
395 |
+
| 0.648 | 40500 | 0.0 |
|
396 |
+
| 0.656 | 41000 | 0.0 |
|
397 |
+
| 0.664 | 41500 | 0.0 |
|
398 |
+
| 0.672 | 42000 | 0.0 |
|
399 |
+
| 0.68 | 42500 | 0.0 |
|
400 |
+
| 0.688 | 43000 | 0.0 |
|
401 |
+
| 0.696 | 43500 | 0.0 |
|
402 |
+
| 0.704 | 44000 | 0.0 |
|
403 |
+
| 0.712 | 44500 | 0.0 |
|
404 |
+
| 0.72 | 45000 | 0.0 |
|
405 |
+
| 0.728 | 45500 | 0.0 |
|
406 |
+
| 0.736 | 46000 | 0.0 |
|
407 |
+
| 0.744 | 46500 | 0.0 |
|
408 |
+
| 0.752 | 47000 | 0.0 |
|
409 |
+
| 0.76 | 47500 | 0.0 |
|
410 |
+
| 0.768 | 48000 | 0.0 |
|
411 |
+
| 0.776 | 48500 | 0.0 |
|
412 |
+
| 0.784 | 49000 | 0.0 |
|
413 |
+
| 0.792 | 49500 | 0.0 |
|
414 |
+
| 0.8 | 50000 | 0.0 |
|
415 |
+
| 0.808 | 50500 | 0.0 |
|
416 |
+
| 0.816 | 51000 | 0.0 |
|
417 |
+
| 0.824 | 51500 | 0.0 |
|
418 |
+
| 0.832 | 52000 | 0.0 |
|
419 |
+
| 0.84 | 52500 | 0.0 |
|
420 |
+
| 0.848 | 53000 | 0.0 |
|
421 |
+
| 0.856 | 53500 | 0.0 |
|
422 |
+
| 0.864 | 54000 | 0.0 |
|
423 |
+
| 0.872 | 54500 | 0.0 |
|
424 |
+
| 0.88 | 55000 | 0.0 |
|
425 |
+
| 0.888 | 55500 | 0.0 |
|
426 |
+
| 0.896 | 56000 | 0.0 |
|
427 |
+
| 0.904 | 56500 | 0.0 |
|
428 |
+
| 0.912 | 57000 | 0.0 |
|
429 |
+
| 0.92 | 57500 | 0.0 |
|
430 |
+
| 0.928 | 58000 | 0.0 |
|
431 |
+
| 0.936 | 58500 | 0.0 |
|
432 |
+
| 0.944 | 59000 | 0.0 |
|
433 |
+
| 0.952 | 59500 | 0.0 |
|
434 |
+
| 0.96 | 60000 | 0.0 |
|
435 |
+
| 0.968 | 60500 | 0.0 |
|
436 |
+
| 0.976 | 61000 | 0.0 |
|
437 |
+
| 0.984 | 61500 | 0.0 |
|
438 |
+
| 0.992 | 62000 | 0.0 |
|
439 |
+
| 1.0 | 62500 | 0.0 |
|
440 |
+
|
441 |
+
</details>
|
442 |
+
|
443 |
+
### Framework Versions
|
444 |
+
- Python: 3.9.13
|
445 |
+
- Sentence Transformers: 4.1.0
|
446 |
+
- Transformers: 4.51.3
|
447 |
+
- PyTorch: 2.6.0+cu124
|
448 |
+
- Accelerate: 1.6.0
|
449 |
+
- Datasets: 3.5.0
|
450 |
+
- Tokenizers: 0.21.1
|
451 |
+
|
452 |
+
## Citation
|
453 |
+
|
454 |
+
### BibTeX
|
455 |
+
|
456 |
+
#### Sentence Transformers
|
457 |
+
```bibtex
|
458 |
+
@inproceedings{reimers-2019-sentence-bert,
|
459 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
460 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
461 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
462 |
+
month = "11",
|
463 |
+
year = "2019",
|
464 |
+
publisher = "Association for Computational Linguistics",
|
465 |
+
url = "https://arxiv.org/abs/1908.10084",
|
466 |
+
}
|
467 |
+
```
|
468 |
+
|
469 |
+
<!--
|
470 |
+
## Glossary
|
471 |
+
|
472 |
+
*Clearly define terms in order to be accessible across audiences.*
|
473 |
+
-->
|
474 |
+
|
475 |
+
<!--
|
476 |
+
## Model Card Authors
|
477 |
+
|
478 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
479 |
+
-->
|
480 |
+
|
481 |
+
<!--
|
482 |
+
## Model Card Contact
|
483 |
+
|
484 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
485 |
+
-->
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 256,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": true,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": true,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": true,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": true,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": true,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": true,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"0": {
|
5 |
+
"content": "<s>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": true,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"1": {
|
13 |
+
"content": "<pad>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": true,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"2": {
|
21 |
+
"content": "</s>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": true,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
},
|
28 |
+
"3": {
|
29 |
+
"content": "<unk>",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": true,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false,
|
34 |
+
"special": true
|
35 |
+
},
|
36 |
+
"50263": {
|
37 |
+
"content": "<mask>",
|
38 |
+
"lstrip": true,
|
39 |
+
"normalized": true,
|
40 |
+
"rstrip": false,
|
41 |
+
"single_word": false,
|
42 |
+
"special": true
|
43 |
+
}
|
44 |
+
},
|
45 |
+
"bos_token": "<s>",
|
46 |
+
"clean_up_tokenization_spaces": false,
|
47 |
+
"cls_token": "<s>",
|
48 |
+
"eos_token": "</s>",
|
49 |
+
"errors": "replace",
|
50 |
+
"extra_special_tokens": {},
|
51 |
+
"mask_token": "<mask>",
|
52 |
+
"model_max_length": 256,
|
53 |
+
"pad_token": "<pad>",
|
54 |
+
"sep_token": "</s>",
|
55 |
+
"tokenizer_class": "RobertaTokenizer",
|
56 |
+
"trim_offsets": true,
|
57 |
+
"unk_token": "<unk>"
|
58 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|